JPH03150127A - Manufacture of biaxially stretched thermoplastic resin film - Google Patents

Manufacture of biaxially stretched thermoplastic resin film

Info

Publication number
JPH03150127A
JPH03150127A JP28939889A JP28939889A JPH03150127A JP H03150127 A JPH03150127 A JP H03150127A JP 28939889 A JP28939889 A JP 28939889A JP 28939889 A JP28939889 A JP 28939889A JP H03150127 A JPH03150127 A JP H03150127A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
film
added
inert particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28939889A
Other languages
Japanese (ja)
Other versions
JP2569838B2 (en
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1289398A priority Critical patent/JP2569838B2/en
Publication of JPH03150127A publication Critical patent/JPH03150127A/en
Application granted granted Critical
Publication of JP2569838B2 publication Critical patent/JP2569838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain film excellent in resistances to scratching and dubbing by a method wherein specified amount of inert particles having specified particle diameters are added to thermoplastic resin so as to laminate films, which mainly consist of said thermoplastic resins after being biaxially stretched and heat-treated, to each other in order to realize film having specified thickness. CONSTITUTION:Film A, which mainly consists of thermoplastic resin A containing at least two kinds of inert particles having different mean particle diameters, is laminated at least to one side of film B mainly consisting of thermoplastic resin B. In this case, 2 - 20 wt.% of the inert particle having the minimum means particle diameter d1 is added to the thermoplastic resin A. The lamination is performed so as to bring the ratio t/d1 into 0.1 - 5, in which (t) is the thickness of the film, which mainly consists of the thermoplastic resin A and has been subjected to biaxially stretching and heat- treating. In the case that the particle diameter ratio (or ratio of the major axis to the minor axis of the particle) of the inert particle, which is added to the thermoplastic resin A and has mean particle diameter different from the inert particle just mentioned above, is 1.0 - 1.3 and the relative standard deviation of the particle diameters is 0.6 or less, more favorable resistances to scratching and dubbing result.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸配向熱可塑性樹脂フィルムの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a biaxially oriented thermoplastic resin film.

[従来の技術1 二軸配向熱可塑性樹脂フィルムとしては少なくとも片面
の走行性が改良されたフィルムが知られている(例えば
、特開昭59−171623号公報等)。
[Prior Art 1] As a biaxially oriented thermoplastic resin film, a film with improved runnability on at least one side is known (for example, JP-A-59-171623, etc.).

[発明が解決しようとする課題1 しかしながら、上記従来の二軸配向熱可塑性樹脂フィル
ムでは、例えば、磁気媒体用途における磁性層塗布、カ
レンダ一工程、あるいは、できたビデオテープ等をダビ
ングしてソフトテープ等を製造する工程等の工程速度の
増大に伴い、接触するロールやガイドでフィルム表面に
傷がつくという欠点があった。また、従来のものでは、
上記ダビング時の画質低下のために、ビデオテープにし
た時の画質、すなわち、S/N (シグナル/ノイズ比
)も不十分という欠点があった。本発明はかかる課題を
解決し、特に高速工程でフィルムに傷がつきに(<(以
下耐スクラッチ性に優れるという)、シかもダビング時
の画質低下の少ない(以下耐ダビング性に優れるという
)二軸配向熱可塑性樹脂フィルムの製造方法を提供する
ことを目的とする。
[Problem to be Solved by the Invention 1] However, in the conventional biaxially oriented thermoplastic resin film described above, for example, a magnetic layer application for magnetic media use, a calendering process, or a soft tape by dubbing the finished video tape, etc. As the process speed increases in the manufacturing process, etc., there has been a drawback that the film surface is scratched by the contacting rolls and guides. In addition, in the conventional
Due to the deterioration in image quality during dubbing, the image quality when converted to videotape, that is, the S/N (signal/noise ratio), was also insufficient. The present invention has solved these problems, and has two types of film that are less susceptible to scratches (hereinafter referred to as "excellent scratch resistance") and less deterioration of image quality during dubbing (hereinafter referred to as "excellent dubbing resistance") especially during high-speed processes. It is an object of the present invention to provide a method for manufacturing an axially oriented thermoplastic resin film.

[課題を解決するための手段] 本発明は、異なる平均粒径を有する不活性粒子を少なく
とも2種類含有する熱可塑性樹脂Aを主成分とするフィ
ルムAを、熱可塑性樹脂Bを主成分とするフィルムBの
少なくとも片面に積層してなる二軸配向熱可塑性樹脂フ
ィルムの製造方法において、熱可塑性樹脂Aに添加する
上記不活性粒子のうち最小の平均粒径をd、とするとき
、平均粒径d□を有する不活性粒子を熱可塑性樹脂Aに
対して2〜20重量%添加し、二軸延伸熱処理後の熱可
塑性樹脂Aを主成分とするフィルムAの厚さtとd1の
比t/d、が0.1〜5となるように積層することを特
徴とする二軸配向熱可塑性樹脂フィルムの製造方法に関
するものである。
[Means for Solving the Problems] The present invention provides a film A containing at least two types of inert particles having different average particle diameters, the film A having the thermoplastic resin B as the main component. In the method for producing a biaxially oriented thermoplastic resin film laminated on at least one side of film B, when the smallest average particle size of the above inert particles added to thermoplastic resin A is d, the average particle size 2 to 20% by weight of inert particles having d The present invention relates to a method for producing a biaxially oriented thermoplastic resin film, characterized in that the film is laminated so that d is 0.1 to 5.

本発明を構成する熱可塑性樹脂Aはポリエステル、ポリ
オレフィン、ポリアミド、ポリフェニレンスルフィドな
ど特に限定されないが、特にポリエステル、なかでもエ
チレンテレフタレート、エチレンa、β−ビス(2−ク
ロルフェノキシ)エタン−4,4″−ジカルボキシレー
ト、エチレン2.6−ナフタレート単位から選ばれた少
なくとも一種の構造単位を主要構成成分とする場合に耐
スクラッチ性、耐ダビング性がより一層良好となるので
望ましい。
The thermoplastic resin A constituting the present invention is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but particularly polyester, especially ethylene terephthalate, ethylene a, β-bis(2-chlorophenoxy)ethane-4,4'' It is preferable to use at least one structural unit selected from -dicarboxylate and ethylene 2,6-naphthalate units as the main constituent, since the scratch resistance and dabbing resistance will be even better.

また、本発明を構成する熱可塑性樹脂は結晶性、あるい
は溶融時光学異方性である場合に耐スクラッチ性、耐ダ
ビング性がより一層良好となるのできわめて望ましい。
Further, it is extremely desirable that the thermoplastic resin constituting the present invention be crystalline or optically anisotropic when melted, since this will further improve scratch resistance and dubbing resistance.

ここでtlう結晶性とはいわゆる非晶質でないことを示
すものであり、定量的には結晶化パラメータにおける冷
結晶化温度Tccが検出され、かつ結晶化パラメータΔ
TcHが150℃以下のものである。さらに、示差走査
熱量計で測定された融解熱(融解エンタルピー変化)が
フ。
Here, crystallinity indicates that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter Δ
TcH is 150°C or less. Furthermore, the heat of fusion (change in enthalpy of fusion) measured with a differential scanning calorimeter is F.

