JPH0619826B2 - Magnetic recording material and manufacturing method thereof - Google Patents

Magnetic recording material and manufacturing method thereof

Info

Publication number
JPH0619826B2
JPH0619826B2 JP59041956A JP4195684A JPH0619826B2 JP H0619826 B2 JPH0619826 B2 JP H0619826B2 JP 59041956 A JP59041956 A JP 59041956A JP 4195684 A JP4195684 A JP 4195684A JP H0619826 B2 JPH0619826 B2 JP H0619826B2
Authority
JP
Japan
Prior art keywords
film
stretching
magnetic recording
temperature
polyetherketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59041956A
Other languages
Japanese (ja)
Other versions
JPS60187928A (en
Inventor
清一 野沢
滋夫 内海
道生 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIA HOIRU HEKISUTO KK
Mitsubishi Kasei Corp
Original Assignee
DAIA HOIRU HEKISUTO KK
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIA HOIRU HEKISUTO KK, Mitsubishi Kasei Corp filed Critical DAIA HOIRU HEKISUTO KK
Priority to JP59041956A priority Critical patent/JPH0619826B2/en
Priority to DE8585901547T priority patent/DE3583315D1/en
Priority to EP85901547A priority patent/EP0174376B1/en
Priority to PCT/JP1985/000112 priority patent/WO1985003905A1/en
Publication of JPS60187928A publication Critical patent/JPS60187928A/en
Priority to US07/476,146 priority patent/US4977230A/en
Publication of JPH0619826B2 publication Critical patent/JPH0619826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、長さ方向及びそれと直角方向共に優れた機械
的性質を有し、かつ良好な寸法安定性を有する新規な磁
気記録材料が、及びそのうちの特に磁気記録テープの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a novel magnetic recording material having excellent mechanical properties in both the length direction and the direction perpendicular thereto and having good dimensional stability. And particularly to a method of manufacturing a magnetic recording tape.

〔従来技術〕[Prior art]

近年工業用途に使用されるフイルムは、ポリエチレンテ
レフタレート系フイルムが主流をなしており、その機械
的性質及び電気的性質から多方面にわたつて応用されて
いる。その中でも磁気記録材料特にオーデイオテープ、
ビデオテープ、フロツピーデイスク用基材としては、格
段に優れた性質を示し、コスト・パーフオーマンスの点
で、他のフイルムの追随を許さないといつても過言では
ない状況にある。
Polyethylene terephthalate-based films are mainly used as the films used for industrial purposes in recent years, and they are applied in various fields due to their mechanical properties and electrical properties. Among them, magnetic recording materials, especially audio tapes,
As a base material for video tapes and floppy discs, it shows markedly superior properties, and in terms of cost and performance, it is always an exaggeration to say that it cannot be followed by other films.

しかし、近年磁気記録材料は、高密度化、薄膜化の傾向
にあり、ポリエチレンテレフタレートに代る更に優れた
フイルムが嘱望されている。例えばビデオテープにおい
ては、現行のビデオで長時間化の要求があり、ベースフ
イルムの薄膜化が計られてきた。しかし最近の動向とし
ては、カメラ一体型の8m/mビデオテープが規格化さ
れ、上市に向けて小型化、高密度化の要求がますます高
まつている。
However, in recent years, magnetic recording materials have tended to have higher densities and thinner films, and there has been a strong demand for more excellent films in place of polyethylene terephthalate. For example, in the case of video tapes, there is a demand for a longer time in the existing videos, and the base film has been made thinner. However, as a recent trend, the camera-integrated 8m / m video tape has been standardized, and the demand for miniaturization and high density has been increasing more and more toward the market launch.

特に高密度化のために、これまでの酸化鉄をバインダー
と共に塗布する方式から、金属粉を直接フイルムに蒸着
する方式への転換がなされており、この蒸着過程でフイ
ルムが熱を受けること、またフイルム温度が高温程蒸着
金属とフイルムとの密着性が良いことなどから、ベース
フイルムの耐熱性及び寸法安定性の向上が要望されてい
る。
In particular, in order to increase the density, the conventional method of coating iron oxide with a binder has been changed to a method of directly depositing metal powder on a film, and the film receives heat during this deposition process. Since the higher the film temperature is, the better the adhesion between the evaporated metal and the film is, the heat resistance and dimensional stability of the base film are desired to be improved.

また、フロツピーデイスクにおいても、コンパクトデイ
スク化の傾向にあり、それに伴い高密度化が要望されて
いる。高密度化する方法としては、金属蒸着、垂直磁気
蒸着により磁気特性を上げる方法においては耐熱性が、
またトラツク数を上げる方法においては、温湿度膨張係
数、温湿度による不可逆変化を押えるなど寸法安定性の
向上が望まれている。
Further, the floppy disk also tends to be a compact disk, and accordingly, high density is demanded. As a method of increasing the density, heat resistance is obtained in a method of improving magnetic characteristics by metal vapor deposition or vertical magnetic vapor deposition,
Further, in the method of increasing the number of tracks, improvement of dimensional stability is desired, such as suppressing expansion coefficient of temperature and humidity and irreversible change due to temperature and humidity.

これに対しては、ポリイミド系フイルム、芳香族ポリア
ミド系フイルム等が提案されているが、価格が高い、耐
薬品性が悪い、温湿度に対する寸法安定性が悪いなど短
所も多く新規なフイルム特に、溶融押出可能でかつ結晶
性を有し、更にポリエチレンテレフタレートフイルムよ
りも、耐熱性、機械的性質及び寸法安定性に優れたフイ
ルムの開発が望まれている。そのようなフイルムとし
て、例えば特公昭48−42167号公報に記載のよう
に、ポリエステルの1種であるポリエチレン−2,6−
ナフタレンジカルボキシレートが提案されているが、特
性が格段優れていないし、高価格である点で、現在でも
実用化されていない状況にある。
On the other hand, polyimide films, aromatic polyamide films, etc. have been proposed, but new films especially with many disadvantages such as high price, poor chemical resistance, poor dimensional stability against temperature and humidity, It is desired to develop a film which can be melt extruded and has crystallinity and which is superior in heat resistance, mechanical properties and dimensional stability to a polyethylene terephthalate film. As such a film, for example, as described in JP-B-48-42167, polyethylene-2,6- which is one kind of polyester is used.
Although naphthalene dicarboxylate has been proposed, it is in a situation where it has not been put to practical use because it is not excellent in properties and is expensive.

