JPH03209623A - Memory tape - Google Patents

Memory tape

Info

Publication number
JPH03209623A
JPH03209623A JP521690A JP521690A JPH03209623A JP H03209623 A JPH03209623 A JP H03209623A JP 521690 A JP521690 A JP 521690A JP 521690 A JP521690 A JP 521690A JP H03209623 A JPH03209623 A JP H03209623A
Authority
JP
Japan
Prior art keywords
layer
particles
film
scratch resistance
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP521690A
Other languages
Japanese (ja)
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP521690A priority Critical patent/JPH03209623A/en
Publication of JPH03209623A publication Critical patent/JPH03209623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the memory tape which is excellent in scratch resistance and output characteristics by using thermoplastic resins contg. particles and specifying the relation between the size of the particles and the thickness of a film and the content. CONSTITUTION:The memory tape consists of a base material film and a magnetic layer. The base material film is a laminated film formed by laminating a layer (layer A) consisting of the thermoplastic resin A contg. the particles on a layer (layer B) consisting of the thermoplastic resin B. The surface roughness Ra of this layer A is <=75nm and the ratio Rt/Ra between the max. height Rt and Ra is <=8. The average grain size (d) of the particles incorporated into the layer A is 10 to 1,000nm and the content of the particles in the layer A is 1 to 40wt.%. The ratio t/d between the thickness (t) of the layer A and the average grain sized (d) of the particles is 0.1 to 3. The scratch resistance and output characteristics are inferior and such is undesirable if these ranges are exceeded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はメモリーテープに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to memory tapes.

[従来の技術] メモリーテープは、主にコンピューター等のデータスト
レージに用いられ、磁気記録媒体のなかでも繰り返し使
用がなされ、また、通常シーケンシャル(物理的位置が
連続的)記録のため高速で使用されるものである。
[Prior Art] Memory tapes are mainly used for data storage in computers, etc., are used repeatedly among magnetic recording media, and are usually used at high speeds due to sequential (continuous physical position) recording. It is something that

かかるメモリーテープ等磁気記録媒体としては、ポリエ
ステルフィルムに酸化物塗布型磁性層を設けてなる磁気
記録媒体が知られている(たとえば特開昭61−269
33号公報等)。
As such magnetic recording media such as memory tapes, there are known magnetic recording media in which an oxide-coated magnetic layer is provided on a polyester film (for example, Japanese Patent Laid-Open No. 61-269
Publication No. 33, etc.).

[発明が解決しようとする課題] しかしながら、上記従来のメモリーテープでは、メモリ
ーテープがしばしば高速で用いられるため、接触するロ
ールやガイドでテープ表面に傷がつくという欠点があっ
た。また、従来のものでは記録の書き込み、再生が繰り
返し行なわれると出力特性が低いために、S/N(シグ
ナル/ノイズ比)が不十分という欠点があった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional memory tapes have a drawback in that the tape surface is scratched by the rolls and guides that come into contact with the memory tapes because the memory tapes are often used at high speeds. In addition, the conventional type had a drawback that the output characteristics were low when recording was repeatedly written and reproduced, resulting in an insufficient S/N (signal/noise ratio).

本発明はかかる課題を解決し、特に高速工程でテープに
傷がつきに<<(以下耐スクラッチ性に優れるという)
、シかも繰り返し記録の書き込み、再生に耐える(以下
出力特性に優れるという)メモリーテープを提供するこ
とを目的とする。
The present invention solves these problems and has excellent scratch resistance, especially in high-speed processes.
The purpose of the present invention is to provide a memory tape (hereinafter referred to as having excellent output characteristics) that can withstand repeated recording and playback.

[課題を解決するための手段] 本発明は、基材フィルムの少なくとも片面に磁性層を設
けてなるメモリーテープであって、該基材フィルムが熱
可塑性樹脂Bよりなる層(B層)の少なくとも片面に粒
子を含有する熱可塑性樹脂Aよりなる層(A層)を積層
した積層フィルムであり、A層の表面粗さRaが75n
m以下、最大高さRtとRaの比Rt / Raか8.
0以下であり、A層に含有される粒子の平均粒径dが1
0〜11000n、該粒子のA層に対する含有量が1〜
40重量%、A層の厚さtと該粒子の平均粒径dの比t
/dが0. 1〜3であることを特徴とするメモリーテ
ープに関するものである。
[Means for Solving the Problems] The present invention provides a memory tape having a magnetic layer provided on at least one side of a base film, wherein the base film has at least one layer (B layer) made of thermoplastic resin B. It is a laminated film in which a layer (A layer) made of thermoplastic resin A containing particles is laminated on one side, and the surface roughness Ra of the A layer is 75n.
m or less, the ratio of maximum height Rt and Ra is Rt/Ra or 8.
0 or less, and the average particle diameter d of the particles contained in the A layer is 1
0 to 11000n, the content of the particles in A layer is 1 to
40% by weight, the ratio t of the thickness t of the A layer and the average particle size d of the particles
/d is 0. The present invention relates to a memory tape characterized by numbers 1 to 3.

本発明の基材フィルムを構成する熱可塑性樹脂A、Bは
同じでも、異なる種類のものでもよ(、ポリエステル、
ポリオレフィン、ポリアミド、ポリフェニレンスルフィ
ドなど特に限定されることはないが、特に、ポリエステ
ル、中でも、エチレンテレフタレート、エチレンα、β
−ビス(2−クロルフェノキシ)エタン−4,4′−ジ
カルボキシレト、エチレン2.6−ナフタレート単位か
ら選ばれた少なくとも一種の構造単位を主要構成成分と
する場合に耐スクラッチ性かより一層良好となるので望
ましい。また、本発明を構成する熱可塑性樹脂Aは結晶
性である場合に耐スクラッチ性かより一層良好となるの
できわめて望ましい。ここでいう結晶性とはいわゆる非
晶質ではないことを示すものであり、定量的には結晶化
パラメータにおける冷結晶化温度Tccが検出され、か
つ結晶化パラメータΔTcgが150℃以下のものであ
る。さらに、示差走査熱量計で測定された融解熱(融解
エンタルピー変化)が7.5cal/g以上の結晶性を
示す場合に耐スクラッチ性がより一層良好となるのでき
わめて望ましい。また、エチレンテレフタレートを主要
構成成分とするポリエステルの場合に耐スクラッチ性が
より一層良好となるので特に望ましい。
The thermoplastic resins A and B constituting the base film of the present invention may be the same or different types (polyester,
Polyolefins, polyamides, polyphenylene sulfides, etc. are not particularly limited, but polyesters, especially ethylene terephthalate, ethylene α, β
- Scratch resistance is even better when the main constituent is at least one structural unit selected from bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate and ethylene 2,6-naphthalate units. Therefore, it is desirable. Further, it is extremely desirable that the thermoplastic resin A constituting the present invention is crystalline, since this provides even better scratch resistance. Crystallinity here indicates that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 150°C or less. . Further, it is extremely desirable that the crystallinity has a heat of fusion (change in enthalpy of fusion) of 7.5 cal/g or more as measured by a differential scanning calorimeter because the scratch resistance will be even better. Furthermore, polyester containing ethylene terephthalate as a main component is particularly desirable because it provides even better scratch resistance.

