JPH024060B2 - - Google Patents

Info

Publication number
JPH024060B2
JPH024060B2 JP57033801A JP3380182A JPH024060B2 JP H024060 B2 JPH024060 B2 JP H024060B2 JP 57033801 A JP57033801 A JP 57033801A JP 3380182 A JP3380182 A JP 3380182A JP H024060 B2 JPH024060 B2 JP H024060B2
Authority
JP
Japan
Prior art keywords
film
magnetic
stretching
magnetic recording
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57033801A
Other languages
Japanese (ja)
Other versions
JPS58153232A (en
Inventor
Tomoyuki Minami
Kazuhiro Tanaka
Takeshi Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57033801A priority Critical patent/JPS58153232A/en
Priority to US06/425,960 priority patent/US4497865A/en
Priority to EP19820306263 priority patent/EP0086302B1/en
Priority to DE8282306263T priority patent/DE3277416D1/en
Publication of JPS58153232A publication Critical patent/JPS58153232A/en
Priority to US06/654,599 priority patent/US4546030A/en
Priority to US06/748,295 priority patent/US4587071A/en
Publication of JPH024060B2 publication Critical patent/JPH024060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • B29C55/065Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed in several stretching steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、二軸配向ポリエチレンテレフタレー
トフイルムをベースとした磁気記録媒体に関する
ものである。 フイルムをベースとし、これに磁性粉末および
結合剤を主成分とする磁性塗料を塗布したいわゆ
るバインダー型磁気テープは、その製造過程にお
いて、バインダーの乾燥やロールプレスによる昇
温、さらに加工速度向上に伴なう加工温度の上昇
等があるため、ベースフイルムは高温での寸法安
定性が優れていることが必要である。 また、フイルムに強磁性体を直接蒸着したいわ
ゆる非バインダー型磁気テープでは、その製造過
程において基体の温度を少なくとも80℃以上、に
保持しつつ磁性層を形成させるため、高温での寸
法安定性が優れていることが必要である。 したがつて、ベースフイルムの熱収縮率が大き
いと、上記加工処理段階での歪が大きくなり、磁
気記録媒体として苛酷な条件での使用において、
その歪が顕在化する。 一方、磁気記録媒体、特にビデオカセツト用の
ものは、くり返し走行やローデング等の苛酷な使
用状態にさらされるので、機械的強度に優れてい
ると同時に、長時間の使用にわたり安定な走行性
を維持することが要求され、これが満たされない
ときは、磁気記録媒体のスタート、ストツプおよ
び走行時に画像の乱れ現象が生ずる。 さらに、ビデオカメラの小型化に伴ない、使用
されるカセツトはより一層のコンパクト化と長時
間記録が要求され、磁性層の薄膜化とともにベー
スフイルムの薄膜化が要求されている。しかし、
ベースフイルムの薄膜化したものは熱収縮率が大
きく寸法安定性が低いなどの欠点があつた。 本発明の目的は、かかる従来技術の欠点を解消
せしめ、磁気記録時間の長時間化と、苛酷な使用
に耐えられる磁気記録媒体を提供せんとするもの
である。 本発明は、上記目的を達成するため次の構成、
すなわち、縦方向と横方向のF―5値の和が3500
Kg/cm2以上、熱収縮率が2.5%以下、非晶配向係
数が−1.5〜0.5である二軸配向ポリエチレンテレ
フタレートフイルムと、該フイルムの少なくとも
片面に形成された磁性層からなる磁気記録媒体を
特徴とするものである。 本発明においていうポリエチレンテレフタレー
トとは、ポリエチレンテレフタレート及び20%以
下の第3成分を含むポリエチレンテレフタレート
である。一般にポリエチレンテレフタレートはテ
レフタル酸またはその機能的誘導体及びエチレン
グリコールまたはその機械的誘導体とを触媒の存
在下で適当な反応条件の下に結合せしめることに
よつて合成される。このポリエチレンテレフタレ
ートの重合完結前あるいは後に適当な一種または
二種以上の第三成分を添加し、共重合または混合
ポリエステルとなしたものでもよい。共重合の適
当な第三成分としてはエステル形成官能基を有す
る化合物を挙げることが出来る。また、該ポリエ
ステル中にリン酸、亜リン酸及びそれらのエステ
ルなどの安定剤、酸化チタン、微粒子シリカ、炭
酸カルシウムなどの滑剤等が含まれていてもよ