5 csl/@以上の結晶性を示す場合に耐スクラッチ
性ζ耐ダビング性がより一層良好となるのできわめて望
ましい。また、エチレンテレフタレートを主要構成成分
とするポリエステルの場合に耐ダビング性、耐スクラッ
チ性がより一層良好となるので特に望ましい。なお、本
発明を阻害しない範囲内で、2種以上の熱可塑性樹脂を
混合しても良いし、共重合ポリマを用いても良い。
It is extremely desirable to exhibit crystallinity of 5 csl/@ or more because scratch resistance and dubbing resistance become even better. In addition, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better dubbing resistance and scratch resistance. Note that two or more types of thermoplastic resins may be mixed or a copolymer may be used within a range that does not impede the present invention.

本発明の熱可塑性樹脂Aに添加する異なる平均粒径を有
する不活性粒子それぞれについて、その粒径比(粒子の
長径/短径)が1.0〜1.3の粒子、特に、球形状の
粒子の場合に耐スクラッチ性がより一一良好となるので
望ましい。
Regarding each inert particle having a different average particle size to be added to the thermoplastic resin A of the present invention, particles having a particle size ratio (longer diameter/breadth diameter of the particle) of 1.0 to 1.3, especially spherical particles. Particles are preferred because they provide even better scratch resistance.

また、本発明の熱可塑性樹脂Aに添加する異なる平均粒
径を有する不活性粒子それぞれについて、その粒径の相
対標準偏差が0.6以下、好ましくは0.5以下の場合
に耐スクラッチ性、耐ダビング性がより一層良好となる
ので望ましい。
In addition, scratch resistance is achieved when the relative standard deviation of the particle size of each of the inert particles added to the thermoplastic resin A of the present invention having different average particle sizes is 0.6 or less, preferably 0.5 or less. This is desirable because the dubbing resistance becomes even better.

不活性粒子の主たる化学組成は特に限定されないが、上
記の好ましい粒子特性を満足するにはアルミナ珪酸塩、
1次粒子が凝集した状態のシリ力、内部析出粒子などは
好ましくなく、コロイダルシリ力に起因する実質的に球
形のシリカ粒子、架橋高分子による粒子(たとえば架橋
ポリスチレン)などがあるが、特に10重量%減量時温
度(窒素中で熱重量分析装置にて測定。昇温速度20℃
l■is)が380℃以上になるまで架橋度を高くした
架橋高分子粒子の場合に耐スクラッチ性、耐ダビング性
がより一層良好となるので特に望ましい。
The main chemical composition of the inert particles is not particularly limited, but in order to satisfy the above preferable particle characteristics, alumina silicate,
Silica particles in a state where primary particles are aggregated, internally precipitated particles, etc. are not preferable, and include substantially spherical silica particles caused by colloidal silica particles, particles made of crosslinked polymers (for example, crosslinked polystyrene), etc. Temperature at weight % weight loss (measured with a thermogravimetric analyzer in nitrogen. Heating rate: 20°C)
It is particularly desirable to use crosslinked polymer particles whose degree of crosslinking is increased to 380° C. or higher, since the scratch resistance and dabbing resistance will be even better.

なお、コロイダルシリ力に起因する球形シリ力の場合に
はアルコキシド法で製造されたナトリウム含有量が少な
い実質的に球形のシリ力の場合に耐スクラッチ性がより
一層良好となるので特に望ましい。しかしながら、その
他の粒子、例えば炭酸カルシウム、二酸化チタン、アル
ミナ等の粒子でもフィルム厚さと平均粒径の適切なコン
トロールにより十分使いこなせるものである。なお、本
発明の複数種類の不活性粒子の化学組成は異なっていて
も同一でもかまわない。
In addition, in the case of a spherical silicate force resulting from colloidal silicate force, a substantially spherical silicate force produced by an alkoxide method with a low sodium content is particularly desirable because the scratch resistance becomes even better. However, other particles, such as particles of calcium carbonate, titanium dioxide, alumina, etc., can also be used satisfactorily with proper control of film thickness and average particle size. Note that the chemical compositions of the plurality of types of inert particles of the present invention may be different or the same.

本発明のフィルムの製造方法においては、フィルムAを
構成する熱可塑性樹脂A中に異なる平均粒径を有する上
記不活性粒子を少なくとも2種類以上添加する必要があ
る。ここで、それぞれの平均粒径を有する不活性粒子は
、そのおのおのが上記粒径の相対標準偏差を満足してい
ることが特に好ましい。
In the method for producing a film of the present invention, it is necessary to add at least two types of the above-mentioned inert particles having different average particle diameters to the thermoplastic resin A constituting the film A. Here, it is particularly preferable that each of the inert particles having the respective average particle size satisfies the above-mentioned relative standard deviation of the particle size.

これら異なる平均粒径を有する不活性粒子のうちで、0
.5重量%以上添加する不活性粒子のなかで最小の平均
粒径をdl、添加する全不活性粒子について最大の平均
粒径をd2とする。このとき、熱可塑性樹脂Aを主成分
とするフィルムAの厚さtと平均粒径d1の比t/d、
は0.1〜5、好ましくは0.3〜3、さらに好ましく
は0.4〜1.0の範囲であることが必要である。熱可
塑性樹脂Aを主成分とするフィルムAの厚さtと平均粒
径d□の比が上記の範囲より小さいと耐スクラッチ性が
不良となり、逆に大きくても耐スクラッチ性、耐ダビン
グ性が不良となるので好ましくない。
Among these inert particles having different average particle sizes, 0
.. The minimum average particle size among the inert particles added at 5% by weight or more is dl, and the maximum average particle size of all the inert particles added is d2. At this time, the ratio t/d of the thickness t of the film A mainly composed of the thermoplastic resin A and the average particle diameter d1,
must be in the range of 0.1 to 5, preferably 0.3 to 3, more preferably 0.4 to 1.0. If the ratio between the thickness t and the average particle diameter d of film A, which is mainly composed of thermoplastic resin A, is smaller than the above range, the scratch resistance will be poor; This is not preferable because it becomes defective.

熱可塑性樹脂Aに添加する不活性粒子の平均粒径d1は
特に限定されないが0.01〜1μm1特に0.02〜
0.5μmの範囲である場合に耐スクラッチ性、耐ダビ
ング性がより一層良好となるので望ましい。熱可塑性樹
脂Aに添加する不活性粒子の平均粒径d2は特に限定さ
れないが0゜02〜2μm、特に0.05〜1μmの範
囲である場合に耐スクラッチ性、耐ダビング性がより一
層良好となるので望ましい。
The average particle diameter d1 of the inert particles added to the thermoplastic resin A is not particularly limited, but is 0.01 to 1 μm, particularly 0.02 to 1 μm.
A thickness in the range of 0.5 μm is desirable because scratch resistance and dubbing resistance become even better. The average particle diameter d2 of the inert particles added to the thermoplastic resin A is not particularly limited, but scratch resistance and dabbing resistance are better when it is in the range of 0.02 to 2 μm, particularly 0.05 to 1 μm. Therefore, it is desirable.

さらに、耐スクラッチ性、耐ダビング性の点で、熱可塑
性樹脂Aを主成分とするフィルム厚さtと不活性粒子の
平均粒径d2の比t/d2は0.05〜3、さらに0.
1〜2、よりさらに0.3〜1、 0の範囲であること
が望ましい。
Furthermore, in terms of scratch resistance and dubbing resistance, the ratio t/d2 between the thickness t of the film containing thermoplastic resin A as a main component and the average particle diameter d2 of the inert particles is 0.05 to 3, and further 0.
A range of 1 to 2, more preferably 0.3 to 1.0 is desirable.