他方、フイルム基材としてポリエーテルケトンが考えら
れるが、ポリエーテルケトンは高融点及び高い二次転移
点を有し、かつこれから成形された未延伸フイルムは高
い剛性を示すために、これを二軸延伸して配向フイルム
を製造するには、種々の困難が予想され、事実、ポリエ
ーテルケトンを二軸延伸して高ヤング率で高強度のフイ
ルムを製造する適当な方法は、従来全く知られていなか
つた。
On the other hand, polyetherketone can be considered as the film base material, but the polyetherketone has a high melting point and a high second-order transition point, and the unstretched film formed from this has a high rigidity. Various difficulties are expected in the production of oriented films by stretching, and in fact, suitable methods for biaxially stretching polyetherketone to produce films having a high Young's modulus and high strength have never been known. Nakatsuta.

〔発明の目的〕[Object of the Invention]

本発明は、上記のような問題点を解決するためになされ
たものであり、その目的は、従来公知のものより機械的
性質及び耐熱寸法安定性に優れた磁気記録材料と、特に
ポリエーテルケトンを用いた磁気記録テープの製造方法
とを提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a magnetic recording material which is more excellent in mechanical properties and heat-resistant dimensional stability than conventionally known ones, and particularly polyether ketone. And a method of manufacturing a magnetic recording tape using the same.

〔発明の構成〕[Structure of Invention]

本発明を概説すれば、本発明の第1の発明は磁気記録材
料に関する発明であつて、磁気記録材料における基材
が、120℃以上180℃未満の二次転移点、280℃
以上の融点、及び結晶性を有し、かつポリエーテルケト
ン及び/又はポリエーテルエーテルケトン骨格を有する
高分子物質の未延伸フイルム又はシートを二軸配向させ
たフイルム又はシート(以下、単にフイルムと略称す
る)であつて、その長さ方向及びそれと直角方向の5%
伸長時応力が共に13kg/mm2以上、少なくとも一方向
の初期弾性率が600kg/mm2以上、並びに、180℃
における長さ方向及びそれと直角方向の熱収縮率が4%
以下であることを特徴とする。
Briefly describing the present invention, the first invention of the present invention relates to a magnetic recording material, wherein the base material in the magnetic recording material has a second-order transition point of 120 ° C. or more and less than 180 ° C., 280 ° C.
A film or sheet obtained by biaxially orienting an unstretched film or sheet of a polymeric substance having the above melting point and crystallinity and having a polyetherketone and / or a polyetheretherketone skeleton (hereinafter simply referred to as film). 5% in the length direction and the direction perpendicular to it
Both elongation stress is 13kg / mm 2 or more, initial elastic modulus in at least one direction is 600kg / mm 2 or more, and 180 ℃
Of 4% in the longitudinal direction and in the direction perpendicular to it
It is characterized by the following.

また、本発明の第2の発明は磁気記録テープの製造方法
に関する発明であつて、下記一般式I: で表される繰返し単位を有し、その固有粘度が0.4dl
/g 以上であるポリエーテルケトンを溶融押出成形して
なる未延伸フイルム(又はシート)を、二次転移点温度
〜210℃において、縦方向及び横方向に、同時又は任
意の順序で遂次、両方向共2.0倍以上二軸延伸した
後、200℃〜融点未満の温度で熱固定して得られるフイ
ルム(又はシート)の表面に、磁性体層を形成すること
を特徴とする。
A second invention of the present invention relates to a method for manufacturing a magnetic recording tape, which comprises the following general formula I: It has a repeating unit represented by
An unstretched film (or sheet) obtained by melt-extruding polyetherketone of not less than 1 g / g, at a second-order transition temperature of 210 ° C., in the machine direction and the transverse direction, simultaneously or in any order. A magnetic layer is formed on the surface of a film (or sheet) obtained by biaxially stretching 2.0 times or more in both directions and then heat-setting at a temperature of 200 ° C. to less than the melting point.

まず、本発明の第1の発明について以下具体的に説明す
る。
First, the first invention of the present invention will be specifically described below.

本発明において、120℃以上180℃未満の二次転移
点、280℃以上の融点、及び結晶性を有し、かつポリ
エーテルケトン及び/又はポリエーテルエーテルケトン
骨格を有する高分子物質は、この条件を満す限りいかな
るものでもよいが、押出成形の容易さから、ポリエーテ
ルケトン、ポリエーテルエーテルケトン、及びそれらの
各共重合体、更にベンゼン環に側鎖を有するもの等で上
記条件を満すものが特に好適である。なお、本発明にお
ける該高分子物質の融点の上限については、特に制限は
なく、熱固定を行う場合に、その温度の選定において融
点が考慮されるに過ぎない。
In the present invention, a polymer substance having a second-order transition point of 120 ° C. or higher and lower than 180 ° C., a melting point of 280 ° C. or higher, and crystallinity and having a polyetherketone and / or a polyetheretherketone skeleton is under this condition. As long as the above conditions are satisfied, any of polyether ketones, polyether ether ketones, and their respective copolymers, and those having a side chain on the benzene ring, etc., can satisfy the above conditions because of ease of extrusion molding. Those are particularly suitable. The upper limit of the melting point of the polymer substance in the present invention is not particularly limited, and when heat fixing is performed, the melting point is only taken into consideration when selecting the temperature.

