JPH0386916A - Metal coating type magnetic recording medium - Google Patents

Metal coating type magnetic recording medium

Info

Publication number
JPH0386916A
JPH0386916A JP2002084A JP208490A JPH0386916A JP H0386916 A JPH0386916 A JP H0386916A JP 2002084 A JP2002084 A JP 2002084A JP 208490 A JP208490 A JP 208490A JP H0386916 A JPH0386916 A JP H0386916A
Authority
JP
Japan
Prior art keywords
layer
recording medium
thermoplastic resin
metal
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002084A
Other languages
Japanese (ja)
Other versions
JPH07111777B2 (en
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPH0386916A publication Critical patent/JPH0386916A/en
Publication of JPH07111777B2 publication Critical patent/JPH07111777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having excellent traveling property and output characteristics by using thermoplastic resin containing inert particles and specifying the relation between the particle size and film thickness and the amt. of the particles to certain ranges. CONSTITUTION:The medium is a biaxially oriented film consisting of a layer comprising thermoplastic resin A (layer A) as the substrate film and a layer comprising thermoplastic resin B containing inert particles (layer B) laminated on the one side of the layer A. The inert particles have the average particle size dB of 10 - 600nm and are incorporated into the layer B by the amt. of 1.5 - 40wt.%. The ratio tB/dB of thickness of layer B to the average particle size tB is specified to the range 0.1 - 3. Thereby, the obtd. medium has excellent output characteristics and traveling property.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はメタル塗布型磁気記録媒体に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a metal coated magnetic recording medium.

[従来の技術] メタル塗布型磁気記録媒体としては、ポリエステルフィ
ルムにメタル塗布型磁性層を設けてなる磁気記録媒体が
知られている(たとえば特開昭60−66319号公報
)。
[Prior Art] As a metal-coated magnetic recording medium, a magnetic recording medium in which a metal-coated magnetic layer is provided on a polyester film is known (for example, JP-A-60-66319).

[発明が解決しようとする課題] 支持フィルム上にメタル塗布型磁性層を設けた磁気記録
媒体は、その出力特性、周波数特性のため高密度記録用
磁気記録媒体として重要視されている。しかし、上記従
来のメタル塗布型磁気記録媒体では、一般に、平滑なベ
ースフィルムが用いられるため、摩擦係数が大きく、滑
らず走行性が不十分であり、また、走行性を向上させる
ために粒子のサイズを大きくすると出力特性が不良とな
る問題点があった。
[Problems to be Solved by the Invention] A magnetic recording medium in which a metal-coated magnetic layer is provided on a support film is regarded as important as a magnetic recording medium for high-density recording because of its output characteristics and frequency characteristics. However, the conventional metal-coated magnetic recording media mentioned above generally use a smooth base film, which has a large coefficient of friction and insufficient running performance without slippage. There was a problem in that increasing the size resulted in poor output characteristics.

本発明はかかる課題を改善し、本来メタル塗布型磁気記
録媒体が有する優れた出力特性を維持しつつ(以下、出
力特性に優れるという)、走行性に優れた(以下、走行
性に優れるという)メタル塗布型磁気記録媒体を提供す
ることを目的とする。
The present invention improves these problems and maintains the excellent output characteristics originally possessed by metal-coated magnetic recording media (hereinafter referred to as "excellent output characteristics"), while providing excellent running performance (hereinafter referred to as "excellent running performance"). The purpose is to provide a metal coated magnetic recording medium.

[課題を解決するための手段] 本発明は、(1)基材フィルムの少なくとも片面にメタ
ル塗布型磁性層を設けてなるメタル塗布型磁気記録媒体
であって、該基材フィルムが熱可塑性樹脂Aよりなる層
(A層)の少なくとも片面に不活性粒子を含有する熱可
塑性樹脂Bよりなる層(B層)を積層してなる二軸配向
フィルムであり、B層に含有される不活性粒子の平均粒
径dsが10〜eoonm、該粒子のB層における含有
量が1.5〜40重量%、B層の厚さtaと平均粒径d
Bの比ta/dBが0.1〜3の範囲であることを特徴
とするメタル塗布型磁気記録媒体、(2)基材フィルム
の少なくとも一方のB層側にメタル塗布型磁性層が設け
られており、該磁性層側のB層に含有される不活性粒子
の平均粒径dBが10〜450nmであることを特徴と
する上記(1)記載のメタル塗布型磁気記録媒体、(3
)基材フィルムがA層の片面にのみB層を積層してなる
二軸配向フィルムであり、A層側にのみメタル塗布型磁
性層が設けられており、該B層に含有される不活性粒子
の平均粒径d[lが50〜600nmであることを特徴
とする上記(1)記載のメタル塗布型磁気記録媒体、(
4)基材フィルムが、熱可塑性樹脂Aよりなる層(A層
)の一方の面に不活性粒子を含有する熱可塑性樹脂Bよ
りなる層(B層)を、他面に不活性粒子を含有する熱可
塑性樹脂Cよりなる層(C層)を積層してなる二軸配向
フィルムであって、該基材フィルムのB層側にのみメタ
ル塗布型磁性層が設けられており、該B層に含有される
不活性粒子の平均粒径dBが10〜45 Q n m−
s該粒子のB層における含有量が1.5〜40重量%、
B層の厚さtBと平均粒径dB(7)比to/dBが0
.1〜3、該0層に含有される不活性粒子の平均粒径d
cが50〜600nm、該粒子の0層における含有量が
1.5〜40重量%、0層の厚さtcと平均粒径dcの
比tC/acが0.1〜3であることを特徴とするメタ
ル塗布型磁気記録媒体に関するものである。
[Means for Solving the Problems] The present invention provides (1) a metal-coated magnetic recording medium in which a metal-coated magnetic layer is provided on at least one side of a base film, the base film being made of thermoplastic resin; It is a biaxially oriented film formed by laminating a layer made of thermoplastic resin B (layer B) containing inert particles on at least one side of a layer made of A (layer A), and the inert particles contained in layer B. The average particle size ds of the particles is 10 to eonm, the content of the particles in the B layer is 1.5 to 40% by weight, the thickness ta of the B layer and the average particle size d
A metal-coated magnetic recording medium characterized in that the B ratio ta/dB is in the range of 0.1 to 3, (2) a metal-coated magnetic layer is provided on at least one B layer side of the base film; The metal coated magnetic recording medium according to (1) above, wherein the inert particles contained in the B layer on the magnetic layer side have an average particle size dB of 10 to 450 nm;
) The base film is a biaxially oriented film in which the B layer is laminated only on one side of the A layer, and a metal coated magnetic layer is provided only on the A layer side, and the inert contained in the B layer is The metal-coated magnetic recording medium according to (1) above, characterized in that the average particle diameter d[l of the particles is 50 to 600 nm;
4) The base film has a layer made of thermoplastic resin A (layer A) containing inert particles on one side and a layer made of thermoplastic resin B (layer B) containing inert particles on the other side. A biaxially oriented film formed by laminating a layer (C layer) made of thermoplastic resin C, in which a metal-coated magnetic layer is provided only on the B layer side of the base film, and the B layer has a metal-coated magnetic layer. The average particle diameter dB of the inert particles contained is 10 to 45 Q n m-
s the content of the particles in the B layer is 1.5 to 40% by weight,
B layer thickness tB and average grain size dB (7) ratio to/dB is 0
.. 1 to 3, the average particle size d of the inert particles contained in the 0 layer
c is 50 to 600 nm, the content of the particles in the zero layer is 1.5 to 40% by weight, and the ratio tC/ac of the thickness of the zero layer to the average particle diameter dc is 0.1 to 3. This invention relates to a metal coated magnetic recording medium.