本発明の熱可塑性樹脂Aに添加する平均粒径d、を有す
る不活性粒子の添加量は2〜20重量%、好ましくは2
〜10重量%、さらに好ましくは3〜8重量%であるこ
とが必要である。不活性粒子の添加量が上記の範囲より
少なくても、逆に大きくても耐スクラッチ性が不良とな
るので好ましくない。なお、本発明の異なる平均粒径を
有する不活性粒子のそれぞれの添加量は異なっていても
同一でもよい。
The amount of inert particles added to the thermoplastic resin A of the present invention having an average particle size d is 2 to 20% by weight, preferably 2% by weight.
It is necessary that the amount is 10% by weight, more preferably 3% to 8% by weight. Even if the amount of inert particles added is less than the above-mentioned range, or conversely, it is not preferable because the scratch resistance becomes poor. Note that the amounts of the inert particles of the present invention having different average particle diameters may be different or the same.

本発明の製造方法によって得られるフィルムは、粒径の
ばらつきの小さい不活性粒子を、平均粒径の異なる2種
類以上の粒子と組合わせて添加し、しかも該粒子を含有
するフィルムAは、d1とほぼ同厚みか好ましくはそれ
より薄い層とする構成を有しているから、フィルムA層
面上には添加した粒径に応じた突起、すなわち、その高
さが2種類以上で、しかもそれぞれの高さのばらつきの
少ない突起が形成されることにより、平均粒径が一種類
だけの粒子を添加したフィルムに比べて本発明の効果が
飛躍的に向上したものである。
In the film obtained by the production method of the present invention, inert particles with small particle size variations are added in combination with two or more types of particles with different average particle sizes, and the film A containing the particles has a d1 Since the film has a structure in which the layer is approximately the same thickness or preferably thinner, there are protrusions on the surface of the film A layer that correspond to the particle size added, that is, two or more heights, and each By forming protrusions with little variation in height, the effect of the present invention is dramatically improved compared to a film containing particles having only one type of average particle size.

本発明でフィルムAは上記熱可塑性樹脂Aと不活性粒子
からなる組成物を主要成分とするが、本発明の目的を阻
害しない範囲内で、他種ポリマをブレンドしてもよいし
、また酸化防止剤、熱安定剤、滑剤、紫外線吸収剤など
の有機添加剤が通常添加される程度添加されていてもよ
い。
In the present invention, the main component of the film A is a composition consisting of the thermoplastic resin A and inert particles, but other polymers may be blended within the range that does not impede the purpose of the present invention, or oxidized Organic additives such as inhibitors, heat stabilizers, lubricants, and ultraviolet absorbers may be added to the extent that they are normally added.

本発明により得られるフィルムは上記組成物を二軸配向
せしめたフィルムである。一輪あるいは無配向フィルム
では耐スクラッチ性が不良となるので好ましくない。こ
の配向の程度は特に限定されないが、高分子の分子配向
の程度の目安であるヤング率が長手方向、幅方向ともに
350 kg/■ス以上である場合に耐スクラブを性が
より一層良好となるのできわめて望ましい。分子配向の
程度の目安であるヤング率の上限は特に限定されないが
、通常1、500 J/wa”程度が製造上の限界であ
る。
The film obtained by the present invention is a film in which the above composition is biaxially oriented. A single film or a non-oriented film is not preferable because it has poor scratch resistance. The degree of this orientation is not particularly limited, but the scrub resistance will be even better if the Young's modulus, which is a measure of the degree of molecular orientation of the polymer, is 350 kg/■ or more in both the longitudinal and width directions. Therefore, it is highly desirable. Although the upper limit of Young's modulus, which is a measure of the degree of molecular orientation, is not particularly limited, the manufacturing limit is usually about 1,500 J/wa''.

また、本発明によって得られるフィルムはヤング率が上
記範囲内であってもフィルムの厚さ方向の一部分、例え
ば表層付近のポリマ分子の配向が無配向あるいは一軸配
向ではない、すなわち厚さ方向の全部分の分子配向が二
軸配向である場合に耐スクラッチ性、耐ダビング性がよ
り一層良好となるので特に望ましい。
Furthermore, even if the Young's modulus of the film obtained by the present invention is within the above range, the orientation of the polymer molecules in a part of the thickness direction of the film, for example near the surface layer, is not oriented or uniaxially oriented, that is, the entire thickness direction is not uniaxially oriented. It is particularly preferable that the molecular orientation is biaxial because the scratch resistance and dubbing resistance become even better.

特にアツベ屈折率計、レーザーを用いた屈折率計、全反
射レーザーラマン法などによって測定される分子配向が
表面、裏面ともに二軸配向である場合に耐スクラッチ性
、耐ダビング性がより一層良好となるので特に望ましい
In particular, when the molecular orientation measured by an Atsube refractometer, a laser refractometer, a total internal reflection laser Raman method, etc. is biaxially oriented on both the front and back surfaces, the scratch resistance and dubbing resistance will be even better. This is particularly desirable.

さらに熱可塑性樹脂Aが結晶性ポリエステルであり、本
発明で得られるフィ)レムのフィルムAの表面の全一反
射ラマン結晶化指数が20 c「”以下、好ましくは1
8cm−”以下、さらに1 フ cm−”以下の場合に
耐スクラッチ性、耐ダビング性がより一層良好となるの
できわめて望ましい。
Further, the thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface of the film A obtained in the present invention is 20 c or less, preferably 1.
A thickness of 8 cm-" or less, more preferably 1 cm-" or less, is extremely desirable because scratch resistance and dubbing resistance are even better.

本発明で得られるフィルムAの厚さは耐スクラッチ性、
耐ダビング性の点で0.01〜3μm1好ましくは0.
02〜1μm1さらに好ましくは0.03〜0.5μm
であることが望ましい。
The thickness of the film A obtained by the present invention has scratch resistance,
From the point of view of dubbing resistance, the thickness is 0.01 to 3 μm, preferably 0.01 to 3 μm.
02-1μm1 More preferably 0.03-0.5μm
It is desirable that

本発明で得られるフィルムAの表面の平均突起高さは5
〜500■、好ましくは10〜300 am。
The average protrusion height on the surface of film A obtained by the present invention is 5
~500 am, preferably 10-300 am.

さらに好ましくは15〜200■の範囲である場合に耐
スクラッチ性、耐ダビング性がより一層良好となるので
特に望ましい。
More preferably, it is in the range of 15 to 200 .ANG., since scratch resistance and dubbing resistance become even better.

本発明で得られるフィルムAの平均突起間隔は6μm以
下、好ましくは4μm以下である場合に耐スクラッチ性
、耐ダビング性がより一層良好となるので特に望ましい
It is particularly desirable that the average distance between the protrusions of the film A obtained in the present invention be 6 μm or less, preferably 4 μm or less, since the scratch resistance and dubbing resistance will be even better.

本発明で得られるフィルムは上述したように、構成する
熱可塑性樹脂が結晶性あるいは溶融光学異方性であるこ
とがきわめて望ましいが、溶融等方性フィルムの場合に
は結晶化パラメータΔTcπが25〜65℃である場合
に耐スクラッチ性がより一層良好となるので特に望まし
い。
As mentioned above, in the film obtained by the present invention, it is extremely desirable that the thermoplastic resin constituting the film be crystalline or melt-optically anisotropic; however, in the case of a melt-isotropic film, the crystallization parameter ΔTcπ is 25 to A temperature of 65° C. is particularly desirable because the scratch resistance becomes even better.