すなわち、例えばポリエーテルケトン等は、下記一般式
II: (式中R1 及びR2 は水素又はハロゲン、アルキル基若
しくはその他の置換基を示す)で表される繰返し単位を
有するもの、あるいは、それと下記一般式III: (式中、R3〜R5はR1及びR2と同義である)で表される繰
返し単位を形成しうる成分との共重合体である。
That is, for example, polyetherketone is represented by the following general formula
II: (Wherein R 1 and R 2 represent hydrogen or halogen, an alkyl group or another substituent), or a repeating unit represented by the following general formula III: (Wherein R 3 to R 5 have the same meanings as R 1 and R 2 ) and a copolymer capable of forming a repeating unit.

他方、例えはポリエーテルエーテルケトン等は、下記一
般式IV: (式中、R6〜R8はR1及びR2と同義である)で表される繰
返し単位を有するもの、あるいはそれと上記式IIIの成
分との共重合体である。
On the other hand, for example, polyetheretherketone is represented by the following general formula IV: (Wherein R 6 to R 8 have the same meanings as R 1 and R 2 ), or a copolymer of the repeating unit and a component of the above formula III.

その他種々の構造のものがあるが、価格の点からみて、
ホスゲンとジフエニルエーテルとから得られるポリエー
テルケトン、及びホスゲンと1,4−ジフエノキシベン
ゼンとから得られるポリエーテルエーテルケトンを使用
するのが好適である。
There are various other structures, but in terms of price,
Preference is given to using polyetherketones obtained from phosgene and diphenyl ethers and polyetheretherketones obtained from phosgene and 1,4-diphenoxybenzene.

なお、該高分子物質には、二酸化チタンなどのつや消
剤、安定剤、微粒子シリカ、チヤイナクレイなどの滑剤
を含有させてもよい。
The polymer substance may contain a matting agent such as titanium dioxide, a stabilizer, a fine particle silica, and a lubricant such as china clay.

本発明の磁気記録材料における基材となるフイルムは、
更に下記の各物性を有するものでなくてはならない。
The film used as the base material in the magnetic recording material of the present invention is
Further, it must have the following physical properties.

すなわち、その長さ方向及びそれと直角方向の5%伸張
時の応力が共に13kg/mm2以上、好ましくは15kg/m
m2以上であり、少なくとも一方向の初期弾性率が600
kg/mm2以上、好ましくは800kg/mm2以上であり、1
80℃における長さ方向及びそれと直角方向の熱収縮率
が4%以下、好ましくは3%以下、更に好ましくは1%
以下であることである。
That is, the stress at 5% elongation in the length direction and the direction perpendicular thereto is both 13 kg / mm 2 or more, preferably 15 kg / m
m 2 or more and an initial elastic modulus in at least one direction of 600
kg / mm 2 or more, preferably 800 kg / mm 2 or more, 1
Thermal shrinkage at 80 ° C in the length direction and the direction perpendicular thereto is 4% or less, preferably 3% or less, more preferably 1%.
It is the following.

以上のごとき3つの条件をすべて兼ね備えた磁気記録材
料は全く新規なものであり、従来公知の磁気記録材料の
いずれのものも、前記3条件のうちの少なくとも1つを
欠くものであつた。例えば、ポリエチレンテレフタレー
トを用いて縦横共に強度の高いフイルムを造ろうとする
と、熱収縮率が高くなり、逆に熱収縮率を抑えようとす
ると所望の機械的強度が得られないというジレンマに陥
つていた。また、両方向共に強度の高いバランスのとれ
たフイルムを造ることは、ポリエチレンテレフタレート
の場合、非常に困難なことであつた。
The magnetic recording material satisfying all of the above three conditions is completely novel, and any of the conventionally known magnetic recording materials lacks at least one of the above three conditions. For example, when trying to make a film that has high strength in both the vertical and horizontal directions using polyethylene terephthalate, the heat shrinkage rate becomes high, and conversely, when trying to suppress the heat shrinkage rate, the desired mechanical strength cannot be obtained. It was Further, in the case of polyethylene terephthalate, it has been very difficult to produce a well-balanced film having high strength in both directions.

したがつて、本発明による縦横共に優れた機械的性質と
極めて優れた耐熱寸法安定性を有する結晶性のフイルム
は、従来にない画期的なフイルムであり、これを基材と
する磁気記録材料は、小型化、薄膜化及び高密度化の市
場要求に充分合致するものである。
Therefore, the crystalline film according to the present invention, which has excellent mechanical properties in both length and width and extremely excellent heat resistance and dimensional stability, is an epoch-making film which has never existed before, and a magnetic recording material using this as a base material. Meets the market demand for miniaturization, thinning, and high density.

本発明の磁気記録材料は、前記した高分子物質を、通常
の方法で成型し、得られた未延伸フイルムを二軸方向に
延伸した後、必要に応じ熱処理することにより製造され
る。延伸方法としては、遂次二軸延伸法、同時二軸延伸
法、遂次三段延伸法等を採用することが出来る。しかし
て、遂次二軸延伸法の場合、その順序は縦横いずれでも
よく、その延伸温度は、最初の段階は、該高分子物質の
二次転移点温度〜210℃で、その後段の延伸は、21
0℃以下であつて、前段と同等若しくは3℃以上高い温
度が好ましく、また延伸倍率は、縦方向2.5〜5.
0、横方向2.5〜5.0がそれぞれ好ましい。
The magnetic recording material of the present invention is produced by molding the above-described polymer substance by a usual method, biaxially stretching the obtained unstretched film, and then heat-treating it if necessary. As a stretching method, a successive biaxial stretching method, a simultaneous biaxial stretching method, a successive three-stage stretching method, etc. can be adopted. In the case of the sequential biaxial stretching method, the order may be vertical or horizontal, and the stretching temperature is as follows: the first stage is the second-order transition temperature of the polymeric substance to 210 ° C., and the subsequent stage stretching is , 21
A temperature equal to or lower than 0 ° C. and higher than or equal to 3 ° C. is preferable, and the stretching ratio is 2.5 to 5 ° in the machine direction.
0 and 2.5 to 5.0 in the lateral direction are preferable.