なお、本発明を阻害しない範囲内で、熱可塑性樹脂A、
Bには他種の熱可塑性樹脂を混合してもよいし共重合ポ
リマを用いても良い。また、本発明の目的を阻害しない
範囲内で、熱可塑性樹脂A、Bに酸化防止剤、熱安定剤
、滑剤、紫外線吸収剤などの有機添加剤が通常添加され
る程度添加されていてもよい。
In addition, within the range that does not impede the present invention, thermoplastic resin A,
B may be mixed with other thermoplastic resins or may be a copolymer. Furthermore, organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may be added to the thermoplastic resins A and B to the extent that they are usually added, within a range that does not impede the purpose of the present invention. .

本発明を構成する基材フィルムのA層中の粒子の平均粒
径dは耐スクラッチ性、出力特性の点から10〜110
00nである必要かあり、さらにA層側に磁性層が設け
られる場合には10〜50Qnm、磁性層が設けられな
い場合には30〜11000nが好ましい。
The average particle diameter d of the particles in layer A of the base film constituting the present invention is 10 to 110 from the viewpoint of scratch resistance and output characteristics.
If a magnetic layer is provided on the A layer side, the thickness is preferably 10 to 50 Q nm, and if no magnetic layer is provided, it is preferably 30 to 11,000 nm.

また本発明の基材フィルムA層中の粒子の含有量は1〜
40重量%、好ましくは2〜30重量%、さらに好まし
くは3〜20重量%であることが必要である。含有量が
上記の範囲より多いと出力特性が満足できず、少ないと
耐スクラッチ性が不良となり好ましくない。
Further, the content of particles in the base film A layer of the present invention is 1 to
It is necessary that the amount is 40% by weight, preferably 2 to 30% by weight, and more preferably 3 to 20% by weight. If the content is more than the above range, the output characteristics will not be satisfactory, and if the content is less than the above range, the scratch resistance will be poor, which is not preferable.

さらに本発明の基材フィルムA層の厚さtと該A層中に
含有する粒子の平均粒径dの比t/dは0.1〜3、好
ましくは0. 2〜2.0、さらに好ましくは0. 3
〜1.5の範囲であることが必要である。t/dが上記
の範囲より小さいと耐スクラッチ性が不良となり、逆に
大きいと出力特性が不良となるので好ましくない。
Further, the ratio t/d between the thickness t of the base film A layer of the present invention and the average particle diameter d of particles contained in the A layer is 0.1 to 3, preferably 0. 2 to 2.0, more preferably 0. 3
It is necessary that it is in the range of ~1.5. If t/d is smaller than the above range, the scratch resistance will be poor, whereas if it is larger, the output characteristics will be poor, which is not preferable.

さらに、本発明のB層中には粒子を含有している必要は
特にないが、平均粒径が5〜500nm、特に10〜4
00nmの粒子が0.001〜0゜5重量%、特に0.
005〜0.3重量%含有されていると耐スクラッチ性
、出力特性かより一層良好となるので望ましい。
Furthermore, the B layer of the present invention does not particularly need to contain particles, but the average particle size is 5 to 500 nm, particularly 10 to 4 nm.
0.001 to 0.5% by weight, especially 0.00nm particles.
A content of 0.005 to 0.3% by weight is desirable because scratch resistance and output characteristics become even better.

本発明の熱可塑性樹脂Aに含有される粒子は、粒径比(
粒子の長径/短径)が1.0〜1.3の粒子、特に、球
形状の粒子の場合に耐スクラッチ性、出力特性がより一
層良好となるので望ましい。
The particles contained in the thermoplastic resin A of the present invention have a particle size ratio (
Particles having a particle length (longer axis/breadth axis) of 1.0 to 1.3, particularly spherical particles, are preferable because they provide even better scratch resistance and output characteristics.

また、該粒子は基材フィルム中での単一粒子指数が0.
 7以上、好ましくは0. 9以上である場合に耐スク
ラッチ性、出力特性がより一層良好となるので特に望ま
しい。さらに該粒子は粒径の相対標準偏差が0.6以下
、好ましくは0. 5以下の場合に耐スクラッチ性、出
力特性がより一層良好となるので望ましい。
Further, the particles have a single particle index of 0.0 in the base film.
7 or more, preferably 0. A value of 9 or more is particularly desirable because scratch resistance and output characteristics are even better. Furthermore, the particles have a relative standard deviation of particle size of 0.6 or less, preferably 0.6 or less. A value of 5 or less is desirable because scratch resistance and output characteristics become even better.

本発明に用いる粒子の種類は特に限定されないが、コロ
イダルシリカに起因する実質的に球形のシリカ粒子、架
橋高分子による粒子(たとえば架橋ポリスチレン)等が
あるが、特に10重量%減量時温度(窒素中で熱重量分
析装置を用いて測定。
The type of particles used in the present invention is not particularly limited, but includes substantially spherical silica particles derived from colloidal silica, particles made of crosslinked polymers (for example, crosslinked polystyrene), etc. Measured using a thermogravimetric analyzer inside.