なお熱可塑性樹脂Aがポリエステルの場合には、フィル
ムA面の厚さ方向屈折率が1.5以下の場合に耐スクラ
ッチ性、耐ダビング性がより一層良好となるので特に望
ましい。さらにフィルムの固−有粘度が0.60以上、
特に0゜70以上の場合に耐スクラッチ性がより一層良
好となるので特に望ましい。
In addition, when the thermoplastic resin A is polyester, it is particularly desirable that the refractive index of the film A surface in the thickness direction is 1.5 or less, since the scratch resistance and dubbing resistance will be even better. Furthermore, the intrinsic viscosity of the film is 0.60 or more,
In particular, it is particularly desirable when the angle is 0°70 or more because the scratch resistance becomes even better.

熱可塑性樹脂Bとしては結晶性ポリマが望ましく、特に
結晶性パラメータΔTcHが20〜100℃の範囲であ
る場合に、耐ダビング性がより一層良好となるので望ま
しい。具体例としてポリエステル、ポリアミド、ポリフ
ェニレンスルフィド、ポリオレフィンが挙げられるが、
なかでもポリエステルの場合に耐ダビング性がより一層
良好となるので特に望ましい。さらにポリエステルとし
ては、エチレンテレフタレート、エチレンa、β−ビス
(2−クロルフェノキシ)エタン−4,41−ジカルボ
キシレート、エチレン2.トナフタレート単位から選ば
れた少なくとも一種の構造単位を主要構成成分とする場
合に、耐ダビング性が特に良好となるので望ましい。た
だし、本発明を阻害しない範囲内、望ましい結晶性を損
なわない範囲内で、好ましくは5モル%以内であれば他
成分が共重合されていてもよい。また熱可塑性樹脂Bと
Aは同じ種類であっても異なるものでも良い。
As the thermoplastic resin B, a crystalline polymer is desirable, and it is particularly desirable when the crystallinity parameter ΔTcH is in the range of 20 to 100°C, since the dubbing resistance becomes even better. Specific examples include polyester, polyamide, polyphenylene sulfide, and polyolefin.
Among these, polyester is particularly desirable because it provides even better dubbing resistance. Further, as polyesters, ethylene terephthalate, ethylene a, β-bis(2-chlorophenoxy)ethane-4,41-dicarboxylate, ethylene 2. It is preferable to use at least one type of structural unit selected from tonaphthalate units as the main constituent, since the dubbing resistance is particularly good. However, other components may be copolymerized within a range that does not impede the present invention, within a range that does not impair desirable crystallinity, and preferably within 5 mol%. Furthermore, the thermoplastic resins B and A may be of the same type or may be of different types.

本発明の熱可塑性樹脂Bにも本発明の目的を阻害しない
範囲内で、他種ポリマをブレンドしてもよいし、また酸
化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有機添
加剤が通常添加される程度添加されていてもよい。
The thermoplastic resin B of the present invention may also be blended with other types of polymers within a range that does not impede the purpose of the present invention, and may also contain organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers. may be added to the extent that is normally added.

熱可塑性樹脂Bを主成分とするフィルムB中には不活性
粒子を添加する必要は特にないが、平均粒径が0.01
〜2μm1特に0.02〜0.5μmの不活性粒子を0
.001〜0.15重量%、特に0.005〜0.05
重量%添加すると、耐スクラッチ性がより一層良好とな
るのみならず、フィルムの巻姿が良好となるのできわめ
て望ましい。添加する不活性粒子の種類は熱可塑性樹脂
Aに望ましく用いられるものを使用することが望ましい
。熱可塑性樹脂AとBに添加する粒子の種類、大きさは
同じでも異なっていても良い。
There is no particular need to add inert particles to Film B, which has thermoplastic resin B as its main component, but if the average particle size is 0.01
~2μm1 especially 0.02-0.5μm inert particles
.. 001-0.15% by weight, especially 0.005-0.05
Adding it in an amount by weight is extremely desirable because it not only improves the scratch resistance but also improves the winding appearance of the film. As for the type of inert particles to be added, it is desirable to use those preferably used for thermoplastic resin A. The types and sizes of particles added to thermoplastic resins A and B may be the same or different.

上記熱可塑性樹脂Aと熱可塑性樹脂Bの結晶化パラメー
タΔTcHの差(A−B)は特に限定されないが、−3
0〜+20℃の場合に、耐スクラッヂ性、耐ダビング性
がより一層良好となるので特に望ましい。
The difference (A-B) in crystallization parameter ΔTcH between thermoplastic resin A and thermoplastic resin B is not particularly limited, but is -3
A temperature of 0 to +20° C. is particularly desirable because the scratch resistance and dubbing resistance become even better.

次に本発明のフィノにムの製造方法について説明する。Next, the method for producing fino mushrooms of the present invention will be explained.

まず、熱可塑性樹脂Aに不活性粒子を添加せしめる方法
としては、熱可塑性樹脂がポリエステルの場合には、ジ
オール成分であるエチレングリコールのスラリーの形で
分散せしめ、このエチレングリコールを所定のジカルボ
ン酸成分と重合せしめるのが本発明範囲の厚さと平均粒
径の関係、添加量のフィルムを得るのに有効である。ま
た、不活性粒子を含有するポリエステルの溶融粘度、共
重合成分などを調節して、その結晶化パラメータΔTc
gを40〜65℃の範囲にしておく方法は本発明範囲の
厚さと平均粒径の関係、添加量のフィルムを得るのに有
効である。
First, as a method for adding inert particles to thermoplastic resin A, when the thermoplastic resin is polyester, it is dispersed in the form of a slurry of ethylene glycol, which is a diol component, and this ethylene glycol is added to a predetermined dicarboxylic acid component. It is effective to polymerize the film with the thickness and average particle size relationship and addition amount within the range of the present invention. In addition, by adjusting the melt viscosity, copolymerization components, etc. of the polyester containing inert particles, its crystallization parameter ΔTc
A method of keeping g in the range of 40 to 65°C is effective for obtaining a film having the relationship between thickness and average particle size and the amount of addition within the range of the present invention.

また、不活性粒子のエチレングリコールのスラリーを1
40〜200℃、特に180〜200℃の温度で30分
〜5時間、特に1〜3時間熱処理する方法は本発明範囲
の厚さと平均粒径の関係、添加量のフィルムを得るのに
有効である。
Additionally, a slurry of ethylene glycol of inert particles was added to
A method of heat treatment at a temperature of 40 to 200°C, especially 180 to 200°C for 30 minutes to 5 hours, especially 1 to 3 hours, is effective for obtaining a film with the thickness and average particle size relationship and additive amount within the range of the present invention. be.

また熱可塑性樹脂に不活性粒子を添加せしめる他の方法
として、粒子をエチレングリコール中で熱処理した後、
溶媒を水に置換したスラリーの形で熱可塑性樹脂と混合
し、ベント方式の2軸押出機を用いて混練して熱可塑性
樹脂に練り込む方法も本発明範囲の厚さと平均粒径の関
係、添加量のフィルムを得るのにきわめて有効である。
Another method for adding inert particles to thermoplastic resins is to heat-treat the particles in ethylene glycol and then
A method of mixing the slurry with a thermoplastic resin in which the solvent is replaced with water and kneading it into the thermoplastic resin using a vent type twin-screw extruder also has the relationship between the thickness and average particle size within the range of the present invention. It is extremely effective in obtaining additive amounts of film.