い。好ましい固有粘度は0.4〜1.0であり、更に好
ましくは0.55〜0.8である。 本発明の二軸配向ポリエチレンテレフタレート
フイルムとは、上記ポリエチレンテレフタレート
を溶融押出しし、これを二軸方向に延伸して配向
せしめたもので、縦方向と横方向のF―5値の和
が、3500Kg/cm2以上である。F―5値の和がこの
値未満のものは、磁気記録の長時間化が計れず、
また9μ以下の薄膜型ビデオ用磁気記録媒体のベ
ースフイルムとして、強靭さ、外力に対する寸法
安定性が悪く正確さを要求される磁気記録媒体に
は不適であり、縦、横両方向のF―5値の和が
3500Kg/cm2以上で、かつ縦方向のF―5値が1800
Kg/cm2以上であると共に横方向のF―5値が1500
Kg/cm2以上であるのがより望ましい。 さらに、ビデオカセツトのより小型用に対して
は、上記の望ましい各F―5値において、縦方向
のF―5値1800Kg/cm2が2000Kg/cm2以上であるの
がより好ましい。 熱収縮率は、縦、横両方向ともに2.5%以下で
ある。この値を越えるものは、磁性層形成工程に
おける熱の影響で寸法安定性が悪くなる。なお、
平均結晶粒径は、好ましくは50Å以下、より好ま
しくは5Å以下であるのが望ましい。 本発明の磁性層とはγ―Fe2O3,Coをドープし
たγ―Fe2O3,CrO2あるいは強磁性合金の粉末磁
性材料を有機バインダー中に分散せしめたいわゆ
る塗布方式によつて形成された周知の磁性層、ま
たはFe,Co,Ni、その他強磁性金属あるいはこ
れらを含む磁性合金を真空蒸着、スパツタリン
グ、イオンプレーテング、電気メツキ等の方法に
より形成された周知の強磁性層のいずれであつて
もよいが、後者の強磁性層が好ましい。また、後
者の場合、磁性層を固着した磁気記録媒体の厚さ
は4〜9μとすることが望ましい。 次に本発明の磁気記録媒体の製造方法について
説明する。 まず、ベースとなるフイルムは、縦―横―再縦
―再横の逐次延伸、さらに好ましくは、縦―横の
逐次延伸したものを縦、横同時延伸により製造さ
れるものであるが、その延伸において、最初の縦
延伸に特殊条件を採用することにより製造され
る。ここで重要な点は、最初の縦方向延伸膜の特
性、特に複屈折および非晶配向係数が、続く横お
よび再縦方向の延伸性および物理特性に大きく左
右することである。すなわち、最初の縦延伸を2
段階に分けて延伸を実施することが必要で、最初
の1段目は、延伸温度110℃〜150℃、好ましくは
115℃〜135℃、延伸倍率1.3〜3.0倍、好ましくは
1.5〜2.5倍、2段目は90℃〜120℃、好ましくは
95℃〜115℃、延伸倍率2.0〜4.0倍、好ましくは
2.0〜3.0倍の限られた条件を採ることが必須であ
る。2段目の延伸倍率が2.0倍未満ではF―5値
が、4.0倍を超えると熱収縮率が、それぞれ本発
明で特定する値とすることできない。 該縦延伸膜は、横方向に延伸した後、再度縦横
両方向に逐次あるいは同時二軸延伸し、熱固定す
ることにより製造される。 横方向の延伸条件としては好ましくはTg+5
℃〜130℃の延伸温度で2.5倍以上好ましくは2.6
〜4.5倍延伸する。 再縦延伸は通常のロール法、再横延伸はテンタ
ー法の適用が可能であり、フイルムもエツジ付
き、エツジ切断、あるいは折り返しなど必要に応
じて好ましい形を採用できる。 より好ましい同時二軸延伸手法としては例えば
テンター内で縦・横同時に延伸する方法が挙げら
れる。クリツプでフイルムをはさみ横はテンター
の幅を変えることにより、縦はクリツプの間隙を
変えることによつて延伸する機構が採用される。
フイルムはエツジ付き、エツジ切断あるいは折り
返しなど任意の形でクリツプにはさますことがで
きる。 再縦、再横または同時二軸延伸温度(Ts)は
Tg+10℃〜Tm−40℃の範囲が必須である。こ
の範囲外ではフイルム破れあるいは不均一延伸な
どが発生し延伸性が顕著に悪化する。(Tg:2次
転移点、Tm:融点)。また、再縦、再横、同時
二軸延伸の縦または横の各延伸倍率は1.4〜2.5倍
の範囲が好ましい。なお、縦、横方向が同倍率以
外に、必要に応じて異倍率も採用できる。この延
伸倍率は逐次あるいは同時二軸延伸前の二軸配向
フイルムの配向状態との関連で適宜決定される
が、いずれにしても1.4倍未満(特に縦方向)で
は延伸効果が発揮できず、また2.5倍を越えると
フイルム破れが頻発し、またクリツプとクリツプ
の間隙が縦方向に拡がり、この間で横方向にネツ
クダウンを生じ横方向の強度損失および品質斑を
生じる。更に好ましい延伸倍率は1.5〜2.3倍であ
る。 なお、全延伸倍率(縦×横×再縦×再横または
縦×横×同時二軸の縦×同時二軸の横)は30倍以
上が好ましい。 熱固定手法としては、例えばロール方式などが
採用できるが、これよりもクリツプで保持された
テンター方式が好ましく、Tg+50℃〜Tm−10
℃の温度範囲で行なう。更に好ましくはTsより
も10℃以上高温でかつTg+80℃〜Tm−20℃の
範囲である。緊張状態で熱固定するのが好ましい
が寸法安定性を向上させるために若干の弛緩熱処
理を施すことも可能である。本発明では、上記延
伸条件の場合にF―5値、熱収縮率および非晶配
向係数が本発明で特定する範囲とすることができ
るので特に好ましい。 こうして製膜されたポリエステルフイルムはロ
ール状に巻取る際に縦皺などの欠点が発生しにく
く巻姿は良好であり、かつ縦方向のみならず横方
向にも高強度を有するものである。 次に、上記フイルムの少なくとも片面に磁性層
を形成する。磁性層の形成はγ―Fe2O3,Coをド
ープしたγ―Fe2O3,CrO2あるいは強磁性合金の
粉末磁性材料を有機バインダー中に分散せしめて
塗布したり、Fe,Co,Niその他の強磁性金属あ