昇温速度20°C/分)が380℃以上になるまで架橋
度を高くした架橋高分子粒子の場合に耐スクラッチ性、
出力特性がより一層良好となるので特に望ましい。なお
、コロイダルシリカに起因する球形シリカの場合にはア
ルコキシド法で製造された、ナトリウム含有量が少ない
、実質的に球形のシリカの場合に耐スクラッチ性、出力
特性がより一層良好となるので特に望ましい。しかしな
がら、その他の粒子、例えば炭酸カルシウム、二酸化チ
タン、アルミナ等他の粒子でも熱可塑性樹脂A層の厚さ
tと平均粒径dの比の適切なコントロールにより十分使
いこなせるものである。
In the case of crosslinked polymer particles whose degree of crosslinking is increased until the temperature increase rate (20°C/min) is 380°C or higher, scratch resistance,
This is particularly desirable since the output characteristics will be even better. In addition, in the case of spherical silica derived from colloidal silica, substantially spherical silica produced by an alkoxide method and having a low sodium content is particularly desirable because the scratch resistance and output characteristics are even better. . However, other particles, such as calcium carbonate, titanium dioxide, alumina, etc., can also be used satisfactorily by appropriately controlling the ratio of the thickness t of the thermoplastic resin A layer to the average particle diameter d.

本発明を構成する基体は上記組成物からなる積層フィル
ムを二軸配向せしめたフィルムであって、−軸あるいは
無配向フィルムでは耐スクラッチ性が不良となるので好
ましくない。この配向の程度は特に限定されないが、高
分子の分子配向の程度の目安であるヤング率が長手方向
、幅方向ともに350 kg/mm2以上である場合に
出力特性、耐スクラッチ性がより一層良好となるのでき
わめて望ましい。分子配向の程度の目安であるヤング率
の上限は特に限定されないが、通常、1500kg/f
11[n2程度が製造上の限界である。
The substrate constituting the present invention is a biaxially oriented laminated film made of the above-mentioned composition, and a negative-axis or non-oriented film is not preferable because the scratch resistance will be poor. The degree of this orientation is not particularly limited, but if the Young's modulus, which is a measure of the degree of molecular orientation of the polymer, is 350 kg/mm2 or more in both the longitudinal and width directions, the output characteristics and scratch resistance will be even better. This is extremely desirable. The upper limit of Young's modulus, which is a measure of the degree of molecular orientation, is not particularly limited, but is usually 1500 kg/f.
11[n2 is the manufacturing limit.

本発明を構成する基材フィルムの該A層表面の全反射ラ
マン結晶化指数は、20cm−”以下の場合に耐スクラ
ッチ性、出力特性がより一層良好となるので特に望まし
い。
It is particularly desirable that the total reflection Raman crystallization index of the surface of the A layer of the base film constituting the present invention be 20 cm-'' or less, since scratch resistance and output characteristics will be even better.

本発明は上記基材フィルムの少なくとも片面に磁性層を
設けてなる磁気記録媒体である。用いられる磁性粉末は
特に限定されないが強磁性粉末、なかでもγ−Fe2O
3、co含有7−Fe2O3、Fe3O4、co含有F
e3O4、CrO2等が好ましく用いられる。
The present invention is a magnetic recording medium comprising a magnetic layer provided on at least one side of the base film. The magnetic powder used is not particularly limited, but ferromagnetic powder, especially γ-Fe2O
3, co-containing 7-Fe2O3, Fe3O4, co-containing F
e3O4, CrO2, etc. are preferably used.

磁性粉は各種バインダーを用いて磁性塗料とすることが
できるが、一般には熱硬化性樹脂系バインダーおよび放
射線硬化系バインダーが好ましく、その他添加剤として
分散剤、潤滑剤、帯電防止剤を常法に従って用いてもよ
い。例えば塩化ビニル・酢酸ビニル・ビニルアルコール
共重合体、ポリウレタンプレポリマおよびポリイソシア
ネートよりなるバインダーなどを用いることができる。
Magnetic powder can be made into a magnetic paint using various binders, but thermosetting resin binders and radiation curing binders are generally preferred, and other additives such as dispersants, lubricants, and antistatic agents can be added according to conventional methods. May be used. For example, binders made of vinyl chloride/vinyl acetate/vinyl alcohol copolymers, polyurethane prepolymers, and polyisocyanates can be used.

磁性層の厚さt Mは特に限定されないが、磁性層側の
A層の厚さt(−層)との比、1/1Mは特に限定され
ないが、0.002〜10、好ましくは0.01〜10
、さらに好ましくは0.01〜5の範囲である場合に出
力特性、耐スクラッチ性がより一層良好となるので望ま
しい。またtMの値としては0. 5〜5μmの範囲と
しておくことが出力特性、耐スクラッチ性がより一層良
好となるので望ましい。
The thickness tM of the magnetic layer is not particularly limited, but the ratio of 1/1M to the thickness t (-layer) of the A layer on the magnetic layer side is not particularly limited, but is 0.002 to 10, preferably 0. 01-10
, more preferably in the range of 0.01 to 5, since the output characteristics and scratch resistance become even better. Also, the value of tM is 0. It is desirable to keep the thickness in the range of 5 to 5 μm because output characteristics and scratch resistance become even better.

本発明を構成するA層の幅方向厚さ斑は25%以下、さ
らに好ましくは20%以下である場合に出力特性、耐ス
クラッチ性がより一層良好となるので特に望ましい。
It is particularly desirable that the thickness unevenness in the width direction of the layer A constituting the present invention is 25% or less, more preferably 20% or less, since the output characteristics and scratch resistance will be even better.

本発明を構成するA層の厚さは0.01〜1μm1好ま
しくは0.02〜0.5μmの場合に耐スクラッチ性、
出力特性がより一層良好となるので特に望ましい。
The thickness of the A layer constituting the present invention is 0.01 to 1 μm, preferably 0.02 to 0.5 μm, to improve scratch resistance.
This is particularly desirable since the output characteristics will be even better.

本発明を構成するA層の表面粗さRaは、出力特性、耐
スクラッチ性の点から75nm以下、好ましくは60n
m以下、さらに好ましくは45nm以下である。
The surface roughness Ra of layer A constituting the present invention is 75 nm or less, preferably 60 nm from the viewpoint of output characteristics and scratch resistance.
m or less, more preferably 45 nm or less.

本発明を構成するA層の最大高さRt、l!:Raの比
Rt / Raは、出力特性、耐スクラッチ性の点から
8.0以下、好ましくは7.5以下、さらに好ましくは
7以下である。
The maximum height Rt, l of the A layer constituting the present invention! :Ra ratio Rt/Ra is 8.0 or less, preferably 7.5 or less, more preferably 7 or less from the viewpoint of output characteristics and scratch resistance.