粒子の添加量を調節する方法としては、上記方法で高濃
度マスターを作っておき、それを製膜時に不活性粒子を
実質的に含有しない熱可塑性樹脂で希釈して粒子の添加
量を調節する方法が有効である。少なくとも2種類の不
活性粒子を熱可塑性樹脂に添加せしめる方法として、少
なくとも2種類の不活性粒子を上記のように予めジオー
ル成分のスラリーの形で分散させこれを所定のジカルボ
ン酸成分と重合せしめ、る方法、または上記のようにそ
れぞれの不活性粒子を含有する高濃度マスターポリマを
作り製膜時に各不活性粒子の添加量を調節する方法のい
ずれを用いることもできる。
A method for adjusting the amount of particles added is to prepare a high concentration master using the above method, and then dilute it with a thermoplastic resin that does not substantially contain inert particles during film formation to adjust the amount of particles added. The method is valid. As a method for adding at least two types of inert particles to a thermoplastic resin, at least two types of inert particles are dispersed in advance in the form of a diol component slurry as described above, and this is polymerized with a predetermined dicarboxylic acid component, It is possible to use either a method in which a high concentration master polymer containing each inert particle is prepared as described above and the amount of each inert particle added is adjusted during film formation.

かくして、少なくとも2種類の不活性粒子を所定量含有
するペレットを必要に応じて乾燥する。
Thus, the pellets containing predetermined amounts of at least two types of inert particles are optionally dried.

次に、熱可塑性樹脂Bを主成分とするフィルムの少なく
とも片面に熱可塑性樹脂Aを主成分とするフィルムを積
層する方法としては次の方法が有効である。
Next, the following method is effective for laminating a film containing thermoplastic resin A as a main component on at least one side of a film containing thermoplastic resin B as a main component.

熱可塑性樹脂A、Bを公知の溶融積層用押出機に供給し
、スリット状のダイからシート状に押出し、キャスティ
ングロール上で冷却固化せしめて未延伸フィルムを作る
。すなわち、2または3台の押出し機、2または3層の
マニホールドまたは合流ブロックを用いて、熱可塑性樹
脂A、Bを積層し、口金から2または3層のシートを押
出し、キャスティングロールで冷却して未延伸フィルム
を作る。この場合、熱可塑性樹脂Aのポリマ流路に、ス
タティックミキサー、ギヤボンブを設置する方法は本発
明範囲の厚さと平均粒径の関係、添加量のフィルムを得
るのに有効である。また、熱可塑性樹脂A側の押し出し
機の溶融温度を熱可塑性樹脂B側より10〜40℃高く
することが本発明範囲の厚さと平均粒径の関係、添加量
、望ましい範囲の配向状態のフィルムを得るのに有効で
ある。
Thermoplastic resins A and B are supplied to a known extruder for melt lamination, extruded into a sheet through a slit-shaped die, and cooled and solidified on a casting roll to form an unstretched film. That is, thermoplastic resins A and B are laminated using two or three extruders, a two or three layer manifold or a merging block, two or three layers of sheets are extruded from a die, and the sheets are cooled with a casting roll. Make an unstretched film. In this case, a method of installing a static mixer or a gear bomb in the polymer flow path of thermoplastic resin A is effective for obtaining a film having a relationship between thickness and average particle size and an addition amount within the range of the present invention. In addition, the melting temperature of the extruder on the thermoplastic resin A side should be 10 to 40°C higher than that on the thermoplastic resin B side. It is effective to obtain

次にこの未延伸フィルムを二軸延伸し、二軸配向させる
。延伸方法としては、逐次二軸延伸法または同時二軸延
伸法を用いることができるが、最初に長手方向、次に幅
方向の延伸を行なう逐次二軸延伸法が好ましく、長手方
向の延伸を3段階以上に分けて、総縦延伸倍率を3.0
〜6.5倍で行なう方法が本発明範囲の厚さと平均粒径
の関係、添加量のフィルムを得るのに有効である。ただ
し、熱可塑性樹脂が溶融光学異方性樹脂である場合は長
手方向延伸倍率は1.0〜1.1倍が適切である。長手
方向延伸温度は熱可塑性樹脂の種類によって異なり一概
には言えないが、通常その1段目を50〜130℃とし
、2段目以降はそれより高くすることが本発明範囲の厚
さと平均粒径の関係、添加量、望ましい範囲の配向状態
のフィルムを得るのに有効である。長手方向延伸速度は
5.000〜50、 (1110%/sinの範囲が好
適である。幅方向の延伸方法としてはステン夕を用いる
方法が一般的であり、延伸倍率は3.0〜5.0倍の範
囲が適当である。延伸速度は1.eoo〜20. Go
o%/grim、温度は80〜160℃の範囲が好適で
ある。次にこの延伸フィルムを熱処理する。この場合の
熱処理温度は170〜200℃、特に170〜190℃
、時間は0.5〜60秒の範囲が好適である。
Next, this unstretched film is biaxially stretched and biaxially oriented. As a stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used, but a sequential biaxial stretching method in which stretching is first performed in the longitudinal direction and then in the width direction is preferred; Divided into stages or more, the total longitudinal stretching ratio is 3.0
A method in which the thickness is increased by a factor of 6.5 is effective for obtaining a film having a relationship between thickness and average particle size and an additive amount within the range of the present invention. However, when the thermoplastic resin is a molten optically anisotropic resin, a longitudinal stretching ratio of 1.0 to 1.1 times is appropriate. The longitudinal stretching temperature varies depending on the type of thermoplastic resin and cannot be generalized, but it is usually 50 to 130°C in the first stage and higher in the second and subsequent stages to achieve the thickness and average grain size within the range of the present invention. It is effective in obtaining a film having an orientation state within a desired range depending on the diameter relationship and the amount added. The stretching speed in the longitudinal direction is preferably in the range of 5.000 to 50%/sin (1110%/sin).As the stretching method in the width direction, a method using a stencil is generally used, and the stretching ratio is 3.0 to 5.0%/sin. A range of 0 times is appropriate.The stretching speed is 1.eoo to 20.Go.
o%/grim, and the temperature is preferably in the range of 80 to 160°C. Next, this stretched film is heat treated. The heat treatment temperature in this case is 170-200℃, especially 170-190℃
The time is preferably in the range of 0.5 to 60 seconds.

[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1》  粒子の平均粒径 不活性粒子をエチレングリコールまたは水スラリーとし
て遠心沈降式粒度分布測定装置を用いて測定し平均粒径
で示した。
(1) Average particle size of particles The inert particles were measured as an ethylene glycol or water slurry using a centrifugal sedimentation type particle size distribution analyzer and expressed as the average particle size.

0 粒径比 個々の粒子の長径の平均値/短径の平均値の比である。0 Particle size ratio It is the ratio of the average value of the major axis to the average value of the minor axis of individual particles.

すなわち、下式で求められる。That is, it can be obtained using the following formula.

長径=ΣDli/N 短径=ΣD2i/N DI#、D2jはそれぞれ個々の粒子の長径(最大径)
、短径(最短径)、Nは総個数である。
Major axis = ΣDli/N Minor axis = ΣD2i/N DI# and D2j are the major axis (maximum diameter) of each individual particle
, the shortest axis (shortest axis), and N are the total number.

0 粒径の相対標準偏差 個々の粒子径Di、平均径D1粒子総数Nから計算され
る標準偏差σ(=(Σ(Di−D)” /N) 1/2
 )を平均径りで割った値(σ/D)で表わした。
0 Relative standard deviation of particle size Standard deviation calculated from individual particle diameter Di, average diameter D1, total number of particles N σ (=(Σ(Di-D)”/N) 1/2
) divided by the average diameter (σ/D).