るいはこれらを含む磁性合金を真空蒸着、スパツ
タリング、イオンプレーテイング、電気メツキ等
の周知の方法により磁性層を形成する。以上によ
り、本発明の磁気記録媒体が得られる。 なお、得られた磁気記録媒体のフイルムの各特
性、すなわちF―5値、熱収縮率、非晶配向係
数、平均結晶粒径は、磁性層形成前のフイルムの
各特性とほぼ同一である。 以上述べたように、本発明の磁気記録媒体は、
特定のF―5値、熱収縮率、非晶配向係数、を有
する二軸配向ベースフイルムに磁性層を設けたの
で、1カセツトテープ当りの磁気記録時間の長時
間化と、苛酷な使用条件に耐えられるものとなつ
た。 なお、本発明の磁気記録媒体は、磁気テープ、
磁気カード、磁気デイスクとして、電算機、オー
デオ、ビデオ、計測用の各用途に用いることがで
き、特にビデオ用として用いるのが好ましい。 なお、本発明における非晶配向係数、F―5
値、熱収縮率、平均結晶粒径は次の測定方法によ
る。 (1) 非晶配向係数 ポリエステルフイルムを螢光剤(Mikephor
ETN)を含む水浴中に55℃で浸漬、風乾し、こ
のサンプルを日本分光(株)製FOM―1偏光光度計
でフイルム面内における平行成分の偏光螢光強度
を求め、以下の定義に従つて非晶配向係数(F)
を求めたものである。 F=1−B/A F:非晶配向係数 A:縦方向の偏光螢光強度 B:横方向の偏向螢光強度 非晶配向係数が−1.5未満の場合には、横方向
に強度が強いアンバランスフイルムとなり、縦方
向のF―5値が1500Kg/cm2未満になる。 一方、非晶配向係数が0.5を越える場合には、
縦方向に強いアンバランスフイルムになり、横方
向のF―5値が1500Kg/cm2未満になる。 (2) F―5値 引張試験機に、幅10mmに切断したフイルム(表
面に磁性層を形成したものは、その磁性層を除去
したフイルム)を、チヤツク間長が100mmとなる
ようにセツトし、引張速度20mm/min、温度25℃
の条件で、フイルムの5%伸長に対応する強度を
測定する。 (3) 熱収縮率 まず、試料の長さを測定し、次にその試料を、
100℃に保持された空気恒温槽中に無緊張状態で
30分間放置する熱処理を行ない、冷却後の長さを
測定する。そして、その熱処理前後の各長さから
熱収縮率を求める。 (4) 平均結晶粒径 理学電機(株)製X線回析装置を用い〔100〕面に
ついて半価巾を求め次式から算出した。 A=0.9×λ/B cosΘ λ=2.2896(オングストロン) B=半価巾(ラジアン) ベースラインとしては2Θ=50゜と2Θ=20゜の散
乱強度を示す点の間を結ぶ直線とした。 以下、実施例について説明する。 実施例 1〜6 溶融された線状ポリエチレンテレフタレートを
ダイスリツトから80℃以下に冷却されたドラム上
に押出して冷却固化せしめ、この実質的に配向さ
れてないフイルムを表1―1の条件で延伸した
後、緊張下にて200℃、6秒間の熱固定を行なつ
た。なお、溶融ポリマの押出量は、熱固定された
フイルムの厚さが各々8ミクロンとなるよう調整
した。 上記の方法で得られた各フイルムの特性は、表
1―2の通りであつた。 一方、 強磁性合金粉末(Fe―Co―B、平均粒径400
Å) 300部 亜鉛粉末(平均粒径2ミクロン) 25部 セルロスアセテートブチレート 30部 エポキシ樹脂 25部 シリコーン油(滑剤) 4部 レシチン(分散剤) 5部 トルエン(溶剤) 200部 メチルエチルケトン(溶剤) 200部 酢酸エチル(溶剤) 100部 からなる組成物をボールミルに入れて十分に混
練したのち、ポリイソシアネート化合物(デスモ
デユールL―75)を180部加え、30分撹拌混合し
た後、上記のポリエチレンテレフタレートフイル
ムの片面に磁場を印加しつつ乾燥厚み3ミクロン
になるようにフイルムに塗布し、乾燥した。しか
る後、硬化処理、鏡面処理をした後、1/2インチ
幅にスリツトし、所定のビデオテープを得た。 このようにして得たテープの特性を表1―2に
実施例1〜6として示した。 ここで磁気テープでの5%伸び荷重については
◎は極めて良好、〇はかなり良好、△はあまり良
くないことを示す。本発明においてF―5値の高
いものは磁気テープとしても良好であることがわ
かる。 ヘツド当りとはヘリカルスキヤン型VTRで、
磁気テープの磁気ヘツドへの接触状態を示し、薄
膜化とともにヘツド当りが悪くなることが知られ
ている。Aはテープ再生時の出力信号(当り波
形)を一画面分でみた場合、出力信号が強くてフ
ラツトであつて良好であることを示し、Bは同出
力信号が中央部で上又は下側に歪んであまり良く
ないことを示し、Cは同出力信号自体が弱く、し
かも変形して不良な状態になることを示してい
る。本発明の実施例は、8ミクロンの薄いベース
フイルムであるが、F―5値が高く良好であるこ
とがわかる。次に強力が弱い場合、走行性が不安
定になり、画質の乱れやひどい場合にはハリツキ
が生じる。また、塗膜の乾燥、硬化工程(蒸着磁
気テープの場合は蒸着工程)で加熱され、寸法変
化が生じることにより、画質の乱れが生じる。特
に磁気テープのスタート時、ストツプ時に応力の
変化が著しく、画質の乱れを生じやすい。画質は
走行時のビデオ画質の乱れを、スタート、ストツ
プ特性はスタート、ストツプ時の画質の乱れを、
3段階に判定し、◎,〇,△で表示したものであ
る。本発明の磁気テープは、ヘツド当りに優れ、
酷使に耐える機械的強度、寸法安定性を有し、さ
らに安定な走行性と良好な電磁変換特性を維持す
るので、薄膜化磁気記録媒体として好適である。 比較例 1〜6 比較のため、延伸条件を表1―1の比較例の通
りとし、他の条件を実施例と同一としてビデオテ
ープを得た。ビデオテープ用のフイルム特性およ
びビデオテープの特性は表1―2の比較例1〜5