本発明を構成する該A層表面の2次イオンマススペクト
ルによって測定される表層粒子濃度比は特に限定されな
いが、表層粒子濃度比が1/10以下、特に1150以
下である場合に耐スクラッチ性、出力特性がより一層良
好となるので特に望ましい。
The surface layer particle concentration ratio measured by the secondary ion mass spectrum of the surface of the A layer constituting the present invention is not particularly limited, but when the surface layer particle concentration ratio is 1/10 or less, particularly 1150 or less, scratch resistance, This is particularly desirable since the output characteristics will be even better.

次に本発明のメモリーテープの製造方法について説明す
る。
Next, a method for manufacturing a memory tape according to the present invention will be explained.

まず、熱可塑性樹脂Aに粒子を含有せしめる方法として
は、粒子をエチレングリコールのスラリーとし、ベント
方式の2軸混練押出機を用いて熱可塑性樹脂に練り込む
方法が、延伸破れなく、本発明範囲の厚さと平均粒径の
関係、含有量の基材フィルムを得るのにきわめて有効で
ある。
First, as a method for incorporating the particles into the thermoplastic resin A, there is a method in which the particles are made into an ethylene glycol slurry and kneaded into the thermoplastic resin using a vent type twin-screw kneading extruder, which does not cause tearing due to stretching and is within the scope of the present invention. The relationship between thickness and average particle diameter is extremely effective for obtaining a base film with a certain content.

粒子の含有量を調節する方法としては、上記方法で高濃
度マスターを作っておき、それを製膜時に粒子を実質的
に含有しない熱可塑性樹脂で希釈して粒子の含有量を調
節する方法が有効である。
One way to adjust the particle content is to prepare a high-concentration master using the above method, and then dilute it with a thermoplastic resin that does not substantially contain particles during film formation to adjust the particle content. It is valid.

次に、熱可塑性樹脂81粒子を所定量含有する熱可塑性
樹脂Aのペレットを必要に応じて乾燥したのち、公知の
溶融積層用押出装置に供給し、スリット状のダイからシ
ート状に押出し、キャスティングロール上で冷却固化せ
しめて未延伸フィルムを作る。すなわち、2または3台
の押出し機、2または3層のマニホールドまたは合流ブ
ロックを用いて、熱可塑性樹脂A、Bを積層し、口金か
ら2または3層のシートを押し出し、キャスティングロ
ールで冷却して未延伸フィルムを作る。この場合、熱可
塑性樹脂Aのポリマ流路に、スタティックミキサー、ギ
ヤポンプを設置する方法は延伸破れなく、本発明範囲の
厚さと平均粒径の関係、含有量、望ましい範囲の表層粒
子濃度比のフィルムを得るのに有効である。また、合流
ブロックとして矩形のフィードブロックを用いるのが本
発明範囲の厚さと平均粒径の関係を得るのにきわめて有
効である。また、熱可塑性樹脂A側の押し出し機の溶融
温度を、熱可塑性樹脂B側より、10〜40℃高くする
ことが、延伸破れなく、本発明範囲の厚さと平均粒径の
関係、含有量、望ましい範囲の積層厚さ斑、表層粒子濃
度比、全反射ラマン結晶化指数のフィルムを得るのに有
効である。上記の説明は構成として、A/BXA/B/
Aについて述べたが、A/B/C等3層以上の構成にも
適用でき、特に3層の場合は3台の押出機を用いて同様
に、3層のマニホールドまたは合流ブロックを用いて、
熱可塑性樹脂A、B、Cを積層し、口金から3層のシー
トを押し出し、キャスティングロールで冷却して未延伸
フィルムを作る。
Next, the pellets of thermoplastic resin A containing a predetermined amount of 81 particles of thermoplastic resin are dried as necessary, and then supplied to a known extrusion device for melt lamination, extruded into a sheet form from a slit-shaped die, and cast. The film is cooled and solidified on a roll to form an unstretched film. That is, thermoplastic resins A and B are laminated using two or three extruders, a two or three layer manifold or a merging block, two or three layers of sheets are extruded from a die, and the sheets are cooled with a casting roll. Make an unstretched film. In this case, the method of installing a static mixer and a gear pump in the polymer flow path of thermoplastic resin A will prevent stretching and tearing, and the film will have a relationship between thickness and average particle size, content, and a surface layer particle concentration ratio within the desired range of the present invention. It is effective to obtain Further, it is extremely effective to use a rectangular feed block as the merging block in order to obtain the relationship between the thickness and the average particle size within the range of the present invention. In addition, setting the melting temperature of the extruder on the thermoplastic resin A side 10 to 40°C higher than that on the thermoplastic resin B side will prevent stretching breakage, and the relationship between the thickness and average particle size, the content, and the content within the range of the present invention. This is effective in obtaining a film with desired ranges of lamination thickness unevenness, surface layer particle concentration ratio, and total reflection Raman crystallization index. The above explanation is based on the configuration of A/BXA/B/
Although we have described A, it can also be applied to structures with three or more layers such as A/B/C, and in particular, in the case of three layers, three extruders can be used, and a three-layer manifold or confluence block can be used.
Thermoplastic resins A, B, and C are laminated, the three-layer sheet is extruded from a die, and the sheet is cooled with a casting roll to form an unstretched film.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
手方向の延伸を3段階以上に分けて、総絞延伸倍率を3
. 0〜6.5倍で行なう方法は、本発明範囲の厚さと
平均粒径の関係、含有量のフィルムを得るのに有効であ
る。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, by using a sequential biaxial stretching method that first stretches in the longitudinal direction and then in the width direction, the longitudinal stretching is divided into three or more stages, and the total drawing ratio is 3.
.. The method carried out at a magnification of 0 to 6.5 times is effective for obtaining a film having a relationship between thickness and average particle size and content within the range of the present invention.