本発明の基材フィルムを構成する熱可塑性樹脂A、B、
Cは同じでも、異なる種類のものでも良く、ポリエステ
ル、ポリオレフィン、ポリアミド、ポリフェニレンスル
フィドなど特に限定されることはないが、特に、ポリエ
ステル、中でも、エチレンテレフタレート、エチレンα
、β−ビス(2−クロルフェノキシ)エタン−4,4′
−ジカルボキシレート、エチレン2,6−ナフタレート
単位から選ばれた少なくとも一種の構造単位を主要構成
成分とする場合に走行性がより一層良好となるので望ま
しい。
Thermoplastic resins A and B constituting the base film of the present invention,
C may be the same or different types, and is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but in particular polyester, especially ethylene terephthalate, ethylene α
, β-bis(2-chlorophenoxy)ethane-4,4'
It is desirable to use at least one type of structural unit selected from -dicarboxylate and ethylene 2,6-naphthalate units as the main constituent, since the runnability becomes even better.

また、本発明を構成する熱可塑性樹脂B及び/またはC
は結晶性である場合に走行性がより一層良好となるので
きわめて望ましい。ここでいう結晶性とはいわゆる非晶
質ではないことを示すものであり、定量的には結晶化パ
ラメータにおける冷結晶化温度Tccが検出され、かつ
結晶化パラメータΔTcgが150℃以下のものである
。さらに、示差走査熱量計で測定された融解熱(融解エ
ンタルピー変化)が7.5cal/g以上の結晶性を示
す場合に走行性がより一層良好となるのできわめて望ま
しい。また、エチレンテレフタレートを主要構成成分と
するポリエステルの場合に走行性がより一層良好となる
ので特に望ましい。
In addition, thermoplastic resin B and/or C constituting the present invention
If it is crystalline, the runnability will be even better, which is extremely desirable. Crystallinity here indicates that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 150°C or less. . Further, it is extremely desirable that the heat of fusion (change in enthalpy of fusion) measured by a differential scanning calorimeter exhibits crystallinity of 7.5 cal/g or more, since this will further improve runnability. Furthermore, polyester containing ethylene terephthalate as a main component is particularly desirable because it provides even better running properties.

なお、本発明を阻害しない範囲内で、熱可塑性樹脂A、
B、Cから選ばれる少なくとも一種に他種の熱可塑性樹
脂を混合してもよいし共重合ポリマを用いても良い。ま
た、本発明の目的を阻害しない範囲内で、熱可塑性樹脂
A、B、Cから選ばれる少なくとも一種に酸化防止剤、
熱安定剤、滑剤、紫外線吸収剤などの有機添加剤が通常
添加される程度添加されていてもよい。
In addition, within the range that does not impede the present invention, thermoplastic resin A,
At least one selected from B and C may be mixed with another type of thermoplastic resin, or a copolymer may be used. In addition, at least one selected from thermoplastic resins A, B, and C may contain an antioxidant, within a range that does not impede the object of the present invention.
Organic additives such as heat stabilizers, lubricants, and ultraviolet absorbers may be added to the extent that they are normally added.

本発明を構成する基材フィルムの8層中の不活性粒子の
平均粒径dBは走行性、出力特性の点から10〜600
 nmである必要があり、さらにB層側に磁性層が設け
られる場合には10〜450nm、磁性層が設けられな
い場合には50〜60Qnmが好ましい。また本発明の
基材フィルム8層中の不活性粒子の含有量は1.5〜4
0重量%、好ましくは2〜30重量%、さらに好ましく
は3〜20重量%であることが必要である。含有量が上
記の範囲より多いと出力特性が満足できず、少ないと走
行性が不良となり好ましくない。さらに本発明の基材フ
ィルム8層の厚さtaと該8層中に含有する不活性粒子
の平均粒径dBの比、1゜/dsは0.1〜3、好まし
くは0. 2〜2,01さらに好ましくは0. 3〜1
.5の範囲であることが必要である。TB/dBが上記
の範囲より小さいと走行性が不良となり、逆に大きいと
出力特性が不良となるので好ましくない。
The average particle diameter dB of the inert particles in the 8 layers of the base film constituting the present invention is 10 to 600 dB from the viewpoint of runnability and output characteristics.
If a magnetic layer is provided on the B layer side, the thickness is preferably 10 to 450 nm, and if no magnetic layer is provided, the thickness is preferably 50 to 60 nm. Further, the content of inert particles in the 8 layers of the base film of the present invention is 1.5 to 4.
It is necessary that the amount is 0% by weight, preferably 2 to 30% by weight, and more preferably 3 to 20% by weight. If the content is more than the above range, the output characteristics will not be satisfactory, and if it is less, the running performance will be poor, which is not preferable. Furthermore, the ratio of the thickness ta of the eight layers of the base film of the present invention to the average particle diameter dB of the inert particles contained in the eight layers, 1°/ds, is 0.1 to 3, preferably 0. 2 to 2,01, more preferably 0. 3-1
.. It is necessary to be in the range of 5. If TB/dB is smaller than the above range, running performance will be poor, whereas if it is larger than the above range, output characteristics will be poor, which is not preferable.

また本発明を構成する基材フィルムのC層中の不活性粒
子の平均粒径dcは、良好な走行性、出力特性を得るた
めに50〜600nmが必要である。さらに、基材フィ
ルムC層中に含有する不活性粒子の含有量は、良好な走
行性、出力特性を有する磁気記録媒体とするために1.
5〜40重量%、好ましくは2〜15重量%であること
が必要である。またこの0層の厚さjcと、含有する不
活性粒子の平均粒径dcの比tc/dcは0. 1〜3
の範囲である場合に走行性、出力特性がより一層良好と
なるので望ましい。
Further, the average particle diameter dc of the inert particles in the C layer of the base film constituting the present invention needs to be 50 to 600 nm in order to obtain good running properties and output characteristics. Furthermore, the content of inert particles contained in the base film C layer is set to 1.
It is necessary that the amount is 5 to 40% by weight, preferably 2 to 15% by weight. Moreover, the ratio tc/dc of the thickness jc of this zero layer and the average particle diameter dc of the inert particles contained is 0. 1-3
It is desirable that the ratio is within this range because the running performance and output characteristics will be even better.

さらに、基材フィルムA層中に不活性粒子を含有してい
る必要は特にないが、平均粒径が5〜600nm%特に
10〜450nmの不活性粒子が0.001〜0.15
重量%、特に0.005〜0.05重量%含有されてい
ると走行性、出力特性がより一層良好となるので望まし
い。
Furthermore, although it is not particularly necessary to contain inert particles in the base film A layer, inert particles with an average particle size of 5 to 600 nm, particularly 10 to 450 nm, are 0.001 to 0.15 nm.
If it is contained in an amount of 0.005 to 0.05% by weight, the running performance and output characteristics will be even better, so it is desirable.

本発明に使用する不活性粒子は、粒径比(粒子の長径/
短径)が1.0〜1.3の粒子、特に、球形状の粒子の
場合に走行性、出力特性がより一層良好となるので望ま
しい。本発明に使用する不活性粒子は基材フィルム中で
の単一粒子指数が0゜7以上、好ましくは0. 9以上
である場合に走行性、出力特性がより一層良好となるの
で特に望ましい。本発明に使用する不活性粒子は粒径の
相対標準偏差が0. 6以下、好ましくは0.5以下の
場合に走行性、出力特性がより一層良好となるので望ま
しい。
The inert particles used in the present invention have a particle size ratio (longer diameter of particle/
Particles having a minor axis of 1.0 to 1.3, particularly spherical particles, are preferable because they provide even better running properties and output characteristics. The inert particles used in the present invention have a single particle index in the base film of 0.7 or more, preferably 0.7 or more. A value of 9 or more is particularly desirable because running performance and output characteristics become even better. The inert particles used in the present invention have a relative standard deviation of particle size of 0. A value of 6 or less, preferably 0.5 or less is desirable because running performance and output characteristics become even better.