の通りであつた。 比較例1は一般市販のバランス型フイルムに該
当するものであるが、強力が不十分であり、薄物
型磁気テープとしては好ましくない。比較例2は
公知の製法の中で、縦、横方向の強力をバランス
させて、できるだけ強力を向上させた例である
が、比較例1よりヘツド当りは改善されている
が、不十分である。比較例3,4はテンシライズ
ドフイルムに該当するもので再縦延伸倍率を高く
したフイルムであるが、横方向の強力が大幅に低
下し好ましくない。比較例5は横を強力化したフ
イルムの例であるが、縦方向の強力が劣り、磁気
テープとしての縦方向の5%伸び荷重が不足して
いる。
The present invention relates to magnetic recording media based on biaxially oriented polyethylene terephthalate films. The so-called binder-type magnetic tape, which is based on a film and coated with a magnetic paint containing magnetic powder and a binder as its main components, has many problems during its manufacturing process, including drying of the binder, temperature rise due to roll pressing, and increased processing speed. Because of the increase in processing temperature, the base film must have excellent dimensional stability at high temperatures. In addition, in so-called binder-free magnetic tapes in which ferromagnetic material is directly deposited on a film, the magnetic layer is formed while maintaining the temperature of the substrate at least 80°C during the manufacturing process, which results in poor dimensional stability at high temperatures. It is necessary to be excellent. Therefore, if the heat shrinkage rate of the base film is large, the distortion during the above-mentioned processing step will be large, and when used as a magnetic recording medium under severe conditions,
The distortion becomes obvious. On the other hand, magnetic recording media, especially those for video cassettes, are exposed to harsh usage conditions such as repeated running and loading, so they have excellent mechanical strength and at the same time maintain stable running performance over long periods of use. If these requirements are not met, image disturbances will occur when the magnetic recording medium starts, stops, and runs. Furthermore, as video cameras become smaller, the cassettes used are required to be more compact and capable of recording over a longer period of time, and there is a demand for thinner magnetic layers and thinner base films. but,
Thinner base films had drawbacks such as high thermal shrinkage and low dimensional stability. An object of the present invention is to eliminate the drawbacks of the prior art and to provide a magnetic recording medium that can extend the magnetic recording time and withstand severe use. In order to achieve the above object, the present invention has the following configuration:
In other words, the sum of the vertical and horizontal F-5 values is 3500.