長手方向延伸温度は熱可塑性樹脂の種類によって異なり
一種には言えないが、通常、その1段目を50〜130
°Cとし、2段目以降はそれより高くすることが本発明
範囲の厚さと平均粒径の関係、本発明の望ましい範囲の
表層粒子濃度比のフィルムを得るのに有効である。長手
方向延伸速度は5000〜50000%/分の範囲が好
適である。幅方向の延伸方法としてはステンタを用いる
方法が一般的である。延伸倍率は、3.0〜5.0倍、
延伸速度は、1,000〜20.000%/分、温度は
80〜160℃の範囲が好適である。次にこの延伸フィ
ルムを熱処理する。この場合の熱処理温度は170〜2
00°C1特に170〜190℃、時間は0゜5〜60
秒の範囲が好適である。
The longitudinal stretching temperature varies depending on the type of thermoplastic resin, but it is usually 50 to 130 degrees at the first stage.
°C and higher in the second and subsequent stages is effective for obtaining a film having a relationship between thickness and average particle size within the range of the present invention and a surface layer particle concentration ratio within the desired range of the present invention. The longitudinal stretching speed is preferably in the range of 5,000 to 50,000%/min. A common method for stretching in the width direction is to use a stenter. The stretching ratio is 3.0 to 5.0 times,
The stretching speed is preferably 1,000 to 20.000%/min, and the temperature is preferably 80 to 160°C. Next, this stretched film is heat treated. The heat treatment temperature in this case is 170~2
00°C1 especially 170-190°C, time 0°5-60
A range of seconds is preferred.

次に、このフィルムに所定の磁性層を塗布する。Next, a predetermined magnetic layer is applied to this film.

磁性層を塗布する方法は公知の方法で行なうことができ
るが、グラビヤロールで塗布する方法が本発明範囲の厚
さと平均粒径の関係、本発明の望ましい範囲の表層粒子
濃度比のフィルムを得るのに有効である。塗布後の乾燥
工程は、温度を90〜120℃とするのが好ましい。
The magnetic layer can be applied by any known method, but the method of applying with a gravure roll provides a film with a relationship between thickness and average particle size within the range of the present invention and a surface layer particle concentration ratio within the desired range of the present invention. It is effective for In the drying step after coating, the temperature is preferably 90 to 120°C.

また、カレンダー工程は、ポリアミドまたはポリエステ
ルを弾性ロールに用い、25〜90°C1特に40〜7
0°Cの温度範囲で行なうのが本発明範囲の厚さと平均
粒径の関係、本発明の望ましい範囲の表層粒子濃度比の
フィルムを得るのに有効である。さらに、このフィルム
の磁性層をキュアした後、その原反(広幅)をスリット
して本発明のメモリーテープを得る。
In addition, in the calendering process, polyamide or polyester is used as an elastic roll, and 25 to 90°C, especially 40 to 7
It is effective to conduct the film at a temperature of 0° C. in order to obtain a film having a relationship between thickness and average particle size within the range of the present invention and a surface layer particle concentration ratio within the desired range of the present invention. Furthermore, after curing the magnetic layer of this film, the original fabric (wide width) is slit to obtain the memory tape of the present invention.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1)粒子の平均粒径 フィルムから熱可塑性樹脂をプラズマ低温灰化処理法で
除去し粒子を露出させる。処理条件は熱可塑性樹脂は灰
化されるが粒子はダメージを受けない条件を選択する。
(1) Average particle size of particles The thermoplastic resin is removed from the film by plasma low-temperature ashing treatment to expose the particles. The processing conditions are selected so that the thermoplastic resin is incinerated but the particles are not damaged.

これを走査型電子顕微鏡(SEM)で観察し、粒子の画
像をイメージアナライザーで処理する。観察箇所を変え
て粒子数5000個以上で次の数値処理を行ない、それ
によって求めた数平均径りを平均粒径とする。
This is observed with a scanning electron microscope (SEM), and the image of the particles is processed with an image analyzer. The following numerical processing is performed when the number of particles is 5000 or more while changing the observation location, and the number average diameter obtained thereby is taken as the average particle diameter.

D−ΣDi/N ここで、Diは粒子の円相光径、Nは粒子数である。D-ΣDi/N Here, Di is the circular diameter of the particle, and N is the number of particles.

(2)粒径比 上記(1)の測定において個々の粒子の(長径の平均値
)/(短径の平均値)の比である。すなわち、下式で求
められる。
(2) Particle size ratio This is the ratio of (average length of major axis)/(average value of minor axis) of individual particles in the measurement of (1) above. That is, it can be obtained using the following formula.

長径=ΣDli/N 短径=ΣD2i/N Dli、 D2iはそれぞれ個々の粒子の長径(最大径
)、短径(最短径)、Nは粒子数である。
Major axis = ΣDli/N Minor axis = ΣD2i/N Dli, D2i is the major axis (maximum diameter) and minor axis (shortest axis) of each individual particle, and N is the number of particles.

(3)粒径の相対標準偏差 上記(1)の方法で測定された個々の粒径D1、平均径
D1粒子数Nから計算される標準偏差σ(=(Σ(Di
 −D) 2/N)”2)を平均径りで割った値(σ/
D)で表わした。
(3) Relative standard deviation of particle size Standard deviation σ (=(Σ(Di
−D) 2/N)”2) divided by the average diameter (σ/
D).

(4)単一粒子指数 フィルムの断面を透過型電子顕微鏡(TEM)で写真観
察し、粒子を検知する。観察倍率を10万倍程度にすれ
ば、それ以上分けることができない1個の粒子が観察で
きる。粒子の占める全面積をA1そのうち2個以上の粒
子が凝集している凝集体の占める面積をBとした時、(
A−B)/Aをもって、単一粒子指数とする。TEM条
件は下記のとおりであり1視野面積=2μm2の測定を
場所を変えて、500視野測定する。
(4) A cross section of the single particle index film is photographed and observed using a transmission electron microscope (TEM) to detect particles. If the observation magnification is set to about 100,000 times, a single particle that cannot be separated any further can be observed. When the total area occupied by particles is A1, and the area occupied by aggregates in which two or more particles are aggregated is B, (
A-B)/A is the single particle index. The TEM conditions are as follows, and 500 visual fields are measured by changing the measurement location of 1 visual field area = 2 μm 2 .

・観察倍率:10万倍 ・加速電圧:100kV ・切片厚さ:約1,0OOA (5)粒子の含有量 熱可塑性樹脂は溶解し粒子は溶解させない溶媒を選択し
、粒子を熱可塑性樹脂から遠心分離し、粒子の全体重量
に対する比率(重量%)をもって粒子含有量とする。
・Observation magnification: 100,000 times ・Acceleration voltage: 100kV ・Section thickness: Approximately 1,0OOA (5) Particle content Select a solvent that dissolves the thermoplastic resin but does not dissolve the particles, and centrifuge the particles from the thermoplastic resin. The particles are separated and the ratio (weight %) to the total weight of the particles is defined as the particle content.