本発明に使用する不活性粒子の種類は特に限定されない
が、コロイダルシリカに起因する実質的に球形のシリカ
粒子、架橋高分子による粒子(たとえば架橋ポリスチレ
ン)等があるが、特に10重量%減量時温度(窒素中で
熱重量分析装置島津TG−30Mを用いて測定。昇温速
度20℃/分)が380℃以上になるまで架橋度を高く
した架橋高分子粒子の場合に走行性、出力特性がより一
層良好となるので特に望ましい。なお、コロイダルシリ
カに起因する球形シリカの場合にはアルコキシド法で製
造された、ナトリウム含有量が少ない、実質的に球形の
シリカの場合に走行性、出力特性がより一層良好となる
ので特に望ましい。しかしながら、その他の粒子、例え
ば炭酸カルシウム、二酸化チタン、アルミナ等地の粒子
でも熱可塑性樹脂B層の厚さtBと平均粒径dBの比の
適切なコントロールにより十分使いこなせるものである
The type of inert particles used in the present invention is not particularly limited, but includes substantially spherical silica particles caused by colloidal silica, particles made of crosslinked polymers (for example, crosslinked polystyrene), etc., but especially when reduced by 10% by weight. Running properties and output characteristics of crosslinked polymer particles with a high degree of crosslinking until the temperature (measured in nitrogen using a thermogravimetric analyzer Shimadzu TG-30M, heating rate 20°C/min) is 380°C or higher. This is particularly desirable because it provides even better results. Note that in the case of spherical silica derived from colloidal silica, substantially spherical silica with a low sodium content produced by an alkoxide method is particularly preferable because the runnability and output characteristics are even better. However, other particles, such as particles of calcium carbonate, titanium dioxide, alumina, etc., can also be used satisfactorily by appropriately controlling the ratio of the thickness tB of the thermoplastic resin B layer to the average particle diameter dB.

本発明を構成する基材フィルムは上記組成物からなる積
層フィルムを二軸配向せしめたフィルムであって、−軸
あるいは無配向フィルムでは走行性が不良となるので好
ましくない。この配向の程度は特に限定されないが、高
分子の分子配向の程度の目安であるヤング率が長手方向
、幅方向ともに350 k g/mm2以上である場合
に出力特性、走行性がより一層良好となるのできわめて
望ましい。分子配向の程度の目安であるヤング率の上限
は特に限定されないが、通常、1500kg/mm2程
度が製造上の限界である。
The base film constituting the present invention is a biaxially oriented laminated film made of the above-mentioned composition, and negative-axis or non-oriented films are not preferred because they result in poor running properties. The degree of this orientation is not particularly limited, but when the Young's modulus, which is a measure of the degree of molecular orientation of a polymer, is 350 kg/mm2 or more in both the longitudinal direction and the width direction, the output characteristics and runnability are even better. This is extremely desirable. Although the upper limit of Young's modulus, which is a measure of the degree of molecular orientation, is not particularly limited, the manufacturing limit is usually about 1500 kg/mm 2 .

本発明を構成する基材フィルムの該B層表面の全反射ラ
マン結晶化指数は、20cm−”以下の場合に走行性、
出力特性がより一層良好となるので特に望ましい。
When the total reflection Raman crystallization index of the surface of the B layer of the base film constituting the present invention is 20 cm-" or less, the runnability
This is particularly desirable since the output characteristics will be even better.

また、本発明を構成する基材フィルムの該C層表面の全
反射ラマン結晶化指数は、20cm””以下の場合に走
行性、出力特性がより一層良好となるので特に望ましい
Further, it is particularly desirable that the total reflection Raman crystallization index of the surface of the C layer of the base film constituting the present invention be 20 cm'' or less, since the runnability and output characteristics will be even better.

本発明は上記の二軸配向フィルムの少なくとも片面にメ
タル塗布型磁性層を設けてなる磁気記録媒体である。用
いられる磁性粉末は特に限定されないが強磁性粉末、な
かでも、Fe、Co、Fe−Co、Fe−Co−Ni、
Co−Ni等の金属または合金、これらとAI、Cr、
Si等との合金等が好ましく用いられる。
The present invention is a magnetic recording medium comprising a metal coating type magnetic layer provided on at least one side of the biaxially oriented film described above. The magnetic powder used is not particularly limited, but includes ferromagnetic powder, especially Fe, Co, Fe-Co, Fe-Co-Ni,
Metals or alloys such as Co-Ni, these and AI, Cr,
An alloy with Si or the like is preferably used.

磁性粉は各種バインダーを用いて磁性塗料とすることが
できるが、一般には熱硬化性樹脂系バインダーおよび放
射線硬化系バインダーが好ましく、その他添加剤として
分散剤、潤滑剤、帯電防止剤を常法に従って用いてもよ
い。例えば塩化ビニル・酢酸ビニル・ビニルアルコール
共重合体、ポリウレタンプレポリマおよびポリイソシア
ネートよりなるバインダーなどを用いることができる。
Magnetic powder can be made into a magnetic paint using various binders, but thermosetting resin binders and radiation curing binders are generally preferred, and other additives such as dispersants, lubricants, and antistatic agents can be added according to conventional methods. May be used. For example, binders made of vinyl chloride/vinyl acetate/vinyl alcohol copolymers, polyurethane prepolymers, and polyisocyanates can be used.

メタル塗布型磁性層の厚さtMは特に限定されないが、
磁性層側のB層の厚さtB (−層)との比、t B 
/ t Mが0.002〜10.特に0.01〜10.
さらに好ましくは0.01〜5の範囲である場合に出力
特性、走行性がより一層良好となるので望ましい。また
tMの値としては0. 5〜5μmの範囲としておくこ
とが出力特性、走行性がより一層良好となるので望まし
い。
The thickness tM of the metal-coated magnetic layer is not particularly limited, but
Thickness tB of layer B on the magnetic layer side (-layer) ratio, tB
/tM is 0.002 to 10. Especially 0.01~10.
More preferably, it is in the range of 0.01 to 5 because output characteristics and running properties become even better. Also, the value of tM is 0. It is preferable to keep the thickness in the range of 5 to 5 μm because output characteristics and runnability become even better.

本発明を構成する基材フィルムの該B層の幅方向厚さ斑
は25%以下、さらに好ましくは20%以下である場合
に出力特性、走行性がより一層良好となるので特に望ま
しい。
It is particularly desirable that the thickness unevenness in the width direction of the B layer of the base film constituting the present invention be 25% or less, more preferably 20% or less, since the output characteristics and runnability will be even better.

本発明を構成する基材フィルムの該B層の厚さは0.0
1〜2μm1好ましくは0.02〜1μmの場合に走行
性、出力特性がより一層良好となるので特に望ましい。
The thickness of the B layer of the base film constituting the present invention is 0.0
A thickness of 1 to 2 .mu.m, preferably 0.02 to 1 .mu.m, is particularly desirable because running properties and output characteristics are even better.

本発明を構成する基材フィルムの該B層表面の中心線平
均粗さRaと最大高さRtの比、Rt/Raは9.0以
下、特に8.5以下の場合に出力特性、走行性がより一
層良好となるので特に望ましい。
When the ratio of the center line average roughness Ra to the maximum height Rt of the surface of the B layer of the base film constituting the present invention, Rt/Ra, is 9.0 or less, particularly 8.5 or less, the output characteristics and runnability This is particularly desirable because it provides even better results.

本発明を構成する基材フィルムの該B層表面の2次イオ
ンマススペクトルによって測定される表層粒子濃度比は
特に限定されないが、表層粒子濃度比が1/10以下、
特に1150以下である場合に走行性、出力特性がより
一層良好となるので特に望ましい。
The surface layer particle concentration ratio measured by the secondary ion mass spectrum of the surface of the B layer of the base film constituting the present invention is not particularly limited, but the surface layer particle concentration ratio is 1/10 or less,
In particular, when it is 1150 or less, running performance and output characteristics become even better, so it is particularly desirable.