A magnetic recording medium comprising a biaxially oriented polyethylene terephthalate film having a weight of Kg/cm 2 or more, a heat shrinkage rate of 2.5% or less, and an amorphous orientation coefficient of -1.5 to 0.5, and a magnetic layer formed on at least one side of the film. This is a characteristic feature. Polyethylene terephthalate as used in the present invention is polyethylene terephthalate containing polyethylene terephthalate and a third component of 20% or less. Generally, polyethylene terephthalate is synthesized by combining terephthalic acid or its functional derivative and ethylene glycol or its mechanical derivative under appropriate reaction conditions in the presence of a catalyst. One or more suitable third components may be added before or after the completion of the polymerization of polyethylene terephthalate to form a copolymerized or mixed polyester. Suitable third components for copolymerization include compounds having ester-forming functional groups. Further, the polyester may contain stabilizers such as phosphoric acid, phosphorous acid, and their esters, and lubricants such as titanium oxide, particulate silica, and calcium carbonate. The preferred intrinsic viscosity is 0.4 to 1.0, more preferably 0.55 to 0.8. The biaxially oriented polyethylene terephthalate film of the present invention is obtained by melt-extruding the above-mentioned polyethylene terephthalate and stretching it in biaxial directions to orient it, and the sum of the F-5 values in the longitudinal direction and the transverse direction is 3500 kg. / cm2 or more. If the sum of the F-5 values is less than this value, the magnetic recording time cannot be measured, and
In addition, as a base film for thin-film video magnetic recording media of 9μ or less, it has poor toughness and dimensional stability against external forces, making it unsuitable for magnetic recording media that require accuracy. The sum of
3500Kg/ cm2 or more and vertical F-5 value 1800
Kg/cm 2 or more and the lateral F-5 value is 1500
More preferably, it is Kg/cm 2 or more. Furthermore, for smaller video cassettes, it is more preferable that the vertical F-5 value of 1800 Kg/cm 2 is 2000 Kg/cm 2 or more in each of the above-mentioned desirable F-5 values. Thermal shrinkage rate is 2.5% or less in both the vertical and horizontal directions. If the value exceeds this value, the dimensional stability will deteriorate due to the influence of heat during the magnetic layer forming process. In addition,
The average crystal grain size is preferably 50 Å or less, more preferably 5 Å or less. The magnetic layer of the present invention is formed by a so-called coating method in which a powder magnetic material such as γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 , CrO 2 or a ferromagnetic alloy is dispersed in an organic binder. or a well-known ferromagnetic layer formed of Fe, Co, Ni, other ferromagnetic metals, or magnetic alloys containing these by methods such as vacuum evaporation, sputtering, ion plating, electroplating, etc. However, the latter ferromagnetic layer is preferred. In the latter case, the thickness of the magnetic recording medium to which the magnetic layer is fixed is preferably 4 to 9 microns. Next, a method for manufacturing a magnetic recording medium according to the present invention will be explained. First, the base film is produced by sequential longitudinal-transverse-re-longitudinal-re-transverse stretching, and more preferably by simultaneous longitudinal and transverse stretching of a film that has been sequentially stretched longitudinally and transversely. It is produced by adopting special conditions for the initial longitudinal stretching. The important point here is that the properties of the initially stretched film in the machine direction, particularly the birefringence and the amorphous orientation coefficient, greatly influence the subsequent stretchability and physical properties in the transverse and re-machine directions. In other words, the initial longitudinal stretching is
It is necessary to perform the stretching in stages, and in the first stage, the stretching temperature is 110°C to 150°C, preferably
115℃~135℃, stretching ratio 1.3~3.0 times, preferably
1.5-2.5 times, second stage 90℃-120℃, preferably
95℃~115℃, stretching ratio 2.0~4.0 times, preferably
It is essential to adopt limited conditions of 2.0 to 3.0 times. If the second stage stretching ratio is less than 2.0 times, the F-5 value cannot be set to the value specified in the present invention, and if it exceeds 4.0 times, the heat shrinkage rate cannot be set to the value specified in the present invention. The longitudinally stretched film is produced by stretching in the transverse direction, then biaxially stretching in both the longitudinal and transverse directions sequentially or simultaneously, and heat-setting. The stretching conditions in the lateral direction are preferably Tg+5.