(6)結晶化パラメータΔTcg、融解熱示差走査熱量
計(D S C)を用いて測定した。
(6) Crystallization parameter ΔTcg, heat of fusion measured using a differential scanning calorimeter (DSC).

DSCの測定条件は次の通りである。すなわち、試料1
0mgをDSC装置にセットし、300℃の温度で5分
間溶融した後、液体窒素中に急冷する。
The DSC measurement conditions are as follows. That is, sample 1
0 mg was set in a DSC device, melted at a temperature of 300° C. for 5 minutes, and then rapidly cooled in liquid nitrogen.

この急冷試料を10℃/分で昇温し、ガラス転移点Tg
を検知する。さらに昇温を続け、ガラス状態からの結晶
化発熱ピーク温度をもって冷結晶化温度Tccとした。
This rapidly cooled sample was heated at a rate of 10°C/min, and the glass transition point Tg
Detect. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.

さらに昇温を続け、融解ピークから融解熱を求めた。こ
こでTcc、!:Tgの差(Tcc−Tg)を結晶化パ
ラメータΔTcgと定義する。
The temperature was further increased, and the heat of fusion was determined from the melting peak. Tcc here! : The difference in Tg (Tcc-Tg) is defined as the crystallization parameter ΔTcg.

(7)ヤング率 J I 5−Z−1702に規定された方法にしたがっ
て、インストロンタイプの引っ張り試験機を用いて、2
5℃、65%RHにて測定した。
(7) Young's modulus 2 using an Instron type tensile tester according to the method specified in J I 5-Z-1702.
Measurement was performed at 5° C. and 65% RH.

(8)全反射ラマン結晶化指数 全反射ラマンスペクトルを測定し、カルボニル基の伸縮
振動である1 730cm−”の半価幅をもって表面の
全反射ラマン結晶化指数とした。測定条件は次の通りで
ある。但し測定深さは、表面から500〜1,0OOA
程度とした。
(8) Total reflection Raman crystallization index The total reflection Raman spectrum was measured, and the half-width of 1730 cm-'', which is the stretching vibration of the carbonyl group, was taken as the total reflection Raman crystallization index of the surface.The measurement conditions were as follows. However, the measurement depth is 500 to 1,000 mm from the surface.
It was set as the degree.

■光源 アルゴンイオンレーザ−(5,145A)■試料のセツ
ティング レーザー偏光方向(S偏光)とフィルム長手方向が平行
となるようにフィルム表面を全反射プリズムに圧着させ
、レーザーのプリズムへの入射角(フィルム厚さ方向と
の角度)は60° とした。
■Light source: Argon ion laser (5,145A) ■Sample setting Press the film surface onto a total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction are parallel, and adjust the incidence angle of the laser to the prism. (Angle with the film thickness direction) was set to 60°.

■検出器 PM : RCA31034/Photon Coun
ting Sysjem(Hamamalsu C12
30)  (supply 1,600V)■測定条件 5LIT        1.[)0[1μmLASE
R100mW GATE  TIME        1.0secS
CAN 5PEED     12cm−’/minS
AMPLING  INTERVAL  0.2cmR
EPEAT  TIME       6(9)固有粘
度[η] (単位はdi/g)オルトクロロフェノール
中、25℃で測定した溶液粘度から下記式で計算される
値を用いる。すなわち、 η 5./C=  [η] +K [ηコ 2 ・ に
こで、η5P−(溶液粘度/溶媒粘度)−1、Cは溶媒
100m1あたりの溶解ポリマ重量(g/100m1.
通常]、、2)、Kはハギンス定数(0,343とする
)。また、溶液粘度、溶媒粘度はオストワルド粘度計を
用いて測定した。
■Detector PM: RCA31034/Photon Coun
ting Sysjem(Hamanalsu C12
30) (supply 1,600V) ■Measurement conditions 5LIT 1. [)0[1μm LASE
R100mW GATE TIME 1.0secS
CAN 5PEED 12cm-'/minS
AMPLING INTERVAL 0.2cmR
EPEAT TIME 6 (9) Intrinsic viscosity [η] (unit: di/g) A value calculated from the solution viscosity measured at 25° C. in orthochlorophenol using the following formula. That is, η5. /C= [η] +K [ηko 2 ・ Nicode, η5P-(solution viscosity/solvent viscosity)-1, C is the weight of dissolved polymer per 100 ml of solvent (g/100 ml.
Normal],,2), K is Huggins constant (set to 0,343). In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

(10)表層粒子濃度比 2次イオンマススペクトル(S IMS)を用いて、フ
ィルム中の粒子に起因する元素のうち最も高濃度の元素
と熱可塑性樹脂の炭素元素の濃度比を粒子濃度とし、厚
さ方向の分析を行なう。S■MSによって測定される最
表層粒子濃度(深さOの点)における粒子濃度Aとさら
に深さ方向の分析を続けて得られる最高濃度Bの比、A
/Bを表層粒子濃度比と定義した。測定装置、条件は下
記のとおりである。
(10) Surface layer particle concentration ratio Using secondary ion mass spectrometry (SIMS), the concentration ratio of the element with the highest concentration among the elements caused by particles in the film and the carbon element of the thermoplastic resin is defined as the particle concentration, Perform analysis in the thickness direction. The ratio of the particle concentration A at the outermost layer particle concentration (point at depth O) measured by S■MS to the maximum concentration B obtained by further analysis in the depth direction, A
/B was defined as the surface layer particle concentration ratio. The measuring device and conditions are as follows.

1次イオン種   =02 1次イオン加速電圧:12KV 1次イオン電流  :200nA ラスター領域   :400μm口 分析領域     、ゲート30% 測定真空度    : 6.  OX 10−9To+
rE−GUN     :0. 5KV−3,0A(1
1)表面粗さパラメータRa(中心線平均粗さ)、Rt
(最大高さ) 表面粗さ計を用いて測定した。条件は下記のとおりであ
り、20回の測定の平均値をもって値とした。
Primary ion species = 02 Primary ion acceleration voltage: 12KV Primary ion current: 200nA Raster area: 400μm mouth analysis area, gate 30% Measurement vacuum level: 6. OX 10-9To+
rE-GUN: 0. 5KV-3,0A (1
1) Surface roughness parameter Ra (center line average roughness), Rt
(Maximum height) Measured using a surface roughness meter. The conditions were as follows, and the average value of 20 measurements was taken as the value.