熱処理温度は、210℃〜融点未満の範囲が好ましい。The heat treatment temperature is preferably in the range of 210 ° C to less than the melting point.

こうして得られるフイルムの表面に磁性体層を形成する
には、磁気記録材料の製造において実施されている従来
公知の方法を採用することができる。例えば、磁性体粒
子(例えば酸化金属又はコバルト、ニツケルなどの金属
単体)とバインダーとの混合物を塗布して薄層を形成さ
せる方法、あるいは金属を真空蒸着、イオンプレーテイ
ング若しくはスパツタリング等で直接固着させる方法な
どがある。
In order to form a magnetic layer on the surface of the film thus obtained, a conventionally known method that is used in the production of magnetic recording materials can be adopted. For example, a method of applying a mixture of magnetic particles (for example, metal oxide or a simple metal such as cobalt or nickel) and a binder to form a thin layer, or directly fixing the metal by vacuum vapor deposition, ion plating or sputtering. There are ways.

本発明の磁気記録材料は、前述したように、磁性材料の
極薄化及び高密度化の要請に充分こたえるものである。
As described above, the magnetic recording material of the present invention sufficiently meets the demands for extremely thin and high density magnetic materials.

次に、本発明の第2の発明である磁気記録テープの製造
方法について具体的に説明する。
Next, a method for manufacturing the magnetic recording tape according to the second aspect of the present invention will be specifically described.

本発明方法で使用するポリエーテルケトンは、各種の公
知方法でうることができる。例えば、p−フエノキシ塩
化ベンゾイルを、フツ化水素中で三フツ化ホウ素の存在
下で重合させることにより得られる。しかしながら、価
格を低下させる目的で、ホスゲンとジフエニルエーテル
を、二硫化炭素中、三塩化アルミニウムの存在下に重合
させるのが最適の方法である。
The polyetherketone used in the method of the present invention can be obtained by various known methods. For example, it is obtained by polymerizing p-phenoxybenzoyl chloride in hydrogen fluoride in the presence of boron trifluoride. However, for cost reduction purposes, phosgene and diphenyl ether are optimally polymerized in carbon disulfide in the presence of aluminum trichloride.

また、該ポリエーテルケトン中には、二酸化チタンなど
のつや消剤、安定剤、及び微粒子シリカ、チヤイナクレ
イなどの滑剤等が含まれてもよい。
Further, the polyether ketone may contain a matting agent such as titanium dioxide, a stabilizer, and a lubricant such as fine particle silica and china clay.

本発明方法は、これらポリエーテルケトンのうち固有粘
度が0.4dl/g以上のものに適用される。ここにいう
固有粘度とは、濃硫酸中、1.0g/dlの濃度、30℃
の温度で測定した値である。しかして、固有粘度が0.
4dl/g未満のものでは有用なフイルムが得られないの
で好ましくない。
The method of the present invention is applied to those polyetherketones having an intrinsic viscosity of 0.4 dl / g or more. Intrinsic viscosity here means a concentration of 1.0 g / dl in concentrated sulfuric acid at 30 ° C.
It is the value measured at the temperature of. Thus, the intrinsic viscosity is 0.
If it is less than 4 dl / g, a useful film cannot be obtained, which is not preferable.

本発明は、前記のごときポリエーテルケトンから成形さ
れた未延伸フイルムに対して適用される。未延伸フイル
ムの厚さは任意に選定することが可能であり、例えば厚
さ数10μm のような薄いものから、例えば厚さ0.5
mmを超えるような相当の厚さのものまで最適可能であ
る。但し、ポリエステルに比べて結晶化速度が早いた
め、急冷の方法には、工夫が必要である。つまり急冷時
球晶が生成しないようにしなければならない。場合によ
つては水冷、氷中への冷却も好ましい方法である。
The present invention is applied to an unstretched film formed from polyetherketone as described above. The thickness of the unstretched film can be arbitrarily selected. For example, from a thin film having a thickness of several 10 μm, for example, a thickness of 0.5
It is possible to optimize even those with a considerable thickness exceeding mm. However, since the crystallization speed is higher than that of polyester, it is necessary to devise a quenching method. In other words, it is necessary to prevent the formation of spherulites during quenching. In some cases, water cooling or cooling into ice is also a preferable method.

本発明方法において、遂次延伸方法を採用して、未延伸
フイルムを遂次延伸する場合には、最初の延伸は、使用
したポリエーテルケトンの二次転移点温度〜210℃の
温度で行い、後段の延伸(最初の延伸方向と直角方向へ
の延伸)は、210℃以下の温度で、かつ前段の前記延
伸温度と同等若しくは5℃以上高い温度で行うことが好
ましい。ここで前段延伸後の平均屈折率(以下と略記
する)1.750以下とすることが好ましい。特に本フ
イルムは前述のごとく結晶化速度が早いので、延伸後冷
却過程で結晶化しやすく球晶が生成すると、後段延伸性
が極めて悪化するので、の管理は特に重要である。ま
た、それぞれの延伸における延伸倍率が2.0倍未満で
は、所望の強度及びヤング率が得られないばかりでな
く、得られたフイルムの厚み斑が磁気記録テープとして
は不適当である。
In the method of the present invention, when the unstretched film is successively stretched by adopting the successive stretching method, the first stretching is performed at a temperature of the second-order transition temperature of the used polyether ketone to 210 ° C., The latter stretching (stretching in the direction perpendicular to the first stretching direction) is preferably carried out at a temperature of 210 ° C. or lower and at a temperature equal to or higher than the stretching temperature of the first stage by 5 ° C. or more. Here, it is preferable that the average refractive index (abbreviated as below) after the first-stage stretching is 1.750 or less. In particular, since the present film has a high crystallization rate as described above, if the spherulites are easily formed in the cooling process after stretching and the spherulites are formed, the subsequent stretchability is extremely deteriorated. If the stretching ratio in each stretching is less than 2.0 times, not only the desired strength and Young's modulus cannot be obtained, but also the thickness unevenness of the obtained film is unsuitable for a magnetic recording tape.