2.5 times or more preferably 2.6 at a stretching temperature of ℃ to 130℃
Stretch ~4.5x. The normal roll method can be used for the longitudinal re-stretching, and the tenter method can be used for the transverse re-stretching, and the film can have a preferred shape as required, such as edged, edge-cut, or folded. A more preferable simultaneous biaxial stretching method includes, for example, a method of simultaneously stretching longitudinally and transversely in a tenter. A mechanism is adopted in which the film is held between clips and stretched horizontally by changing the width of the tenter, and vertically by changing the gap between the clips.
The film can be clipped in any desired shape, including edged, edge-cut, or folded. Re-longitudinal, re-transverse or simultaneous biaxial stretching temperature (Ts)
The range of Tg + 10°C to Tm - 40°C is essential. Outside this range, film tearing or non-uniform stretching may occur, resulting in marked deterioration in stretchability. (Tg: secondary transition point, Tm: melting point). In addition, each longitudinal or transverse stretching ratio of longitudinal re-stretching, re-transverse stretching, and simultaneous biaxial stretching is preferably in the range of 1.4 to 2.5 times. In addition to the same magnification in the vertical and horizontal directions, different magnifications can be used as needed. This stretching ratio is appropriately determined in relation to the orientation state of the biaxially oriented film before sequential or simultaneous biaxial stretching, but in any case, if it is less than 1.4 times (especially in the longitudinal direction), the stretching effect cannot be exhibited, and If it exceeds 2.5 times, film tearing will occur frequently, and the gap between the clips will widen in the vertical direction, and necking down in the horizontal direction will occur between the clips, resulting in loss of strength in the horizontal direction and unevenness in quality. A more preferable stretching ratio is 1.5 to 2.3 times. Incidentally, the total stretching ratio (length x width x re-length x re-width or length x width x simultaneous two-axis length x simultaneous two-axis width) is preferably 30 times or more. As a heat fixing method, for example, a roll method can be adopted, but a tenter method in which the material is held with clips is preferable.
Perform at a temperature range of ℃. More preferably, the temperature is 10°C or more higher than Ts and in the range of Tg + 80°C to Tm - 20°C. Although it is preferable to heat set in a tensioned state, it is also possible to perform a slight relaxation heat treatment to improve dimensional stability. In the present invention, the above stretching conditions are particularly preferred because the F-5 value, heat shrinkage rate, and amorphous orientation coefficient can be within the ranges specified in the present invention. The polyester film produced in this manner is less prone to defects such as vertical wrinkles when wound into a roll, and has a good rolled appearance, and has high strength not only in the longitudinal direction but also in the lateral direction. Next, a magnetic layer is formed on at least one side of the film. The magnetic layer can be formed by dispersing powdered magnetic material such as γ-Fe 2 O 3 , CrO 2 or ferromagnetic alloy doped with γ-Fe 2 O 3 or Co in an organic binder, or applying Fe, Co or Ni. A magnetic layer is formed using other ferromagnetic metals or magnetic alloys containing these metals by known methods such as vacuum deposition, sputtering, ion plating, and electroplating. Through the above steps, the magnetic recording medium of the present invention can be obtained. Note that the properties of the film of the obtained magnetic recording medium, ie, F-5 value, thermal shrinkage rate, amorphous orientation coefficient, and average crystal grain size, are almost the same as those of the film before forming the magnetic layer. As described above, the magnetic recording medium of the present invention has
Since the magnetic layer is provided on a biaxially oriented base film with a specific F-5 value, heat shrinkage rate, and amorphous orientation coefficient, it is possible to increase the magnetic recording time per cassette tape and to withstand harsh usage conditions. It became bearable. Note that the magnetic recording medium of the present invention includes magnetic tape,
As a magnetic card or magnetic disk, it can be used for computers, audio, video, and measurement applications, and it is particularly preferable to use it for video applications. In addition, the amorphous orientation coefficient in the present invention, F-5
The value, heat shrinkage rate, and average grain size are determined by the following measurement method. (1) Amorphous orientation coefficient A polyester film is coated with a fluorescent agent (Mikephor).