次に本発明の磁気記録媒体の製造方法について説明する
Next, a method for manufacturing a magnetic recording medium according to the present invention will be explained.

まず、熱可塑性樹脂Bに不活性粒子を含有せしめる方法
としては、不活性粒子をエチレングリコールのスラリー
とし、ベント方式の2軸混練押出機を用いて熱可塑性樹
脂に練り込む方法が、延伸破れなく、本発明範囲の厚さ
と平均粒径の関係、含有量の基材フィルムを得るのにき
わめて有効である。
First, as a method for incorporating inert particles into thermoplastic resin B, there is a method in which the inert particles are made into an ethylene glycol slurry and kneaded into the thermoplastic resin using a vent type twin-screw kneading extruder. is extremely effective in obtaining a base film having a relationship between thickness and average particle size and content within the range of the present invention.

粒子の含有量を調節する方法としては、上記方法で高濃
度マスターを作っておき、それを製膜時に不活性粒子を
実質的に含有しない熱可塑性樹脂で希釈して粒子の含有
量を調節する方法が有効である。
A method for adjusting the particle content is to prepare a high-concentration master using the above method, and then dilute it with a thermoplastic resin that does not substantially contain inert particles during film formation to adjust the particle content. The method is valid.

次に、熱可塑性樹脂A1不活性粒子を所定量含有する熱
可塑性樹脂Bのペレットを必要に応じて乾燥したのち、
公知の溶融積層用押出装置に供給し、スリット状のダイ
からシート状に押出し、キャスティングロール上で冷却
固化せしめて未延伸フィルムを作る。すなわち、2また
は3台の押出し機、2または3層のマニホールドまたは
合流ブロックを用いて、熱可塑性樹脂A、Bを積層し、
口金から2または3層のシートを押し出し、キャスティ
ングロールで冷却して未延伸フィルムを作る。この場合
、熱可塑性樹脂Bのポリマ流路に、スタティックミキサ
ー、ギヤポンプを設置する方法は延伸破れなく、本発明
範囲の厚さと平均粒径の関係、含有量、望ましい範囲の
表層粒子濃度比のフィルムを得るのに有効である。また
、合流ブロックとして矩形のフィードブロックを用いる
のが本発明範囲の厚さと平均粒径の関係を得るのにきわ
めて有効である。また、熱可塑性樹脂B側の押し出し機
の溶融温度を、熱可塑性樹脂A側より、10〜40℃高
くすることが、延伸破れなく、本発明範囲の厚さと平均
粒径の関係、含有量、望ましい範囲の積層厚さ斑、表層
粒子濃度比、全反射ラマン結晶化指数のフィルムを得る
のに有効である。上記の説明は構成として、A/B、B
/A/Bについて述べたが、B/A/Cの構成の場合は
3台の押出機を用いて同様に、3層のマニホールドまた
は合流ブロックを用いて、熱可塑性樹脂B1A、Cを積
層し、口金から3層のシートを押し出し、キャスティン
グロールで冷却して未延伸フィルムを作る。
Next, after drying the pellets of thermoplastic resin B containing a predetermined amount of inert particles of thermoplastic resin A1 as necessary,
It is supplied to a known extrusion device for melt lamination, extruded into a sheet through a slit-shaped die, and cooled and solidified on a casting roll to produce an unstretched film. That is, thermoplastic resins A and B are laminated using two or three extruders, a two or three-layer manifold or a merging block,
Two or three layers of sheet are extruded from the die and cooled with casting rolls to form an unstretched film. In this case, the method of installing a static mixer and a gear pump in the polymer flow path of thermoplastic resin B will prevent stretching and tearing, and the film will have a relationship between thickness and average particle size, content, and a surface layer particle concentration ratio within the desired range of the present invention. It is effective to obtain Further, it is extremely effective to use a rectangular feed block as the merging block in order to obtain the relationship between the thickness and the average particle size within the range of the present invention. In addition, setting the melting temperature of the extruder on the thermoplastic resin B side 10 to 40°C higher than that on the thermoplastic resin A side will prevent stretching breakage, and the relationship between the thickness and average particle size, the content, and the content within the range of the present invention. This is effective in obtaining a film with desired ranges of lamination thickness unevenness, surface layer particle concentration ratio, and total reflection Raman crystallization index. The above explanation is based on the configurations A/B, B
/A/B has been described, but in the case of B/A/C configuration, thermoplastic resins B1A and C are laminated using three extruders and a three-layer manifold or merging block. The three-layer sheet is extruded from a die and cooled with a casting roll to form an unstretched film.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
平方向の延伸を3段階以上に分けて、総絞延伸倍率を3
.0〜6.5倍で行なう方法は、本発明範囲の厚さと平
均粒径の関係、含有量のフィルムを得るのに有効である
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, by using a sequential biaxial stretching method in which stretching is first performed in the longitudinal direction and then in the width direction, the stretching in the longitudinal direction is divided into three or more stages, and the total drawing ratio is 3.
.. The method carried out at a magnification of 0 to 6.5 times is effective for obtaining a film having a relationship between thickness and average particle size and content within the range of the present invention.

長手方向延伸温度は熱可塑性樹脂の種類によって異なり
一概には言えないが、通常、その1段目を50〜130
℃とし、2段目以降はそれより高くすることが本発明範
囲の厚さと平均粒径の関係、本発明の望ましい範囲の表
層粒子濃度比のフィルムを得るのに有効である。長手方
向延伸速度は5000〜50000%/分の範囲が好適
である。
Although the longitudinal stretching temperature varies depending on the type of thermoplastic resin and cannot be generalized, it is usually 50 to 130 ℃ in the first stage.
It is effective to set the temperature at a temperature of 0.degree. The longitudinal stretching speed is preferably in the range of 5,000 to 50,000%/min.

幅方向の延伸方法としてはステンタを用いる方法が一般
的である。延伸倍率は、3.0〜5.0倍、延伸速度は
、1000〜20000%/分、温度は80〜160℃
の範囲が好適である。次にこの延伸フィルムを熱処理す
る。この場合の熱処理温度は170〜200℃、特に1
70〜190℃、時間は0.5〜60秒の範囲が好適で
ある。
A common method for stretching in the width direction is to use a stenter. The stretching ratio is 3.0 to 5.0 times, the stretching speed is 1000 to 20000%/min, and the temperature is 80 to 160°C.
A range of is suitable. Next, this stretched film is heat treated. The heat treatment temperature in this case is 170-200℃, especially 1
Preferably, the temperature is 70 to 190°C and the time is 0.5 to 60 seconds.

次に、このフィルムに所定の磁性層を塗布する。Next, a predetermined magnetic layer is applied to this film.

磁性層を塗布する方法は公知の方法で行なうことができ
るが、グラビヤロールで塗布する方法が本発明範囲の厚
さと平均粒径の関係、本発明の望ましい範囲の表層粒子
濃度比のフィルムを得るのに有効である。塗布後の乾燥
工程は、温度を90〜120℃とするのが好ましい。
The magnetic layer can be applied by any known method, but the method of applying with a gravure roll provides a film with a relationship between thickness and average particle size within the range of the present invention and a surface layer particle concentration ratio within the desired range of the present invention. It is effective for In the drying step after coating, the temperature is preferably 90 to 120°C.