4》 粒子の添加量 熱可塑性樹脂を溶解し粒子を溶解しない溶媒を選択し、
粒子を熱可塑性樹脂から遠心分離し、粒子、の全体重量
に対する比率(重量%)をもって粒子添加量とする。場
合によっては赤外分光法の併用も有効である。
4》 Addition amount of particles Select a solvent that dissolves the thermoplastic resin but does not dissolve the particles.
The particles are centrifuged from the thermoplastic resin, and the ratio (weight %) of the particles to the total weight is defined as the amount of particles added. In some cases, infrared spectroscopy may also be effective.

0 結晶化パラメータΔTcH,融解熱示差走査熱量計
を用いて測定した。測定条件は次の通りである。すなわ
ち、試料10mgを示差走査熱量計にセットし、300
℃の温度で5分間溶融した後、液体窒素中に急冷する。
0 Crystallization parameter ΔTcH, heat of fusion was measured using a differential scanning calorimeter. The measurement conditions are as follows. That is, 10 mg of the sample was set in a differential scanning calorimeter, and 300
After melting for 5 minutes at a temperature of °C, it is quenched into liquid nitrogen.

この急冷試料を10℃/■iiで昇温し、ガラス転移点
Tgを検知する。さらに昇温を続け、ガラス状態からの
結晶化発熱ピーク温度をもって冷結晶化温度Tceとし
た。さらに昇温を続け、融解ピークから融解熱を求めた
。ここでTccとTgの差(Tcc−TH)を結晶化パ
ラメータΔTcHと定義した。
This rapidly cooled sample is heated at 10° C./ii, and the glass transition point Tg is detected. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tce. The temperature was further increased, and the heat of fusion was determined from the melting peak. Here, the difference between Tcc and Tg (Tcc-TH) was defined as the crystallization parameter ΔTcH.

6) 表面の分子配向(屈折率)、表面の全反射う妥ン
結晶化指数 ナトリウムD線(589■m)を光源として、アツベ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHにて測定した。ポリマの
二軸配向性は長手方向、幅方向、厚さ方向の屈折率をN
l 、N2 、N3とした時、(Nl −N2 )の絶
対値が0.07以下、かつ、N3 / ((Nl +N
2 ) /2)が0.95以下であることをひとつの基
準とできる。また、レーザー型屈折率計を用いて屈折率
を測定してもよい。さらに、この方法では測定が難しい
場合は全反射レーザーラマン法を用いることもできる。
6) Molecular orientation (refractive index) on the surface, total reflection on the surface, and crystallization index were measured using an Atsube refractometer using sodium D line (589 m) as a light source. Methylene iodide was used as the mounting solution, and the measurement was performed at 25° C. and 65% RH. The biaxial orientation of the polymer has a refractive index of N in the longitudinal direction, width direction, and thickness direction.
l, N2, and N3, the absolute value of (Nl - N2) is 0.07 or less, and N3 / ((Nl + N
2) One criterion can be that /2) is 0.95 or less. Alternatively, the refractive index may be measured using a laser refractometer. Furthermore, if measurement is difficult with this method, total internal reflection laser Raman method can also be used.

レーザー全反射ラマンの測定は、jobin−ママ・■
社製1m+unor U−l(10・ラマンシステムに
より、全反射ラマンスペクトルを測定し、例えばポリエ
チレンテレフタレートの場合では、1.615 cl−
” (ベンゼン環の骨格振動)と1、730 c+s 
” (カルボニル基の伸縮振動)のバンド強度比の偏光
測定比(YY/XX比など。ここでYYニレ−ザーの偏
光方向をYにしてYに対して平行なうマン光検出、xx
ニレ−ザーの偏光方向をXにしてXに対して平行なうマ
ン光検出)が分子配向と対応することを利用できる。ポ
リマの二軸配向性はラマン測定から得られたパラメータ
を長手方向、幅方向の屈折率に換算して、その絶対値、
差などから判定できる。またカルボニル基の伸縮振動で
ある1、 Tg(I cm ”の半価幅をもって表面の
全反射ラマン結晶化指数とした。この場合の測定条件は
次のとおりである。
Laser total internal reflection Raman measurement is available at jobin-mama ■
The total reflection Raman spectrum was measured using a 1m+unor U-l (10) Raman system manufactured by the company; for example, in the case of polyethylene terephthalate, it was 1.615 cl-
” (skeletal vibration of benzene ring) and 1,730 c+s
” (Stretching vibration of carbonyl group) Polarization measurement ratio of band intensity ratio (YY/XX ratio, etc.) Here, the polarization direction of the YY laser is set to Y, and the man light detection parallel to Y, xx
It is possible to make use of the fact that the direction of polarization of the Nylaser is set to X and that the direction of polarization parallel to X (man light detection) corresponds to the molecular orientation. The biaxial orientation of a polymer is determined by converting the parameters obtained from Raman measurement into the refractive index in the longitudinal direction and width direction, and its absolute value,
It can be determined based on the difference. Further, the half-width of 1, Tg (I cm''), which is the stretching vibration of the carbonyl group, was taken as the total reflection Raman crystallization index of the surface.The measurement conditions in this case are as follows.

■光源 アルゴンイオンレーザ−(5,145A)■試料のセツ
ティング フィルム表面を全反射プリズムに圧着させ、レーザーの
プリズムへの入射角(フィルム厚さ方向との角度)は6
0°とした。
■Light source Argon ion laser (5,145A) ■Setting the sample The surface of the film is pressed against a total reflection prism, and the incident angle of the laser to the prism (angle with the film thickness direction) is 6
It was set to 0°.

■検出器 P M : 11CA31・34/Pl+otom  
CowaliaHSyslc−(Iamimsisw 
 C1230)   (SwlllllF  1611
(IV)■測定条件 8L17       1000μI LASERl(ihW G17E TIME     1. Osec3CAN
 SPEED      12cm−”/sinSAi
lPLING  INTERVAL  0.2  cr
a−”REPEAT TIME      6の 表面
突起の平均高さ 2検出器方式の走査型電子顕微鏡と断面測定装置におい
てフィルム表面の平坦面の高さを0として走査した時の
突起の高さ測定値を画像処理装置に送り、画像処理装置
上にフィルム表面突起画像を再構築する。また、この2
値化された個々の突起部分の中で最も高い値をその突起
の高さとし、これを個々の突起について求める。この測
定を場所をかえて500回繰返し、測定された全突起に
ついてその高さの平均値を平均高さとした。走査型電子
顕微鏡の倍率は、1.◎Go −10,000倍の間の
値を選択する。
■Detector PM: 11CA31/34/Pl+otom
CowaliaHSyslc-(Iamimsisw
C1230) (SwllllllF 1611
(IV) ■Measurement conditions 8L17 1000μI LASERl (ihW G17E TIME 1. Osec3CAN
SPEED 12cm-”/sinSAi
lPLING INTERVAL 0.2 cr
a-" REPEAT TIME 6 Average height of surface protrusions Image of the measured height of protrusions when scanning with a two-detector type scanning electron microscope and a cross-section measuring device, with the height of the flat surface of the film set as 0. The film is sent to a processing device and the film surface protrusion image is reconstructed on the image processing device.
The highest value among the valued individual protrusion portions is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations, and the average value of the heights of all the measured protrusions was taken as the average height. The magnification of a scanning electron microscope is 1. ◎Go Select a value between -10,000 times.

[F]》 ヤング率 J I S−Z−1702に規定された方法にしたがっ
て、インストロンタイプの引っ張り試験機を用いて、2
5℃、65%RHにて測定した。
[F]》 Young's modulus: 2 using an Instron type tensile tester according to the method specified in JIS-Z-1702.
Measurement was performed at 5° C. and 65% RH.