The sample was immersed in a water bath containing ETN at 55°C and air-dried, and the polarized fluorescence intensity of the parallel component in the film plane was determined using a FOM-1 polarimeter manufactured by JASCO Corporation. Amorphous orientation coefficient (F)
This is what I was looking for. F=1-B/A F: Amorphous orientation coefficient A: Polarized fluorescence intensity in the longitudinal direction B: Polarized fluorescence intensity in the lateral direction If the amorphous orientation coefficient is less than -1.5, the intensity is strong in the lateral direction. It becomes an unbalanced film with a longitudinal F-5 value of less than 1500 kg/cm 2 . On the other hand, when the amorphous orientation coefficient exceeds 0.5,
The result is an unbalanced film that is strong in the vertical direction, and the F-5 value in the horizontal direction is less than 1500 kg/cm 2 . (2) F-5 value Set a film cut to a width of 10 mm (for films with a magnetic layer formed on the surface, remove the magnetic layer) into a tensile tester so that the length between the chucks is 100 mm. , tensile speed 20mm/min, temperature 25℃
Under these conditions, the strength corresponding to 5% elongation of the film is measured. (3) Heat shrinkage rate First, measure the length of the sample, and then
Under no tension in an air temperature chamber maintained at 100℃
Heat treatment is performed by leaving it for 30 minutes, and the length is measured after cooling. Then, the heat shrinkage rate is determined from each length before and after the heat treatment. (4) Average grain size Using an X-ray diffraction apparatus manufactured by Rigaku Denki Co., Ltd., the half width was determined for the [100] plane and calculated from the following formula. A=0.9×λ/B cosΘ λ=2.2896 (Angstron) B=half width (radian) The baseline was a straight line connecting the points showing the scattering intensity of 2Θ=50° and 2Θ=20°. Examples will be described below. Examples 1 to 6 Melted linear polyethylene terephthalate was extruded from a die slit onto a drum cooled to 80°C or less, cooled and solidified, and this substantially unoriented film was stretched under the conditions shown in Table 1-1. Thereafter, heat fixation was performed at 200°C for 6 seconds under tension. The amount of extrusion of the molten polymer was adjusted so that the thickness of each heat-set film was 8 microns. The properties of each film obtained by the above method are shown in Tables 1-2. On the other hand, ferromagnetic alloy powder (Fe-Co-B, average particle size 400
) 300 parts zinc powder (average particle size 2 microns) 25 parts cellulose acetate butyrate 30 parts epoxy resin 25 parts silicone oil (lubricant) 4 parts lecithin (dispersant) 5 parts toluene (solvent) 200 parts methyl ethyl ketone (solvent) A composition consisting of 200 parts and 100 parts of ethyl acetate (solvent) was placed in a ball mill and thoroughly kneaded, then 180 parts of a polyisocyanate compound (Desmodeur L-75) was added, and after stirring and mixing for 30 minutes, the above polyethylene terephthalate film was prepared. While applying a magnetic field to one side of the film, it was applied to a film to a dry thickness of 3 microns and dried. Thereafter, the film was hardened and mirror-finished, and then slit into 1/2 inch width to obtain the desired videotape. The properties of the tapes thus obtained are shown in Table 1-2 as Examples 1 to 6. Regarding the 5% elongation load on the magnetic tape, ◎ indicates extremely good, ◯ indicates fairly good, and △ indicates not very good. In the present invention, it can be seen that those having a high F-5 value are good as magnetic tapes. Per head is a helical scan type VTR.
It shows the state of contact of the magnetic tape with the magnetic head, and it is known that contact with the head becomes worse as the film becomes thinner. A indicates that when the output signal (hit waveform) during tape playback is viewed over one screen, the output signal is strong and flat, and is good, and B indicates that the output signal is upward or downward in the center. C indicates that the output signal itself is weak and deformed, resulting in a defective state. Although the example of the present invention is a thin base film of 8 microns, it can be seen that the F-5 value is high and good. Next, if the power is weak, the running performance becomes unstable, resulting in disturbances in image quality and, in severe cases, sharpness. In addition, the coating film is heated during the drying and curing process (vapor deposition process in the case of vapor-deposited magnetic tape), causing dimensional changes, resulting in disturbances in image quality. In particular, when the magnetic tape starts and stops, the stress changes significantly, which tends to cause disturbances in image quality. The image quality measures disturbances in video image quality when driving, and the start and stop characteristics measure disturbances in image quality during start and stop.
It is judged in three stages and displayed as ◎, 〇, and △. The magnetic tape of the present invention has excellent per head performance and
It has mechanical strength and dimensional stability that can withstand abuse, and also maintains stable running properties and good electromagnetic conversion characteristics, so it is suitable as a thin-film magnetic recording medium. Comparative Examples 1 to 6 For comparison, videotapes were obtained with the stretching conditions as shown in the Comparative Examples shown in Table 1-1, and with the other conditions being the same as in the Examples. The characteristics of the film for videotape and the characteristics of the videotape are shown in Table 1-2 for Comparative Examples 1 to 5.