また最初の延伸において、延伸温度が前記二次転移点よ
り低い場合には、冷延伸となりフイルムの厚薄が生じ、
厚さ斑の均一なフイルムが得られない。他方、延伸温度
が210℃を超える温度になると、延伸時結晶化が進み
前段延伸後のが高くなりすぎて後段延伸が不可能にな
る。ところでこの二次転移点温度と210℃の間で前段
延伸をする際、選択する温度によつては、フロー延伸を
起して充分に配向しない場合も有るが、その際には前段
延伸を何段かの多段に分けて前段延伸後所望のを得る
ことも好適である。
Further, in the first stretching, when the stretching temperature is lower than the second-order transition point, cold stretching is performed and the thickness of the film is reduced,
A film with uneven thickness cannot be obtained. On the other hand, when the stretching temperature exceeds 210 ° C., crystallization during stretching proceeds and the temperature after the first stage stretching becomes too high, making the second stage stretching impossible. By the way, when pre-stage stretching is performed between the secondary transition point temperature and 210 ° C., depending on the selected temperature, flow-stretching may occur and insufficient orientation may occur. It is also suitable to divide into a plurality of stages to obtain a desired product after the former stage drawing.

後段の延伸においては、延伸温度は、最初の延伸後のフ
イルムの配向により適正な条件を選択すれば良いが、後
段の延伸温度を前段延伸温度と同等若しくは、むしろ好
ましくは5℃以上高目に設定するのが好ましい。特に前
段のが高目にある時は後段の延伸温度を高目に設定す
るのが好ましい。
In the latter-stage stretching, the stretching temperature may be selected as appropriate depending on the orientation of the film after the first stretching, but the latter-stage stretching temperature is equal to the former-stage stretching temperature or rather preferably higher than 5 ° C. It is preferable to set. In particular, when the former stage is higher, the latter stretching temperature is preferably set higher.

一般に、ポリエーテルケトンの二次転移点温度は、差動
走査熱量計(DSC )で測定して154℃を示す。
Generally, the second-order transition temperature of polyetherketone is 154 ° C. as measured by a differential scanning calorimeter (DSC).

本発明における平均屈折率とは、光線波長589mμ
(D線の中央)、温度20℃にて高屈折率まで測定出来
るようにしたアツベの屈折計の改良型で測定した、フイ
ルム面内の主軸方向の屈折率(nγ)、それと直角な方
向の面内の屈折率(nβ)、及び厚み方向の屈折率(n
α)の相加平均値をいう。
The average refractive index in the present invention means a light wavelength of 589 mμ.
(Center of D line), refractive index (nγ) in the principal axis direction in the film plane, measured with an improved version of Atsube's refractometer capable of measuring up to a high refractive index at a temperature of 20 ° C. In-plane refractive index (nβ) and thickness direction refractive index (n
It means the arithmetic mean value of α).

前記遂次方法で本発明によるフイルムを得るには、最初
の延伸温度を154〜210℃、延伸倍率を2.0〜
5.0とし、後段の延伸倍率を2.0〜6.0とするこ
とが好適である。そして、その延伸速度は、縦延伸工程
においては、50〜100000%/秒、横延伸工程において
は5〜500%/秒の範囲でそれぞれ変化させることが
出来る。
In order to obtain the film according to the present invention by the successive method, the initial stretching temperature is 154 to 210 ° C and the stretching ratio is 2.0 to.
It is preferable to set the stretching ratio to 5.0 and the stretching ratio in the latter stage to 2.0 to 6.0. The stretching speed can be changed in the range of 50 to 100000% / sec in the longitudinal stretching process and in the range of 5 to 500% / sec in the transverse stretching process.

本発明における延伸方法としては、まず縦方向に延伸し
たのち横方向に延伸する遂次二軸延伸法が、最も推奨さ
れる。しかし、まず横方向に延伸したのち、縦方向に延
伸する遂次二軸延伸方法、延伸温度の条件を遂次二軸延
伸の前段延伸条件と一致するように選択すれば同時二軸
延伸方法も好適である。延伸装置としてはロール、テン
ター、チユーブラー等必要に応じて選択出来る。また、
縦方向に強度を向上させるためには、再延伸、再縦横延
伸等も望ましい。このようにして得た配向フイルムは、
高強度及び高ヤング率でありかつ平面性に優れている
が、これを下記の条件で熱処理することにより、耐熱性
及び寸法安定性を更に向上させることが出来る。
As the stretching method in the present invention, the sequential biaxial stretching method of stretching in the machine direction and then in the transverse direction is most recommended. However, if the stretching is performed in the transverse direction first and then in the longitudinal direction, the sequential biaxial stretching method, if the stretching temperature conditions are selected so as to match the pre-stage stretching conditions of the sequential biaxial stretching, the simultaneous biaxial stretching method is also possible. It is suitable. As a stretching device, a roll, a tenter, a tumbler, or the like can be selected as needed. Also,
In order to improve the strength in the machine direction, re-stretching, re-stretching and transverse stretching are also desirable. The oriented film thus obtained is
It has high strength and high Young's modulus and is excellent in flatness, but by heat-treating it under the following conditions, heat resistance and dimensional stability can be further improved.

すなわち、前記の条件で、二軸延伸したポリエーテルケ
トンフイルムは、200℃以上融点未満の温度で熱処理
することによつて更に優れたフイルムが得られる。
That is, under the above-mentioned conditions, the biaxially stretched polyetherketone film is heat-treated at a temperature of 200 ° C or higher and lower than the melting point to obtain a more excellent film.

熱処理温度が200℃より低い場合には、熱処理時間が
長すぎ効果的ではない。他方、融点以上になると、フイ
ルムは融解して破断してしまう。
When the heat treatment temperature is lower than 200 ° C., the heat treatment time is too long to be effective. On the other hand, above the melting point, the film melts and breaks.