また、カレンダー工程は、ポリアミドまたはポリエステ
ルを弾性ロールに用い、25〜90℃、特に40〜70
℃の温度範囲で行なうのが本発明範囲の厚さと平均粒径
の関係、本発明の望ましい範囲の表層粒子濃度比のフィ
ルムを得るのに有効である。さらに、このフィルムの磁
性層をキュアした後、その原反(広幅)をスリットして
本発明のメタル塗布型磁気記録媒体を得る。
In addition, the calendering process uses polyamide or polyester as an elastic roll, and
C. is effective for obtaining a film having a relationship between thickness and average particle size within the range of the present invention and a surface layer particle concentration ratio within the desired range of the present invention. Furthermore, after the magnetic layer of this film is cured, the original fabric (wide width) is slit to obtain the metal-coated magnetic recording medium of the present invention.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の側型方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Method of Evaluating Effects] The method of measuring characteristic values and the method of evaluating effects of the present invention are as follows.

(1)粒子の平均粒径 フィルムから熱可塑性樹脂をプラズマ低温灰化処理法で
除去し粒子を露出させる。処理条件は熱可塑性樹脂は灰
化されるが粒子はダメージを受けない条件を選択する。
(1) Average particle size of particles The thermoplastic resin is removed from the film by plasma low-temperature ashing treatment to expose the particles. The processing conditions are selected so that the thermoplastic resin is incinerated but the particles are not damaged.

これを走査型電子顕微鏡(SEM)で観察し、粒子の画
像をイメージアナライザーで処理する。観察箇所を変え
て粒子数5゜000個以上で次の数値処理を行ない、そ
れによって求めた数平均径りを平均粒径とする。
This is observed with a scanning electron microscope (SEM), and the image of the particles is processed with an image analyzer. The following numerical processing is performed with different observation points and the number of particles is 5.000 or more, and the number average diameter obtained thereby is taken as the average particle diameter.

D=ΣD、/N ここで、DIは粒子の円相当径、Nは粒子数である。D=ΣD, /N Here, DI is the equivalent circular diameter of the particles, and N is the number of particles.

(2)粒径比 上記(1)の測定において個々の粒子の(長径の平均値
)/(短径の平均値)の比である。すなわち、下式で求
められる。
(2) Particle size ratio This is the ratio of (average length of major axis)/(average value of minor axis) of individual particles in the measurement of (1) above. That is, it can be obtained using the following formula.

長径=ΣD 1 + / N 短径=ΣD2./N Di、、D2.はそれぞれ個々の粒子の長径(最大径)
、短径(最短径)、Nは粒子数である。
Long axis = ΣD 1 + / N Short axis = ΣD2. /N Di,,D2. is the long axis (maximum diameter) of each individual particle
, the shortest axis (shortest axis), and N are the number of particles.

(3)粒径の相対標準偏差 上記(1)の方法で測定された個々の粒径D11平均径
D1粒子数Nから計算される標準偏差σ(=(Σ(D、
−D) 2/N) ”’ )を平均径りで割った値(σ
/D)で表わした。
(3) Relative standard deviation of particle size Standard deviation σ(=(Σ(D,
−D) 2/N) ”' ) divided by the average diameter (σ
/D).

(4)単一粒子指数 フィルムの断面を透過型電子顕微鏡(TEM)で写真観
察し、粒子を検知する。観察倍率を10万倍程度にすれ
ば、それ以上分けることができない1個の粒子が観察で
きる。粒子の占める全面積をA1そのうち2個以上の粒
子が凝集している凝集体の占める面積をBとした時、(
A−B)/Aをもって、単一粒子指数とする。TEM条
件は下記のとおりであり1視野面積:2μm2の測定を
場所を変えて、500視野測定する。
(4) A cross section of the single particle index film is photographed and observed using a transmission electron microscope (TEM) to detect particles. If the observation magnification is set to about 100,000 times, a single particle that cannot be separated any further can be observed. When the total area occupied by particles is A1, and the area occupied by aggregates in which two or more particles are aggregated is B, (
A-B)/A is the single particle index. The TEM conditions are as follows: one field of view area: 2 μm2 is measured at different locations, and 500 fields of view are measured.

・観察倍率:10万倍 ・加速電圧:100kV ・切片厚さ:約1,0OOA (5)粒子の含有量 熱可塑性樹脂は溶解し粒子は溶解させない溶媒を選択し
、粒子を熱可塑性樹脂から遠心分離し、粒子の全体重量
に対する比率(重量%)をもって粒子含有量とする。
・Observation magnification: 100,000 times ・Acceleration voltage: 100kV ・Section thickness: Approximately 1,0OOA (5) Particle content Select a solvent that dissolves the thermoplastic resin but does not dissolve the particles, and centrifuge the particles from the thermoplastic resin. The particles are separated and the ratio (weight %) to the total weight of the particles is defined as the particle content.

(6)結晶化パラメータΔTcg、融解熱示差走査熱量
計(D S C)を用いて測定した。
(6) Crystallization parameter ΔTcg, heat of fusion measured using a differential scanning calorimeter (DSC).

DSCの測定条件は次の通りである。すなわち、試料1
0mgをDSC装置にセットし、300℃の温度で5分
間溶融した後、液体窒素中に急冷する。
The DSC measurement conditions are as follows. That is, sample 1
0 mg was set in a DSC device, melted at a temperature of 300° C. for 5 minutes, and then rapidly cooled in liquid nitrogen.

この急冷試料を10℃/分で昇温し、ガラス転移点Tg
を検知する。さらに昇温を続け、ガラス状態からの結晶
化発熱ピーク温度をもって冷結晶化温度Tccとした。
This rapidly cooled sample was heated at a rate of 10°C/min, and the glass transition point Tg
Detect. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.

さらに昇温を続け、融解ピークから融解熱を求めた。こ
こでTccとTgの差(Tcc−Tg)を結晶化パラメ
ータΔTcgと定義する。
The temperature was further increased, and the heat of fusion was determined from the melting peak. Here, the difference between Tcc and Tg (Tcc-Tg) is defined as a crystallization parameter ΔTcg.

(7)ヤング率 J I 5−Z−1702に規定された方法にしたがっ
て、インストロンタイプの引っ張り試験機を用いて、2
5℃、65%RHにて測定した。
(7) Young's modulus 2 using an Instron type tensile tester according to the method specified in J I 5-Z-1702.
Measurement was performed at 5° C. and 65% RH.

(8)全反射ラマン結晶化指数 全反射ラマンスペクトルを測定し、カルボニル基の伸縮
振動である1 730 er’の半価幅をもって表面の
全反射ラマン結晶化指数とした。測定条件は次の通りで
ある。但し測定深さは、表面から500〜100OA程
度とした。
(8) Total reflection Raman crystallization index The total reflection Raman spectrum was measured, and the half-value width of 1 730 er', which is the stretching vibration of the carbonyl group, was taken as the total reflection Raman crystallization index of the surface. The measurement conditions are as follows. However, the measurement depth was approximately 500 to 100 OA from the surface.

■光源 アルゴンイオンレーザ−(5,145人)■試料のセツ
ティング レーザー偏光方向(S偏光)とフィルム長手方向が平行
となるようにフィルム表面を全反射プリズムに圧着させ
、レーザーのプリズムへの入射角(フィルム厚さ方向と
の角度)は60’とした。
■Light source Argon ion laser (5,145 people) ■Setting the sample Press the film surface onto a total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction are parallel, and the laser is incident on the prism. The angle (angle with the film thickness direction) was 60'.