・触針先端半径二0.5μm ・触針荷重  :5mg ・測定長   :1mm ・カットオフ値:0.08mm (12)出力特性 シフナル発生器により100%信号を記録し、その再生
信号からシグナルノイズ測定器でS/Nを測定しAとし
た。また上記と同じ信号を記録したテープを用いて信号
の記録再生を繰り返し、1万回後のテープのS/Nを上
記と同様にして測定しBとした。この繰り返しによるS
/Nの低下(A −B)が6.OdB未満の場合は出力
特性良好、それ以上の場合は出力特性不良と判定した。
・Stylus tip radius: 20.5μm ・Stylus load: 5mg ・Measurement length: 1mm ・Cutoff value: 0.08mm (12) Output characteristics A 100% signal is recorded by a shunal generator, and the signal noise is determined from the reproduced signal. The S/N was measured with a measuring device and marked as A. Further, recording and reproducing of the signal was repeated using a tape on which the same signal as above was recorded, and the S/N of the tape after 10,000 times was measured in the same manner as above and was designated as B. S due to this repetition
/N decrease (A - B) is 6. If it was less than OdB, it was determined that the output characteristics were good, and if it was more than that, it was determined that the output characteristics were poor.

(13)耐スクラッチ性 20℃相対湿度60%の雰囲気下で、外径6mmφの固
定軸(表面粗度0.28)に1/2インチ幅のテープを
角度θ=πradで接触させ、入テンション80gで速
度500m/min  (−833cm/s)で100
回走行させた後のテープ非磁性面をアルミ蒸着して、ス
クラッチ傷の本数、幅の大きさ及び白粉の発生状態を微
分干渉顕微鏡で観察した。
(13) Scratch resistance In an atmosphere of 20°C and 60% relative humidity, a 1/2 inch wide tape was brought into contact with a fixed shaft (surface roughness 0.28) with an outer diameter of 6 mmφ at an angle θ = πrad, and the tension was applied. 100 at 80g and speed 500m/min (-833cm/s)
After running the tape several times, the non-magnetic surface of the tape was deposited with aluminum, and the number and width of scratches and the state of white powder generation were observed using a differential interference microscope.

全(スクラッチ傷か見られずかつ白粉の発生のないもの
を耐スクラッチ性、優、スクラッチ傷が3本/cm未満
でかつ白粉の発生かほとんどないものを耐スクラッチ性
:良、それ以外を耐スクラッチ性:不良と判定した。
All (No scratches/cm and no white powder generation: Scratch resistance: Excellent, Less than 3 scratches/cm and almost no white powder generation: Scratch resistance: Good, Other: Scratch resistance: Good) Scratch resistance: Determined as poor.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1〜4、及び比較例1〜4 平均粒径の異なる架橋ポリスチレン粒子、コロイダルシ
リカに起因するシリカ粒子を含有するエチレングリコー
ルスラリーを調製し、このエチレングリコールスラリー
を190℃で1.5時間熱処理した後、テレフタル酸ジ
メチルとエステル交換反応させ、重縮合し、該粒子を0
.3〜6重量%含有するポリエチレンテレフタレート(
以下PETと略す)のペレットを作った。この時、重縮
合時間を調節し固有粘度を0.65とした(熱可塑性樹
脂A)。また、常法によって、固有粘度0゜62の実質
的に粒子を含有しないPETを製造し、熱可塑性樹脂B
とした。
Examples 1 to 4 and Comparative Examples 1 to 4 Ethylene glycol slurries containing crosslinked polystyrene particles and silica particles derived from colloidal silica with different average particle sizes were prepared, and the ethylene glycol slurry was heated at 190°C for 1.5 hours. After heat treatment, transesterification with dimethyl terephthalate is performed, polycondensation is performed, and the particles are reduced to 0.
.. Polyethylene terephthalate containing 3-6% by weight (
(hereinafter abbreviated as PET) pellets were made. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.65 (thermoplastic resin A). In addition, PET having an intrinsic viscosity of 0°62 and containing substantially no particles was produced by a conventional method, and thermoplastic resin B
And so.

これらのポリマをそれぞれ180°Cで6時間減圧乾燥
(3Torr) した後、熱可塑性樹脂Aを押出機1に
供給し285℃で溶融し、さらに、熱可塑性樹脂Bを押
出機2に供給し、280°Cで溶融し、これらのポリマ
を合流ブロックで合流積層し、静電印加キャスト法を用
いて表面温度30℃のキャスティングドラムに巻きつけ
て冷却固化し、積層未延伸フィルムを作った。この時、
それぞれの押出機の吐出量を調節し総厚さ、熱可塑性樹
脂A層の厚さを調節した。
After each of these polymers was dried under reduced pressure (3 Torr) at 180°C for 6 hours, thermoplastic resin A was supplied to extruder 1 and melted at 285°C, and thermoplastic resin B was further supplied to extruder 2, These polymers were melted at 280° C. and laminated in a merging block, then wound around a casting drum with a surface temperature of 30° C. using an electrostatic casting method, and cooled and solidified to produce a laminated unstretched film. At this time,
The total thickness and the thickness of the thermoplastic resin A layer were adjusted by adjusting the discharge amount of each extruder.

この未延伸フィルムを温度82℃にて長手方向に4.0
倍延伸した。この延伸は2組ずつのロルの周速差で、4
段階で行なった。この−軸延伸フィルムをステンタを用
いて延伸速度2.000%/分で105°Cて幅方向に
4.4倍延伸し、定長下で210℃にて5秒間熱処理し
、総厚さ10μmの二軸配向積層フィルムを得た。
This unstretched film was heated to 4.0 mm in the longitudinal direction at a temperature of 82°C.
Stretched twice. This stretching is done by the difference in circumferential speed between the two sets of rolls.
It was done in stages. This -axially stretched film was stretched 4.4 times in the width direction at 105°C at a stretching rate of 2.000%/min using a stenter, and then heat-treated at 210°C for 5 seconds under constant length to a total thickness of 10 μm. A biaxially oriented laminated film was obtained.

このフィルムに磁性塗料をグラビヤロールを用いて塗布
する。磁性塗料は次のようにして調製した。
Magnetic paint is applied to this film using a gravure roll. The magnetic paint was prepared as follows.