また、熱処理は緊張下又は収縮下のいずれで行つても良
いが、収縮下で行う際は、10%以下の制限収縮下で行
うことが好ましい。それ以上では配向緩和が起りすぎて
機械的強度の著しい低下を招くので不適当である。
Further, the heat treatment may be carried out under tension or shrinkage, but when it is carried out under shrinkage, it is preferably carried out under restricted shrinkage of 10% or less. If it is more than that, the orientation is relaxed too much and the mechanical strength is remarkably lowered, which is not suitable.

次いで、前記のように延伸し、熱処理したフイルムの表
面に磁性体層を形成するが、その方法としては、既述し
た従来公知の方法を採用することができる。
Then, the magnetic layer is formed on the surface of the film which has been stretched and heat-treated as described above, and as the method, the conventionally known method described above can be adopted.

上記した本発明方法により得られる磁気記録テープは、
従来公知のテープと比較して、強度及び寸法安定性が優
れており、極薄のテープで充分に磁気記録テープとして
の機能を発揮することが出来ると共に、8m/mビデオ用
蒸着型テープとして好適に用いられる。
The magnetic recording tape obtained by the method of the present invention described above,
It is superior in strength and dimensional stability to the conventionally known tapes, and can be fully used as a magnetic recording tape even with an extremely thin tape, and is suitable as a vapor deposition tape for 8m / m video. Used for.

〔実施例〕〔Example〕

以下、実施例及び製造例により本発明を更に具体的に説
明するが、本発明は、その要旨を超えない限り以下の実
施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples and Production Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.

製造例1 ホスゲンとジフエニルエーテルを5:1のモル比で二硫
化炭素中、三塩化アルミニウムの存在下で常法により合
成された固有粘度が0.81dl/gのポリエーテルケト
ンを使用して製造された種々の厚さの未延伸フイルムを
押出成形加工して未延伸フイルムを製造した。
Production Example 1 Using polyetherketone having an intrinsic viscosity of 0.81 dl / g, which was synthesized by a conventional method in the presence of aluminum trichloride in carbon disulfide in a molar ratio of 5: 1 of phosgene and diphenyl ether. The unstretched films of various thicknesses produced were extruded to produce unstretched films.

該未延伸フイルムを、まず縦方向に延伸温度175℃で
延伸倍率1.9倍(番号1)、3.2倍(番号2)、
3.5倍(番号3)、及び4.1倍(番号4)延伸した
後、横方向に同一温度で×3.2倍延伸し、次いで35
0℃で20秒熱固定して最終フイルムとして厚さ15μ
mの二軸延伸熱固定フイルムを得た。それらの物性を下
記表1に示す。
First, the unstretched film was stretched in the machine direction at a stretching temperature of 175 ° C. at a stretch ratio of 1.9 times (No. 1) and 3.2 times (No. 2).
After stretching 3.5 times (No. 3) and 4.1 times (No. 4), the film was stretched in the transverse direction at the same temperature by 3.2 times, and then 35 times.
Heat-fixed at 0 ° C for 20 seconds and final film thickness is 15μ
A biaxially stretched heat-fixing film of m was obtained. The physical properties thereof are shown in Table 1 below.

表1より厚さ斑の点から縦方向の延伸倍率は×2.0倍
以上必要であることが分る。
It can be seen from Table 1 that the stretching ratio in the machine direction needs to be 2.0 times or more in terms of thickness unevenness.

実施例1 固有粘度0.75なるポリエーテルケトンから製造され
た未延伸フイルムをまず縦方向に175℃で3.5倍、
次いで横方向に180℃で3.5倍延伸したのち、32
0℃で熱固定を行つた。このようにして得られたフイル
ムと市販の磁気テープ用ポリエチレンテレフタレートフ
イルムの性能を比較した。その結果を下記表2に示す。
Example 1 An unstretched film produced from polyetherketone having an intrinsic viscosity of 0.75 was first stretched 3.5 times at 175 ° C. in the machine direction.
Then, after stretching 3.5 times in the transverse direction at 180 ° C., 32
Heat setting was performed at 0 ° C. The performance of the film thus obtained and the commercially available polyethylene terephthalate film for magnetic tape were compared. The results are shown in Table 2 below.

これらのフイルムに、針状磁性酸化鉄とバインダーとか
らなる組成物を薄層で塗布し、固化させて造つた磁気テ
ープを対比すると、強度では同等であるが、寸法安定性
特に高温高湿度での寸法安定性においては、ポリエーテ
ルケトンフイルムを基材とした磁気テープの方が、ポリ
エチレンテレフタレートフイルムを基材とした磁気テー
プよりも格段に優れており、また同一のケースに入る磁
気テープの長さも格段に長いことが分つた。
When a magnetic tape prepared by applying a thin layer of a composition composed of needle-shaped magnetic iron oxide and a binder to these films and solidifying them is compared, the strength is the same, but the dimensional stability is particularly high at high temperature and high humidity. In terms of dimensional stability, the magnetic tape based on polyetherketone film is significantly superior to the magnetic tape based on polyethylene terephthalate film, and the length of the magnetic tape in the same case is It turns out that it is much longer.

また、コバルト又はニツケル金属を真空蒸着して磁気テ
ープを造つたところ、ポリエチレンテレフタレートフイ
ルムの場合には、蒸着源と反対面にある冷却ドラムを、
カール及び寸法変化の点から室温にしなければならない
のに対して、ポリエーテルケトンフイルムの場合には、
130℃までドラム温度を上げても全く問題がないこと
が分つた。このようにして得た蒸着テープは、磁性体層
とフイルムとの接着性が格段に優れていた。
When cobalt or nickel metal was vacuum-deposited to make a magnetic tape, in the case of polyethylene terephthalate film, the cooling drum on the side opposite to the vapor deposition source,
Room temperature must be kept from the viewpoint of curl and dimensional change, whereas in the case of polyetherketone film,
It was found that raising the drum temperature to 130 ° C did not cause any problems. The vapor-deposited tape thus obtained was remarkably excellent in the adhesiveness between the magnetic layer and the film.