■検出器 PM : RCA31034/Pboton Coun
ting S7stBmS75tB+utsu C12
30)  (supp171.600Y)■測定条件 5LIT        1,000 μmLASER
100mW GATE TIME     1.0secSCAN 
5PEED     12cm−”/minSAMPL
ING INTERVAL O,2cm ”REPEA
T TIME    6 (9)固有粘度[η] (単位はdi/g)オルトクロ
ロフェノール中、25℃で測定した溶液粘度から下記式
で計算される値を用いる。すなわち、 ηsp/c=[η]+K[η]2・に こで η8.=(溶液粘度/溶媒粘度)−1、Cは溶媒
100m1あたりの溶解ポリマ重量(g/l 00m 
L通常1.2)、Kはハギンス定数(C,343とする
)。また、溶液粘度、溶媒粘度はオストワルド粘度計を
用いて測定した。
■Detector PM: RCA31034/Pboton Coun
ting S7stBmS75tB+tsu C12
30) (supp171.600Y) ■Measurement conditions 5LIT 1,000 μm LASER
100mW GATE TIME 1.0secSCAN
5PEED 12cm-”/minSAMPL
ING INTERVAL O, 2cm “REPEA”
T TIME 6 (9) Intrinsic viscosity [η] (unit: di/g) A value calculated by the following formula from the solution viscosity measured at 25° C. in orthochlorophenol is used. That is, ηsp/c=[η]+K[η]2・Nikode η8. = (solution viscosity/solvent viscosity) -1, C is the weight of dissolved polymer per 100 ml of solvent (g/l 00 m
L is usually 1.2), K is Huggins constant (C, 343). In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

(10)表層粒子濃度比 2次イオンマススペクトル(SIMS)を用いて、フィ
ルム中の粒子に起因する元素のうち最も高濃度の元素と
熱可塑性樹脂の炭素元素の濃度比を粒子濃度とし、厚さ
方向の分析を行なう。SIMSによって測定される最表
層粒子濃度(深さOの点)における粒子濃度Aとさらに
深さ方向の分析を続けて得られる最高濃度Bの比、A/
Bを表層粒子濃度比と定義した。測定装置、条件は下記
のとおりである。
(10) Surface layer particle concentration ratio Using secondary ion mass spectroscopy (SIMS), the concentration ratio of the element with the highest concentration among the elements originating from particles in the film and the carbon element of the thermoplastic resin is defined as the particle concentration, and Perform an analysis in the horizontal direction. The ratio of the particle concentration A at the outermost layer particle concentration (point at depth O) measured by SIMS to the maximum concentration B obtained by further analysis in the depth direction, A/
B was defined as the surface layer particle concentration ratio. The measuring device and conditions are as follows.

1次イオン種:02 1次イオン加速電圧:12KV 1次イオン電流:200nA ラスター領域:400μm口 分  析  領  域:ゲート30% 測定真空度: 6. OX 10−9TorrE  −
G  U  Neo、5kV−3,0A(11)表面粗
さパラメータRa (中心線平均粗さ)、Rt(最大高
さ) 表面粗さ計を用いて測定した。条件は下記のとおりであ
り、20回の測定の平均値をもって値とした。
Primary ion species: 02 Primary ion acceleration voltage: 12KV Primary ion current: 200nA Raster area: 400μm mouth analysis area: Gate 30% Measurement vacuum degree: 6. OX 10-9 TorrE −
GU Neo, 5kV-3,0A (11) Surface roughness parameters Ra (center line average roughness), Rt (maximum height) Measured using a surface roughness meter. The conditions were as follows, and the average value of 20 measurements was taken as the value.

・触針先端半径:0.5μm ・触針荷重:5mg ・測 定 長:1mm ・カットオフ値:0.08mm (12)走行性 標準条件として、20℃相対湿度60%の雰囲気下で、
外径6mmφの固定軸に1/2インチ幅のテープを角度
θ=πr@dで接触させ、3 、 3 cm/sの速さ
で走行させる。人口テンションT1を25gとした時の
出口テンションT2を測定し、次式から動摩擦係数(μ
、)を算出する。
・Stylus tip radius: 0.5μm ・Stylus load: 5mg ・Measurement length: 1mm ・Cutoff value: 0.08mm (12) As standard running conditions, at 20°C and 60% relative humidity,
A 1/2 inch wide tape is brought into contact with a fixed shaft having an outer diameter of 6 mmφ at an angle θ=πr@d, and is run at a speed of 3.3 cm/s. Measure the outlet tension T2 when the artificial tension T1 is 25 g, and calculate the dynamic friction coefficient (μ
, ) is calculated.

tth = (1/θ) !n (T’2/TI )”
’ (1/ π) In (T2 / 25)このμ、
が0.27以下を走行性:優、0.27を超え0.30
以下を走行性:良、0.30を超えるものを走行性:不
良とした。
tth = (1/θ)! n (T'2/TI)"
'(1/π) In (T2/25) this μ,
is 0.27 or less.Drivability: Excellent, exceeds 0.27 and is 0.30.
The following were judged as good running properties, and those exceeding 0.30 were judged as poor running properties.

(13)出力特性 テープ原反をVTRカセットに組み込みVTRテープと
した。このテープに家庭用VTRを用いてテレビ試験波
形発生器により100%クロマ信号を記録し、その再生
信号からカラービデオノイズ測定器でクロマS/Nを測
定した。
(13) Output characteristics The original tape was assembled into a VTR cassette to produce a VTR tape. A 100% chroma signal was recorded on this tape using a TV test waveform generator using a home VTR, and the chroma S/N was measured from the reproduced signal using a color video noise measuring device.

このクロマS/Nを市販されているスタンダードビデオ
テープと比較して同等のもの(差が十〇dB以下のもの
)を出力特性:不良、差が+2dB以下のものを出力特
性:良、差が+2dBを超えるものを出力特性:優とし
た。
Compare this chroma S/N with a commercially available standard videotape.If the one is equivalent (with a difference of 10 dB or less), the output characteristics are poor.If the difference is +2 dB or less, the output characteristics are good.If the difference is less than +2 dB, the output characteristics are good. Output characteristics exceeding +2 dB were considered excellent.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1.2.5、及び比較例2.3 平均粒径の異なる架橋ポリスチレン粒子、コロイダルシ
リカに起因するシリカ粒子を含有するエチレングリコー
ルスラリーを調製し、このエチレングリコールスラリー
を190℃で1. 5時間熱処理した後、テレフタル酸
ジメチルとエステル交換反応させ、重縮合し、該粒子を
0. 5〜10重量%含有するポリエチレンテレフタレ
ート(以下PETと略す)のペレットを作った。この時
、重縮合時間を調節し固有粘度を0.70とした(熱可
塑性樹脂B)。また、常法によって、固有粘度0.62
のPETを製造し、熱可塑性樹脂Aとした。
Example 1.2.5 and Comparative Example 2.3 Ethylene glycol slurry containing crosslinked polystyrene particles and silica particles derived from colloidal silica having different average particle sizes was prepared, and the ethylene glycol slurry was heated at 190°C for 1. After heat treatment for 5 hours, a transesterification reaction with dimethyl terephthalate was performed, polycondensation was performed, and the particles were reduced to 0. Pellets of polyethylene terephthalate (hereinafter abbreviated as PET) containing 5 to 10% by weight were made. At this time, the polycondensation time was adjusted to give an intrinsic viscosity of 0.70 (thermoplastic resin B). In addition, by the usual method, the intrinsic viscosity was 0.62.
PET was manufactured and designated as thermoplastic resin A.

これらのポリマをそれぞれ180℃で6時間減圧乾燥(
3Torr) した後、熱可塑性樹脂Bを押出機1に供
給し290℃で溶融し、さらに、熱可塑性樹脂Aを押出
機2に供給し、280℃で溶融し、これらのポリマを合
流ブロックで合流積層し、静電印加キャスト法を用いて
表面温度30℃のキャスティングドラムに巻きつけて冷
却固化し、積層未延伸フィルムを作った。この時、それ
ぞれの押出機の吐出量を調節し総厚さ、熱可塑性樹脂B
層の厚さを調節した。
These polymers were each dried under reduced pressure at 180°C for 6 hours (
3 Torr), thermoplastic resin B is supplied to extruder 1 and melted at 290°C, thermoplastic resin A is further supplied to extruder 2 and melted at 280°C, and these polymers are merged in a merging block. The layers were laminated and wound around a casting drum with a surface temperature of 30° C. using an electrostatic casting method, and cooled and solidified to produce a laminated unstretched film. At this time, adjust the discharge rate of each extruder to determine the total thickness and thermoplastic resin B.
The layer thickness was adjusted.