It was hot on the street. Comparative Example 1 corresponds to a commercially available balanced film, but its strength is insufficient and is not preferred as a thin magnetic tape. Comparative Example 2 is an example of a known manufacturing method in which strength was improved as much as possible by balancing the strength in the vertical and lateral directions. Although the head contact was improved compared to Comparative Example 1, it was still insufficient. . Comparative Examples 3 and 4 correspond to tensilized films and are films with a high re-stretching ratio in the longitudinal direction, but the strength in the transverse direction is significantly reduced, which is not preferable. Comparative Example 5 is an example of a film that is strengthened in the horizontal direction, but the strength in the longitudinal direction is poor, and the 5% elongation load in the longitudinal direction as a magnetic tape is insufficient.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 縦方向と横方向のF―5値の和が3500Kg/cm2
以上、熱収縮率が2.5%以下、非晶配向係数が−
1.5〜0.5である二軸配向ポリエチレンテレフタレ
ートフイルムと、該フイルムの少なくとも片面に
形成された磁性層からなる磁気記録媒体。
1 The sum of vertical and horizontal F-5 values is 3500Kg/cm 2
Thermal shrinkage rate is 2.5% or less, and the amorphous orientation coefficient is −
1. A magnetic recording medium comprising a biaxially oriented polyethylene terephthalate film having a polarity of 1.5 to 0.5 and a magnetic layer formed on at least one side of the film.
JP57033801A 1982-02-17 1982-03-05 Magnetic recording medium Granted JPS58153232A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57033801A JPS58153232A (en) 1982-03-05 1982-03-05 Magnetic recording medium
US06/425,960 US4497865A (en) 1982-02-17 1982-09-28 Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
EP19820306263 EP0086302B1 (en) 1982-02-17 1982-11-24 Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
DE8282306263T DE3277416D1 (en) 1982-02-17 1982-11-24 Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
US06/654,599 US4546030A (en) 1982-02-17 1984-09-26 Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
US06/748,295 US4587071A (en) 1982-02-17 1985-06-24 Production of polyethylene terephthalate film for magnetic recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033801A JPS58153232A (en) 1982-03-05 1982-03-05 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58153232A JPS58153232A (en) 1983-09-12
JPH024060B2 true JPH024060B2 (en) 1990-01-25

Family

ID=12396572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033801A Granted JPS58153232A (en) 1982-02-17 1982-03-05 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58153232A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619826B2 (en) * 1984-03-07 1994-03-16 三菱化成株式会社 Magnetic recording material and manufacturing method thereof
JPH0756689B2 (en) * 1984-09-12 1995-06-14 帝人株式会社 Biaxially stretched polyester film
CN110815763B (en) * 2019-11-19 2021-06-08 青岛蓝科途膜材料有限公司 Apparatus and method for preparing high-strength high-modulus polyolefin film and high-strength high-modulus polyolefin film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944083A (en) * 1972-07-19 1974-04-25
JPS50139872A (en) * 1974-04-26 1975-11-08
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film
JPS5522915A (en) * 1978-08-07 1980-02-19 Toray Ind Inc Manufacture of polyester film
JPS5527211A (en) * 1978-08-15 1980-02-27 Toray Ind Inc Producing process of polyester film
US4497865A (en) * 1982-02-17 1985-02-05 Toray Industries, Inc. Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944083A (en) * 1972-07-19 1974-04-25
JPS50139872A (en) * 1974-04-26 1975-11-08
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film
JPS5522915A (en) * 1978-08-07 1980-02-19 Toray Ind Inc Manufacture of polyester film
JPS5527211A (en) * 1978-08-15 1980-02-27 Toray Ind Inc Producing process of polyester film
US4497865A (en) * 1982-02-17 1985-02-05 Toray Industries, Inc. Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
US4546030A (en) * 1982-02-17 1985-10-08 Toray Industries, Inc. Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom

Also Published As

Publication number Publication date
JPS58153232A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
US4497865A (en) Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
EP2623294A1 (en) Biaxially oriented polyester film and linear magnetic recording medium
EP0090499B1 (en) Magnetic recording medium
JPS59127730A (en) Biaxially orientated polyethylene-naphthalate film
JPH024060B2 (en)
EP0174376B1 (en) Heat-resistant film or sheet
JP2629861B2 (en) Biaxially oriented polyethylene terephthalate film
JP2001121602A (en) Biaxially oriented polyester film and method for manufacturing this film
US5645918A (en) Magnetic recording medium having an aromatic polyamide substrate
JPH05212788A (en) Biaxially oriented thermoplastic resin laminated film and manufacture thereof
JPH11302408A (en) Biaxially oriented polyester film
JPH09169860A (en) Aromatic polyamide film
JPH024059B2 (en)
JPH0373409A (en) Metal thin film type magnetic recording medium
JP2964961B2 (en) Aromatic polyamide film and magnetic recording medium
JP2870080B2 (en) Video cassette tape
JP2001030350A (en) Biaxially oriented polyester film
JPH05261805A (en) Biaxially oriented polyethylene-2,6-naphthalate film and manufacture thereof
JP3317411B2 (en) Polystyrene film
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2803274B2 (en) Oxide coated magnetic recording media
JPH0386916A (en) Metal coating type magnetic recording medium
JPH04278350A (en) Biaxially oriented laminated polyester film
JPH0157414B2 (en)
JP2001049005A (en) Biaxially oriented polyester film and its preparation