■ 固有粘度[η] (単位はdl/g)オルトクロロ
フェノール中、25℃で測定した溶液粘度から下記式か
ら計算される値を用いる。
(2) Intrinsic viscosity [η] (unit: dl/g) A value calculated from the following formula from the solution viscosity measured at 25°C in orthochlorophenol is used.

すなわち、 η、、/C=[η]十K[η]2・C ここで、ηS、=(溶液粘度/溶媒粘度)−1、Cは溶
媒100ml−あたりの溶解ポリマ重量(g/109m
l 、通常1.2)、にはハギンス定数(0,343と
する)。また、溶液粘度、溶媒粘度はオストワルド粘度
計を用いて測定した。
That is, η,, /C = [η] 10 K[η] 2 · C, where ηS, = (solution viscosity/solvent viscosity) -1, C is the weight of dissolved polymer per 100 ml of solvent (g/109 m
l, usually 1.2), is the Huggins constant (taken to be 0,343). In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

■ 耐スクラッチ性 フィルムを幅1/2インチのテープ状にスリットしたも
のをテープ走行性試験機を使用して、ガイドピン(表面
粗度:Raで100nm)上を走行させる(走行速度1
、ooom/分、走行回数10パス、巻き付は角=60
°、走行張力:65g)。
■ A scratch-resistant film slit into a tape with a width of 1/2 inch was run on a guide pin (surface roughness: 100 nm in Ra) using a tape running tester (running speed 1).
, ooom/min, number of runs 10 passes, wrapping angle = 60
°, running tension: 65 g).

この時、フィルムに入った傷を顕微鏡で観察し、幅2.
5μm以上の傷がテープ幅あたり2本未満は優、2本以
上10本未満は良、10本以上は不良と判定した。優が
望ましいが、良でも実用的には使用可能である。
At this time, the scratches in the film were observed under a microscope, and the width was 2.
If there were less than two scratches per tape width of 5 μm or more, it was determined to be excellent, if there were 2 or more and less than 10 scratches, it was determined to be good, and if there were 10 or more scratches, it was determined to be poor. Excellent is desirable, but good is still usable for practical purposes.

(11)  耐ダビング性 フィルムに下記組成の磁性塗料をグラビヤロールにより
塗布し、磁気配向させ、乾燥させる。さらに、小型テス
トカレンダー装置(スチールロール/ナイロンロール、
5段)で、温度ニア0℃、線圧:200kg/amでカ
レンダー処理した後、70℃、48時間キユアリングす
る。上記テープ原反を172インチにスリットし、パン
ケーキを作成した。このパンケーキから長さ250mの
長さをVTRカセットに組み込みVTRカセットテープ
とした。
(11) A magnetic paint having the following composition is applied to a dubbing-resistant film using a gravure roll, magnetically oriented, and dried. In addition, a small test calender device (steel roll/nylon roll,
After calendering at a temperature of near 0°C and a linear pressure of 200 kg/am, the product was cured at 70°C for 48 hours. The original tape was slit into 172-inch pieces to make pancakes. A length of 250 m from this pancake was assembled into a VTR cassette to make a VTR cassette tape.

(磁性塗料の組成) ・Co含有酸化鉄       =100重量部・塩化
ビニル/酢酸ビニル共重合体=10重量部・ポリウレタ
ンエラストマ    :10重量部・ポリイソシアネー
ト      = 5重量部・レシチン       
    = 1重量部・メチルエチルケトン     
 ニア5重量部・メチルイソブチルケトン    =7
5重量部・トルエン           =75重量
部・カーボンブラック       = 2重量部・ラ
ウリン酸         :1.5重量部このテープ
に家庭用VTRを用いてテレビ試験波形発生器により1
00%クロマ信号を記録し、その再生信号からカラービ
デオノイズ測定器でクロマS/Nを測定しAとした。ま
た上記と同じ信号を記録したマスターテープのパンケー
キを磁界転写方式のビデオソフト高速プリントシステム
(スプリンタ)を用いてAを測定したのと同じ試料テー
プ(未記録)のパンケーキへダビングした後のテープの
クロマS/Nを上記と同様にして測定し、Bとした。こ
のダビングによるクロマS/Nの低下(A−B)が3d
B未満の場合は耐ダビング性:優、3dBJ2L上5d
B未満の場合は良、5dB以上は不良と判定した。優が
望ましいが、良でも実用的には使用可能である。
(Composition of magnetic paint) - Co-containing iron oxide = 100 parts by weight - Vinyl chloride/vinyl acetate copolymer = 10 parts by weight - Polyurethane elastomer: 10 parts by weight - Polyisocyanate = 5 parts by weight - Lecithin
= 1 part by weight methyl ethyl ketone
Nia 5 parts by weight methyl isobutyl ketone = 7
5 parts by weight, toluene = 75 parts by weight, carbon black = 2 parts by weight, lauric acid: 1.5 parts by weight.
A 00% chroma signal was recorded, and the chroma S/N was measured from the reproduced signal using a color video noise measuring device and designated as A. Also, after dubbing the pancake of the master tape on which the same signal as above was recorded onto the pancake of the same sample tape (unrecorded) on which A was measured using a magnetic field transfer video software high-speed print system (Sprinter). The chroma S/N of the tape was measured in the same manner as above, and it was designated as B. The chroma S/N drop (A-B) due to this dubbing is 3d
If less than B, dubbing resistance: Excellent, 5d above 3dBJ2L
A value of less than 5 dB was determined to be good, and a value of 5 dB or more was determined to be poor. Excellent is desirable, but good is still usable for practical purposes.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1〜4、比較例1〜4 まず熱可塑性樹脂Aを作る。平均粒径の異なる架橋ポリ
スチレン粒子、コロイダルシリカに起因するシリカ粒子
、または炭酸カルシウム粒子を含有するエチレングリコ
ールスラリーを調製し、このエチレングリコールスラリ
ーを190℃で2時間熱処理した後、テレフタル酸ジメ
チルとエステル交換反応させ、重縮合し、該粒子を1〜
10重量%含有するポリエチレンテレフタレートのマス
タペレットを作った。この時、重縮合時間を調節し固有
粘度を0.65とした。次に、常法により固有粘度0.
62の実質的に不活性粒子を含有しないポリエチレンテ
レフタレートを製造し、熱可塑性樹脂Bとした。これら
のポリマをそれぞれ180℃で6時間減圧乾燥(3Te
rr) した。平均粒径の異なる不活性粒子を含有する
熱可塑性樹脂を混合し、1種類または2種類の粒子含有
量を調整した熱可塑性樹脂Aを押−出機1に供給し29
0℃で溶融し、さらに熱可塑性樹脂Bを押出機2に供給
し、280℃で溶融し、これらのポリマを合流ブロック
(フィードブロック)で合流積層し、静電印加キャスト
法を用いて表面温度25℃のキャスティング・ドラムに
巻きつけて冷却固化し、2層構造の未延伸フィルムを作
った。この時、口金スリット間隙/未延伸フィルム厚さ
の比を10として未延伸フィルムを作った。また、それ
ぞれの押出機の吐出量を調節し総厚さ、熱可塑性樹脂A
層の厚さを調節した。この未延伸フィルムを温度85℃
にて長手方向に3.6倍延伸した。この延伸は2組ずつ
のロールの周速差で、4段階で行なった。この一軸延伸
フイルムをステン夕を用いて延伸速度L O(10%/
分で105℃で幅方向に4゜0倍延伸し、定長下で、2
10℃にて5秒間熱処理し、総厚さ15μm1熱可塑性
樹脂A層厚さ0゜02〜3μmの二軸配向積層フィルム
を得た。こ、れらのフィルムの本発明のパラメータは第
1表に示したとおりであり、本発明のパラメータが範囲
内の場合は耐スクラッチ性、耐ダビング性は第1表に示
したとおり優または良であったが、そうでない場合は耐
スクラッチ性、耐ダビング性を両立するフィルムは得ら
れなかった。
Examples 1 to 4, Comparative Examples 1 to 4 First, thermoplastic resin A is prepared. An ethylene glycol slurry containing crosslinked polystyrene particles, silica particles derived from colloidal silica, or calcium carbonate particles with different average particle sizes is prepared, and after heat-treating this ethylene glycol slurry at 190°C for 2 hours, dimethyl terephthalate and ester are prepared. Exchange reaction is carried out, polycondensation is carried out, and the particles are
Master pellets of polyethylene terephthalate containing 10% by weight were made. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.65. Next, the intrinsic viscosity is 0.
EXAMPLE 62 Polyethylene terephthalate substantially free of inert particles was prepared and designated as Thermoplastic Resin B. These polymers were each dried at 180°C for 6 hours under reduced pressure (3Te
rr) I did. Thermoplastic resin A containing inert particles having different average particle sizes is mixed and the content of one or two types of particles is adjusted, and the thermoplastic resin A is supplied to the extruder 1.
The thermoplastic resin B is melted at 0°C, further supplied to the extruder 2, melted at 280°C, these polymers are merged and laminated in a merging block (feed block), and the surface temperature is adjusted using an electrostatic casting method. It was wound around a casting drum at 25° C. and cooled and solidified to produce an unstretched film with a two-layer structure. At this time, an unstretched film was prepared with a ratio of die slit gap/unstretched film thickness of 10. In addition, by adjusting the discharge amount of each extruder, the total thickness, thermoplastic resin A
The layer thickness was adjusted. This unstretched film was heated to 85°C.
The film was stretched 3.6 times in the longitudinal direction. This stretching was carried out in four stages with a difference in peripheral speed between two sets of rolls. This uniaxially stretched film was stretched at a stretching speed L O (10%/
Stretched 4°0 times in the width direction at 105°C for 2 minutes at a constant length.
Heat treatment was performed at 10° C. for 5 seconds to obtain a biaxially oriented laminated film having a total thickness of 15 μm, 1 thermoplastic resin A layer thickness of 0.02 to 3 μm. The parameters of the present invention for these films are as shown in Table 1, and when the parameters of the present invention are within the range, the scratch resistance and dubbing resistance are excellent or good as shown in Table 1. However, in other cases, a film having both scratch resistance and dubbing resistance could not be obtained.