この未延伸フィルムを温度80℃にて長手方向に4.5
倍延伸した。この延伸は2組ずつのロールの周速差で、
4段階で行なった。この−軸延伸フィルムをステンタを
用いて延伸速度2.000%/分で100℃で幅方向に
4.0倍延伸し、定長下で、190℃にて5秒間熱処理
し、総厚さ15μmの二軸配向積層フィルムを得た。
This unstretched film was heated to 4.5 mm in the longitudinal direction at a temperature of 80°C.
Stretched twice. This stretching is done by the difference in circumferential speed between the two sets of rolls.
It was done in 4 stages. This -axially stretched film was stretched 4.0 times in the width direction at 100°C at a stretching rate of 2.000%/min using a stenter, and then heat-treated at 190°C for 5 seconds under constant length to give a total thickness of 15 μm. A biaxially oriented laminated film was obtained.

このフィルムに磁性塗料をグラビヤロールを用いて塗布
する。磁性塗料は次のようにして調製した。
Magnetic paint is applied to this film using a gravure roll. The magnetic paint was prepared as follows.

・Fe            100部平均粒子サイ
ズ 長さ :033μm 針状比:10/1 抗磁力        : 20000e・ポリウレタ
ン樹脂        15部・塩化ビニル・酢酸ビニ
ル共重合体  5部・ニトロセルロース樹脂     
  5部・酸化アルミ粉末          3部(
平均粒径:0.3μm) ・カーボンブラック         1部・レシチン
             2部・メチルエチルケトン
      100部・メチルイソブチルケトン   
 100部・トルエン           100部
・ステアリン酸           2部上記組成物
をボールミルで48時間混合分散した後、硬化剤6部を
添加して得られた混練物をフィルターでろ過して磁性塗
布液を準備し、上記フィルム上に塗布、磁場配向させ、
■10℃で乾燥し、さらに小型テストカレンダー装置(
スチールロール/ナイロンロール、5段)で、温度70
℃、線圧200 kg/cmでカレンダー処理した後、
70℃、48時間でキユアリングしメタル塗布型磁気記
録媒体を得た。
・Fe 100 parts Average particle size Length: 033 μm Acicular ratio: 10/1 Coercive force: 20000e ・Polyurethane resin 15 parts ・Vinyl chloride/vinyl acetate copolymer 5 parts ・Nitrocellulose resin
5 parts aluminum oxide powder 3 parts (
Average particle size: 0.3μm) ・Carbon black 1 part・Lecithin 2 parts・Methyl ethyl ketone 100 parts・Methyl isobutyl ketone
100 parts, toluene 100 parts, stearic acid 2 parts After mixing and dispersing the above composition in a ball mill for 48 hours, adding 6 parts of a hardening agent and filtering the resulting kneaded product with a filter to prepare a magnetic coating liquid, Coated on the above film and oriented in a magnetic field,
■Dry at 10℃, and then use a small test calendar device (
Steel roll/nylon roll, 5 stages), temperature 70
After calendering at ℃ and linear pressure of 200 kg/cm,
Curing was performed at 70° C. for 48 hours to obtain a metal coated magnetic recording medium.

実施例3.4、及び比較例1.4 上記の実施例と同様にして、実施例3では3台の押出機
を用いて3層積層の積層未延伸フィルムを、実施例4で
はさらにA層両面に異なるポリマを積層した3層積層の
積層未延伸フィルムを、また比較例1は通常の単層フィ
ルムを、比較例4では3台の押出機を用いて3層積層の
積層未延伸フィルムを得た。
Example 3.4 and Comparative Example 1.4 In Example 3, a three-layer laminated unstretched film was produced using three extruders, and in Example 4, an A-layer was further produced. A three-layer laminated unstretched film with different polymers laminated on both sides, a normal single-layer film in Comparative Example 1, and a three-layer laminated unstretched film using three extruders in Comparative Example 4. Obtained.

これらの未延伸フィルムを温度80℃にて長平方向に4
.2倍延伸した。この−軸延伸フィルムをステンタを用
いて延伸速度2,000%/分で105℃で幅方向に4
.5倍延伸し、定長下で、190℃にて5秒間熱処理し
、二軸配向フィルムを得た。
These unstretched films were stretched in the longitudinal direction at a temperature of 80°C.
.. It was stretched 2 times. This -axially stretched film was stretched in the width direction at 105°C at a stretching speed of 2,000%/min using a stenter.
.. It was stretched 5 times and heat treated at 190° C. for 5 seconds under constant length to obtain a biaxially oriented film.

このフィルムに磁性塗料をグラビヤロールを用いて塗布
する。磁性塗料は上記実施例と同様のものを用意した。
Magnetic paint is applied to this film using a gravure roll. The same magnetic paint as in the above example was prepared.

その磁性塗料をボールミルで48時間混合分散した後、
硬化剤6部を添加して得られた混練物をフィルターでろ
過して磁性塗布液を準備し、塗布、磁場配向させ、10
0℃で乾燥し、さらに小型テストカレンダー装置(スチ
ールロール/ナイロンロール、5段)で、温度70℃、
線圧200 kg/cmでカレンダー処理した後、70
℃、48時間でキユアリングしメタル塗布型磁気記録媒
体を得た。
After mixing and dispersing the magnetic paint in a ball mill for 48 hours,
The kneaded product obtained by adding 6 parts of a curing agent was filtered to prepare a magnetic coating solution, which was coated and oriented in a magnetic field.
Dry at 0°C, then dry at 70°C using a small test calender (steel roll/nylon roll, 5 stages).
After calendering with a linear pressure of 200 kg/cm, 70
Cure for 48 hours to obtain a metal coated magnetic recording medium.

これらの特性は第1表に示したとおりであり、本発明の
メタル塗布型磁気記録媒体は走行性、出力特性は優また
は良であったが、そうでない場合は走行性、出力特性を
満足するメタル塗布型磁気記録媒体は得られなかった。
These characteristics are shown in Table 1, and the metal-coated magnetic recording medium of the present invention had excellent or good running properties and output characteristics, but in other cases, the running properties and output properties were satisfied. A metal coated magnetic recording medium could not be obtained.

[発明の効果] 本発明は、製法の工夫により、不活性粒子を含有する熱
可塑性樹脂を用いて、粒子の大きさとフィルム厚さの関
係、含有量を特定範囲としたので、走行性、出力特性に
優れた磁気記録媒体が得られたものであり、各用途での
フィルム加工速度の増大に対応できるものである。
[Effects of the Invention] The present invention uses a thermoplastic resin containing inert particles by devising a manufacturing method, and sets the relationship between particle size and film thickness and content within a specific range, thereby improving runnability and output. A magnetic recording medium with excellent properties has been obtained, and can respond to increases in film processing speed in various applications.