”7−Fe2O3100部 平均粒子サイズ 長さ 二0.3μm 針状比:10/1 抗磁力     5000e ・ポリウレタン樹脂        15部・塩化ビニ
ル・酢酸ビニル共重合体  5部・ニトロセルロース樹
脂       5部・酸化アルミ粉末       
   3部平均粒径       :0.3μm ・カーボンブラック         1部・レシチン
             2部・メチルエチルケトン
      100部・メチルイソブチルケトン   
 100部・トルエン            100
部・ステアリン酸           2部上記組成
物をボールミルで48時間混合分散した後、硬化剤6部
を添加して得られた混練物をフィルターでろ過して磁性
塗布液を準備し、上記フィルム上に塗布、磁場配向させ
、110℃で乾燥し、さらに小型テストカレンダー装置
(スチールロール/ナイロンロール、5段)で、温度7
5℃、線圧250 kg/cmでカレンダー処理した後
、70℃、48時間でキユアリングしメモリーテープを
得た。
7-Fe2O3 100 parts Average particle size Length 20.3 μm Acicular ratio: 10/1 Coercive force 5000e ・Polyurethane resin 15 parts ・Vinyl chloride/vinyl acetate copolymer 5 parts ・Nitrocellulose resin 5 parts ・Aluminum oxide powder
3 parts Average particle size: 0.3 μm ・Carbon black 1 part ・Lecithin 2 parts ・Methyl ethyl ketone 100 parts ・Methyl isobutyl ketone
100 parts/Toluene 100
After mixing and dispersing the above composition in a ball mill for 48 hours, 6 parts of a curing agent was added, and the resulting kneaded product was filtered through a filter to prepare a magnetic coating solution, which was coated on the film. , oriented in a magnetic field, dried at 110°C, and further heated to a temperature of 7 in a small test calender (steel roll/nylon roll, 5 stages).
After calendering at 5°C and a linear pressure of 250 kg/cm, curing was performed at 70°C for 48 hours to obtain a memory tape.

これらの特性は第1表に示したとおりであり、本発明の
メモリーテープは耐スクラッチ性、出力特性が優または
良であったか、そうでない場合は耐スクラッチ性、出力
特性を満足するメモリーテープは得られなかった。
These properties are as shown in Table 1, and the memory tape of the present invention had excellent or good scratch resistance and output characteristics.If not, the memory tape that satisfied the scratch resistance and output characteristics was considered to be a good product. I couldn't.

[発明の効果] 本発明は、製法の工夫により、粒子を含有する熱可塑性
樹脂を用いて、粒子の大きさとフィルム厚さの関係、含
有量を特定範囲としたので、耐スクラッチ性、出力特性
に優れたメモリ−テープが得られたものであり、各用途
での加工速度の増大に対応できるものである。
[Effects of the Invention] The present invention uses a thermoplastic resin containing particles by devising a manufacturing method, and sets the relationship between particle size and film thickness and content within a specific range, resulting in improved scratch resistance and output characteristics. Thus, a memory tape with excellent properties was obtained, which can accommodate increased processing speeds in various applications.

Claims (1)

【特許請求の範囲】[Claims] 基材フィルムの少なくとも片面に磁性層を設けてなるメ
モリーテープであって、該基材フィルムが熱可塑性樹脂
Bよりなる層(B層)の少なくとも片面に粒子を含有す
る熱可塑性樹脂Aよりなる層(A層)を積層した積層フ
ィルムであり、A層の表面粗さRaが75nm以下、最
大高さRtとRaの比Rt/Raが8.0以下であり、
A層に含有される粒子の平均粒径dが10〜1000n
m、該粒子のA層に対する含有量が1〜40重量%、A
層の厚さtと該粒子の平均粒径dの比t/dが0.1〜
3であることを特徴とするメモリーテープ。
A memory tape comprising a magnetic layer provided on at least one side of a base film, wherein the base film is a layer (B layer) made of thermoplastic resin B, and a layer made of thermoplastic resin A containing particles on at least one side of the layer (B layer). (A layer) is a laminated film in which the surface roughness Ra of the A layer is 75 nm or less, and the ratio Rt/Ra of the maximum height Rt and Ra is 8.0 or less,
The average particle diameter d of the particles contained in layer A is 10 to 1000n.
m, the content of the particles in layer A is 1 to 40% by weight, A
The ratio t/d of the layer thickness t and the average particle diameter d of the particles is 0.1 to
A memory tape characterized by 3.
JP521690A 1990-01-12 1990-01-12 Memory tape Pending JPH03209623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP521690A JPH03209623A (en) 1990-01-12 1990-01-12 Memory tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP521690A JPH03209623A (en) 1990-01-12 1990-01-12 Memory tape

Publications (1)

Publication Number Publication Date
JPH03209623A true JPH03209623A (en) 1991-09-12

Family

ID=11604995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP521690A Pending JPH03209623A (en) 1990-01-12 1990-01-12 Memory tape

Country Status (1)

Country Link
JP (1) JPH03209623A (en)

Similar Documents

Publication Publication Date Title
JPH0277431A (en) Biaxially oriented thermoplastic resin film
US6984435B2 (en) Biaxially oriented, laminated polyester film
JP2666498B2 (en) Metal thin film magnetic recording media
JPH03209623A (en) Memory tape
JP2692320B2 (en) Biaxially oriented polyester film
JP2569853B2 (en) Biaxially oriented thermoplastic resin film and film roll
JP2803274B2 (en) Oxide coated magnetic recording media
JPH02194924A (en) Thermoplastic resin film roll
JPH0386916A (en) Metal coating type magnetic recording medium
JP2870080B2 (en) Video cassette tape
JP3687127B2 (en) Biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film
JP2687621B2 (en) Biaxially oriented thermoplastic resin film for magnetic tape base
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JPH06322147A (en) Biaxially oriented film
JP3503748B2 (en) Biaxially oriented laminated polyester film
JPH06106614A (en) Polyester film for magnetic recording
JPH02158628A (en) Biaxially orientated thermoplastic resin film
JPH03150127A (en) Manufacture of biaxially stretched thermoplastic resin film
JPH1044234A (en) Biaxially oriented polyester film
JPH02143836A (en) Biaxially-oriented polyester film and its manufacture
JPH04105935A (en) Biaxially oriented thermoplastic resin film
JPH0890648A (en) Polyester film for magnetic recording medium
JPH08245812A (en) Biaxially oriented polyethylene terephthalate film and production thereof
JPH06320617A (en) Biaxially oriented laminated film
JPH07302421A (en) Magnetic tape for digital recording