実施例2〜6 常法により得たポリエーテルケトンから未延伸フイルム
を作製した。その二次転移点は154℃、融点は367
℃であつた。この未延伸フイルムを、まず縦方向に17
5℃で3.4倍延伸し、次いで横方向に180℃で3.
4倍延伸したのち、320℃で熱固定を行い、厚さ15
μmのフイルムを得た(実施例2)。
Examples 2 to 6 An unstretched film was prepared from polyetherketone obtained by a conventional method. Its second-order transition point is 154 ° C and melting point is 367.
It was ℃. This unstretched film is first stretched 17
Stretched 3.4 times at 5 ° C, then transversely at 180 ° C for 3.
After stretching 4 times, heat setting is performed at 320 ° C to obtain a thickness of 15
A film of μm was obtained (Example 2).

また、熱固定しないものについても評価した(実施例
3)。更にまた、上記と同様の未延伸フイルムを用い
て、185℃で縦横共に3.4倍で同時二軸延伸し、3
00℃で熱固定を行つて、厚さ15μmのフイルムを得
た(実施例4)。
Moreover, the thing which is not heat-fixed was also evaluated (Example 3). Furthermore, using the same unstretched film as described above, the film was simultaneously biaxially stretched at 185 ° C. in the longitudinal and transverse directions by a factor of 3.4, and 3
Heat fixing was carried out at 00 ° C. to obtain a film having a thickness of 15 μm (Example 4).

このようにして得た各延伸フイルムの各特性を下記表3
に示す。
The properties of the stretched films thus obtained are shown in Table 3 below.
Shown in.

このフイルム表面に、従来公知の磁性粒子と結着剤との
組成物を塗布して薄層を形成させて磁気記録テープを造
つた。
A conventionally known composition of magnetic particles and a binder was applied to the surface of the film to form a thin layer, thereby producing a magnetic recording tape.

これを、市販されている縦横方向5%伸張時応力が約1
5kg/mm2のポリエチレンテレフタレートを基材とした
磁気記録テープと対比した。この市販品の180℃、1
分における熱収縮率は、縦方向で15%と非常に高いも
のであつた。
This has a stress of about 1 at the time of stretching 5% in the longitudinal and transverse directions, which is commercially available.
It was compared with a magnetic recording tape based on 5 kg / mm 2 of polyethylene terephthalate. 180 ° C of this commercial product, 1
The heat shrinkage in minutes was as high as 15% in the longitudinal direction.

実施例5 常法により得たポリエーテルエーテルケトンから未延伸
フイルムを作製した。その二次転移点は138℃、融点
は320℃であつた。この未延伸フイルムを、まず縦方
向に160℃で4.0倍延伸し、次いで横方向に170
℃で2.8倍延伸したのち、300℃で熱処理し、厚さ
15μmのフイルムを得た。このようにして得た延伸フ
イルムの各特性を下記表4に示す。
Example 5 An unstretched film was prepared from polyetheretherketone obtained by a conventional method. Its second-order transition point was 138 ° C. and its melting point was 320 ° C. This unstretched film is first stretched in the machine direction at a temperature of 160 ° C. by 4.0 times and then stretched in the transverse direction at 170 ° C.
The film was stretched at 2.8 times at 2.8 ° C. and then heat-treated at 300 ° C. to obtain a film having a thickness of 15 μm. The properties of the stretched film thus obtained are shown in Table 4 below.

このフイルムから実施例2と同様にして磁気記録テープ
を造り、市販のポリエチレンテレフタレートを基材とし
たテンシライズドフイルム(縦方向5%伸長時応力1
9.3kg/mm2)からの磁気記録テープと対比した。
A magnetic recording tape was produced from this film in the same manner as in Example 2 and a commercially available polyethylene terephthalate-based tensilized film (5% longitudinal stress 1) was used.
It was contrasted with a magnetic recording tape from 9.3 kg / mm 2 ).