Claims (7)

【特許請求の範囲】[Claims] (1)基材フィルムの少なくとも片面にメタル塗布型磁
性層を設けてなるメタル塗布型磁気記録媒体であって、
該基材フィルムが熱可塑性樹脂Aよりなる層(A層)の
少なくとも片面に不活性粒子を含有する熱可塑性樹脂B
よりなる層(B層)を積層してなる二軸配向フィルムで
あり、B層に含有される不活性粒子の平均粒径d_Bが
10〜600nm、該粒子のB層における含有量が1.
5〜40重量%、B層の厚さt_Bと平均粒径d_Bの
比T_B/d_Bが0.1〜3の範囲であることを特徴
とするメタル塗布型磁気記録媒体。
(1) A metal-coated magnetic recording medium comprising a metal-coated magnetic layer on at least one side of a base film,
Thermoplastic resin B containing inert particles on at least one side of a layer (A layer) in which the base film is made of thermoplastic resin A
It is a biaxially oriented film formed by laminating layers (B layer) consisting of layers, in which the average particle diameter d_B of the inert particles contained in the B layer is 10 to 600 nm, and the content of the particles in the B layer is 1.
5 to 40% by weight, and the ratio T_B/d_B of the thickness t_B of the B layer to the average grain size d_B is in the range of 0.1 to 3.
(2)基材フィルムの少なくとも一方のB層側にメタル
塗布型磁性層が設けられており、該磁性層側のB層に含
有される不活性粒子の平均粒径d_Bが10〜450n
mであることを特徴とする請求項(1)記載のメタル塗
布型磁気記録媒体。
(2) A metal-coated magnetic layer is provided on at least one B layer side of the base film, and the average particle diameter d_B of the inert particles contained in the B layer on the magnetic layer side is 10 to 450 nm.
The metal coated magnetic recording medium according to claim 1, wherein the metal coating type magnetic recording medium is m.
(3)基材フィルムがA層の片面にのみB層を積層して
なる二軸配向フィルムであり、A層側にのみメタル塗布
型磁性層が設けられており、該B層に含有される不活性
粒子の平均粒径d_Bが50〜600nmであることを
特徴とする請求項(1)記載のメタル塗布型磁気記録媒
体。
(3) The base film is a biaxially oriented film in which the B layer is laminated only on one side of the A layer, and a metal-coated magnetic layer is provided only on the A layer side, and the B layer contains 2. The metal-coated magnetic recording medium according to claim 1, wherein the inert particles have an average particle diameter d_B of 50 to 600 nm.
(4)基材フィルムが、熱可塑性樹脂Aよりなる層(A
層)の一方の面に不活性粒子を含有する熱可塑性樹脂B
よりなる層(B層)を、他面に不活性粒子を含有する熱
可塑性樹脂Cよりなる層(C層)を積層してなる二軸配
向フィルムであって、該基材フィルムのB層側にのみメ
タル塗布型磁性層が設けられており、該B層に含有され
る不活性粒子の平均粒径d_Bが10〜450nm、該
粒子のB層における含有量が1.5〜40重量%、B層
の厚さt_Bと平均粒径d_Bの比T_B/d_Bが0
.1〜3、該C層に含有される不活性粒子の平均粒径d
_cが50〜600nm、該粒子のC層における含有量
が1.5〜40重量%、C層の厚さt_cと平均粒径d
_cの比t_c/d_cが0.1〜3であることを特徴
とするメタル塗布型磁気記録媒体。
(4) The base film is a layer made of thermoplastic resin A (A
thermoplastic resin B containing inert particles on one side of the layer)
A biaxially oriented film formed by laminating a layer (B layer) consisting of a thermoplastic resin C containing inert particles on the other side (C layer) on the B layer side of the base film. A metal-coated magnetic layer is provided only in the B layer, the average particle diameter d_B of the inert particles contained in the B layer is 10 to 450 nm, and the content of the particles in the B layer is 1.5 to 40% by weight. The ratio T_B/d_B of the thickness t_B of the B layer and the average grain size d_B is 0
.. 1 to 3, average particle diameter d of the inert particles contained in the C layer
__c is 50 to 600 nm, the content of the particles in the C layer is 1.5 to 40% by weight, the thickness t_c of the C layer and the average particle diameter d
A metal coated magnetic recording medium characterized in that the ratio t_c/d_c of _c is 0.1 to 3.
(5)熱可塑性樹脂Cが結晶性ポリエステルであり、か
つ、C層表面の全反射ラマン結晶化指数が20cm^−
^1以下であることを特徴とする請求項(4)に記載の
メタル塗布型磁気記録媒体。
(5) Thermoplastic resin C is crystalline polyester, and the total reflection Raman crystallization index of the C layer surface is 20 cm^-
5. The metal-coated magnetic recording medium according to claim 4, wherein the magnetic recording medium is ^1 or less.
(6)熱可塑性樹脂Bが結晶性ポリエステルであり、か
つ、B層表面の全反射ラマン結晶化指数が20cm^−
^1以下であることを特徴とする請求項(1)〜(5)
のいずれかに記載のメタル塗布型磁気記録媒体。
(6) Thermoplastic resin B is crystalline polyester, and the total reflection Raman crystallization index of the B layer surface is 20 cm^-
Claims (1) to (5) characterized in that ^1 or less
The metal coated magnetic recording medium according to any one of the above.
(7)磁性層側のB層の厚さt_Bと該磁性層の厚さt
_Mの比、t_B/t_Mが0.002〜10の範囲で
あることを特徴とする請求項(1)〜(6)のいずれか
に記載のメタル塗布型磁気記録媒体。
(7) Thickness t_B of layer B on the magnetic layer side and thickness t of the magnetic layer
7. The metal coating type magnetic recording medium according to claim 1, wherein the ratio of _M, t_B/t_M, is in the range of 0.002 to 10.
JP2002084A 1989-06-06 1990-01-08 Metal coated magnetic recording medium Expired - Lifetime JPH07111777B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-143863 1989-06-06
JP14386389 1989-06-06

Publications (2)

Publication Number Publication Date
JPH0386916A true JPH0386916A (en) 1991-04-11
JPH07111777B2 JPH07111777B2 (en) 1995-11-29

Family

ID=15348735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084A Expired - Lifetime JPH07111777B2 (en) 1989-06-06 1990-01-08 Metal coated magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07111777B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562158A (en) * 1991-09-03 1993-03-12 Diafoil Co Ltd Laminated polyester film for magnetic recording medium
US5415933A (en) * 1992-08-18 1995-05-16 Fuji Photo Film Co., Ltd. Magnetic recording medium containing a biaxially oriented multilayer support

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224020A (en) * 1987-03-12 1988-09-19 Hitachi Maxell Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224020A (en) * 1987-03-12 1988-09-19 Hitachi Maxell Ltd Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562158A (en) * 1991-09-03 1993-03-12 Diafoil Co Ltd Laminated polyester film for magnetic recording medium
US5415933A (en) * 1992-08-18 1995-05-16 Fuji Photo Film Co., Ltd. Magnetic recording medium containing a biaxially oriented multilayer support

Also Published As

Publication number Publication date
JPH07111777B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
JPH0277431A (en) Biaxially oriented thermoplastic resin film
JP2653238B2 (en) Magnetic recording media
JPH0386916A (en) Metal coating type magnetic recording medium
JP2692320B2 (en) Biaxially oriented polyester film
JP2666498B2 (en) Metal thin film magnetic recording media
JP2569853B2 (en) Biaxially oriented thermoplastic resin film and film roll
JP2803274B2 (en) Oxide coated magnetic recording media
JP2870080B2 (en) Video cassette tape
JP2687621B2 (en) Biaxially oriented thermoplastic resin film for magnetic tape base
JP2530747B2 (en) Biaxially oriented laminated polyester film
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JP3503748B2 (en) Biaxially oriented laminated polyester film
JPH03209623A (en) Memory tape
JPH01229420A (en) Back-coatless video tape
JP2666500B2 (en) Video tape for high density recording
JPH02158628A (en) Biaxially orientated thermoplastic resin film
JPH04259548A (en) Biaxially oriented polyester film
JPH0912745A (en) Biaxially oriented thermoplastic resin film
JPH04278350A (en) Biaxially oriented laminated polyester film
JPH072850B2 (en) Biaxially oriented thermoplastic resin film
JPH03209621A (en) Video floppy
JPH04259910A (en) Magnetic recording tape
JPH05298672A (en) Audio tape
JPH03187723A (en) Biaxially oriented thermoplastic resin film
JPH03207018A (en) Magnetic recording tape

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 15