該市販テープと本実施例のテープとは、縦方向の強度は
同等であつたが、横方向の強度は、本実施例のテープが
13kg/mm2であるのに対して、市販テープは9.8kg
/mm2であり、また多数回走行後の耐久性は、本実施例
のテープの方が市販テープよりも格段に優れていること
が分つた。更に、寸法安定性についても、市販テープの
場合には縦方向180℃、1分の熱収縮率は20%と非
常に劣るものであつた。
The commercially available tape and the tape of this example had the same longitudinal strength, but the lateral strength of the tape of this example was 13 kg / mm 2 , whereas the commercially available tape was 9 kg. .8 kg
/ Mm 2, also durability after multiple cars, it was divide the direction of the tape of this embodiment is much better than the commercial tape. Further, regarding the dimensional stability, in the case of the commercially available tape, the heat shrinkage ratio in the longitudinal direction at 180 ° C. for 1 minute was 20%, which was very poor.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明による磁気記録材料、特に
磁気記録テープは、従来公知のものより優れた機械的性
質及び耐熱寸法安定性をもつという顕著な効果を奏する
ものである。
As described above, the magnetic recording material according to the present invention, particularly the magnetic recording tape, has the remarkable effect of having mechanical properties and heat-resistant dimensional stability superior to those of the conventionally known materials.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁気記録材料における基材が、120℃℃
以上180℃未満の二次転移点、280℃以上の融点、
及び結晶性を有し、かつポリエーテルケトン及び/又は
ポリエーテルエーテルケトン骨格を有する高分子物質の
未延伸フイルム又はシートを二軸配向させたフイルム又
はシートであつて、その長さ方向及びそれと直角方向の
5%伸長時応力が共に13kg/mm2以上、少なくとも一
方向の初期弾性率が600 kg/mm以上、並びに、180
℃における長さ方向及びそれと直角方向の熱収縮率が4
%以下であることを特徴とする磁気記録材料。
1. A base material in a magnetic recording material is 120 ° C.
A second-order transition point of 180 ° C or higher and a melting point of 280 ° C or higher,
And a film or sheet obtained by biaxially orienting an unstretched film or sheet of a polymeric substance having crystallinity and having a polyetherketone and / or a polyetheretherketone skeleton, in the length direction and at a right angle thereto. The stress at 5% elongation in both directions is 13 kg / mm 2 or more, the initial elastic modulus in at least one direction is 600 kg / mm 2 or more, and 180
The thermal shrinkage in the longitudinal direction and in the direction perpendicular to it at 4 ° C is 4
% Or less, a magnetic recording material.
【請求項2】該高分子物質が、ポリエーテルケトン又は
ポリエーテルエーテルケトンである特許請求の範囲第1
項記載の磁気記録材料。
2. The polymer substance is polyetherketone or polyetheretherketone.
The magnetic recording material according to the item.
【請求項3】下記一般式I: で表される繰返し単位を有し、その固有粘度が0.4dl
/g以上であるポリエーテルケトンを溶融押出成形して
なる未延伸フイルム又はシートを、二次転移点温度〜2
10℃において、縦方向及び横方向に、同時又は任意の
順序で逐次、両方向共2.0倍以上二軸延伸した後、2
00℃〜融点未満の温度で熱固定して得られるフイルム
又はシートの表面に、磁性体層を形成することを特徴と
する磁気記録テープの製造方法。
3. The following general formula I: It has a repeating unit represented by
The unstretched film or sheet obtained by melt-extruding polyetherketone of 2 / g or more has a second-order transition temperature of 2 to 2.
At 10 ° C., in the machine direction and the transverse direction, simultaneously or sequentially in any order, biaxially stretched 2.0 times or more in both directions, and then 2
A method for producing a magnetic recording tape, which comprises forming a magnetic layer on the surface of a film or sheet obtained by heat fixing at a temperature of 00 ° C to less than the melting point.
JP59041956A 1984-03-07 1984-03-07 Magnetic recording material and manufacturing method thereof Expired - Lifetime JPH0619826B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59041956A JPH0619826B2 (en) 1984-03-07 1984-03-07 Magnetic recording material and manufacturing method thereof
DE8585901547T DE3583315D1 (en) 1984-03-07 1985-03-06 FILM OR SHEET WITH HEAT RESISTANCE.
EP85901547A EP0174376B1 (en) 1984-03-07 1985-03-06 Heat-resistant film or sheet
PCT/JP1985/000112 WO1985003905A1 (en) 1984-03-07 1985-03-06 Heat-resistant film or sheet
US07/476,146 US4977230A (en) 1984-03-07 1990-02-05 Heat-resistant film or sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041956A JPH0619826B2 (en) 1984-03-07 1984-03-07 Magnetic recording material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS60187928A JPS60187928A (en) 1985-09-25
JPH0619826B2 true JPH0619826B2 (en) 1994-03-16

Family

ID=12622641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041956A Expired - Lifetime JPH0619826B2 (en) 1984-03-07 1984-03-07 Magnetic recording material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0619826B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139929A (en) * 1984-07-31 1986-02-26 Sumitomo Bakelite Co Ltd Base film for magnetic recording medium
JP2581745B2 (en) * 1988-04-12 1997-02-12 帝人株式会社 Film for membrane switch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619012A (en) * 1979-07-25 1981-02-23 Fujitsu Ltd Photocoupler
JPS5863417A (en) * 1981-10-13 1983-04-15 Sumitomo Bakelite Co Ltd Preparation of isotropically oriented polyether either ketone film
JPS58140221A (en) * 1982-02-17 1983-08-19 Toray Ind Inc Manufacture of polyethyleneterephtharate film
JPS58153232A (en) * 1982-03-05 1983-09-12 Toray Ind Inc Magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619012A (en) * 1979-07-25 1981-02-23 Fujitsu Ltd Photocoupler
JPS5863417A (en) * 1981-10-13 1983-04-15 Sumitomo Bakelite Co Ltd Preparation of isotropically oriented polyether either ketone film
JPS58140221A (en) * 1982-02-17 1983-08-19 Toray Ind Inc Manufacture of polyethyleneterephtharate film
JPS58153232A (en) * 1982-03-05 1983-09-12 Toray Ind Inc Magnetic recording medium

Also Published As

Publication number Publication date
JPS60187928A (en) 1985-09-25

Similar Documents

Publication Publication Date Title
US4876137A (en) Polyethylene naphthalate film for high-density magnetic recording media of floppy disk
EP0102581B1 (en) Magnetic recording material
JPS62135339A (en) Polyethylene-2,6-naphthalate film for magnetic recording medium
KR100248877B1 (en) Oriented semi-crystalline polyester films, method for their manufacture and their use as support for magnetic coatings
JPS60171626A (en) Video tape
EP0995592A1 (en) Biaxially oriented polyester film
US4617164A (en) Process for stretching polyester films
JPH0619826B2 (en) Magnetic recording material and manufacturing method thereof
JPS59127730A (en) Biaxially orientated polyethylene-naphthalate film
US4977230A (en) Heat-resistant film or sheet
US4777228A (en) Biaxially oriented paraphenylene sulfide block copolymer film and process for producing the same
JPH0480815B2 (en)
JPS62152828A (en) Preparation of para-phenylene sulfide block copolymer-biaxially drawn film
JPH03224722A (en) Manufacture of composite film
JP3077835B2 (en) Biaxially oriented polyester film
JP2550746B2 (en) Polyester resin film
JPH0516307A (en) Polyethylene naphthalate film for high-density magnetic recording medium
JPH0911429A (en) Polyester film for metal coating type magnetic medium
JPS59148637A (en) Bi-axial orientation polyether ester film
KR0140295B1 (en) Process for preparing biaxially oriented polyester film
JP2992586B2 (en) Method for producing biaxially oriented polyester film
JPS5945327A (en) Polyethylene terephthalate film for metallic thin film magnetic recording medium
JPH10275324A (en) Polyester film for magnetic recording medium
KR0173732B1 (en) Manufacturing method of biaxially oriented polyester film
JP2825728B2 (en) Method for producing biaxially oriented polyester film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term