[発明の効果] 本発明は、製法の工夫により、従来得られなかった特殊
な表面形態のフィルムとしたので、摩擦係数と磁気記録
媒体用に用いたときの出力特性を極めて高い次元で両立
できるフィルムが得られるものであり、今後のビデオテ
ープの高画質化に有用である。また、特異な表面のため
耐摩耗性にも優れた苛酷使用にも耐え得るフィルムとな
り、各用途でのフィルム加工速度の増大に対応できるも
のである。本発明フィルムの用途は特に限定されないが
、上述した磁気記録媒体以外にも摩擦係数に関わるハン
ドリング性と特殊な表面に起因する透明性の良さを利用
した包装用、さらには特殊な表面に起因する電気絶縁性
の良さを利用したコンデンサー用など広く各用途に展開
できるものである。なお、本発明フィルムのうち2層構
造のものは本発明の範囲内の表面形態を有する面が非機
能面(磁気記録媒体用では磁性層を塗布しない面、その
他の用途では印刷やその他塗材の塗布などの処抑が施さ
れていない面)として用いることが望ましい。
[Effects of the Invention] By devising a manufacturing method, the present invention has created a film with a special surface morphology that was previously unobtainable, so it is able to achieve both extremely high levels of friction coefficient and output characteristics when used for magnetic recording media. Film can be obtained, which will be useful for improving the image quality of future videotapes. Furthermore, due to the unique surface, the film has excellent abrasion resistance and can withstand severe use, making it suitable for increasing film processing speeds in various applications. Applications of the film of the present invention are not particularly limited, but in addition to the above-mentioned magnetic recording media, it can also be used for packaging that takes advantage of the handling properties related to the coefficient of friction and the good transparency resulting from the special surface, and furthermore, for packaging that takes advantage of the good transparency resulting from the special surface. It can be used in a wide variety of applications, such as capacitors, which take advantage of its good electrical insulation properties. Note that for films of the present invention with a two-layer structure, the surface having a surface morphology within the scope of the present invention is a non-functional surface (the surface on which no magnetic layer is coated for magnetic recording media, and the surface for printing or other coating materials for other uses). It is desirable to use it as a surface that has not been subjected to any treatment such as coating.

Claims (3)

【特許請求の範囲】[Claims] (1)異なる平均粒径を有する不活性粒子を少なくとも
2種類含有する熱可塑性樹脂Aを主成分とするフィルム
Aを、熱可塑性樹脂Bを主成分とするフィルムBの少な
くとも片面に積層してなる二軸配向熱可塑性樹脂フィル
ムの製造方法において、熱可塑性樹脂Aに添加する上記
不活性粒子のうち最小の平均粒径をd_1とするとき、
平均粒径d_1を有する不活性粒子を熱可塑性樹脂Aに
対して2〜20重量%添加し、二軸延伸熱処理後の熱可
塑性樹脂Aを主成分とするフィルムAの厚さtとd_1
の比t/d_1が0.1〜5となるように積層すること
を特徴とする二軸配向熱可塑性樹脂フィルムの製造方法
(1) A film A whose main component is a thermoplastic resin A containing at least two types of inert particles having different average particle diameters is laminated on at least one side of a film B whose main component is a thermoplastic resin B. In the method for producing a biaxially oriented thermoplastic resin film, when the minimum average particle size of the above inert particles added to the thermoplastic resin A is d_1,
2 to 20% by weight of inert particles having an average particle diameter d_1 are added to the thermoplastic resin A, and the thickness t and d_1 of the film A mainly composed of the thermoplastic resin A after biaxial stretching heat treatment.
A method for producing a biaxially oriented thermoplastic resin film, characterized in that the film is laminated so that the ratio t/d_1 of t/d_1 is 0.1 to 5.
(2)熱可塑性樹脂Aに添加する異なる平均粒径を有す
る不活性粒子のそれぞれについて、その粒径比が1.0
〜1.3である請求項(1)記載の二軸配向熱可塑性樹
脂フィルムの製造方法。
(2) For each of the inert particles having different average particle sizes added to thermoplastic resin A, the particle size ratio is 1.0
The method for producing a biaxially oriented thermoplastic resin film according to claim 1, wherein the molecular weight is 1.3.
(3)熱可塑性樹脂Aに添加する異なる平均粒径を有す
る不活性粒子のそれぞれについて、その粒径の相対標準
偏差が0.6以下である請求項(1)または2記載の二
軸配向熱可塑性樹脂フィルムの製造方法。
(3) The biaxial orientation heat according to claim (1) or 2, wherein each of the inert particles having different average particle diameters added to the thermoplastic resin A has a relative standard deviation of particle diameter of 0.6 or less. A method for producing a plastic resin film.
JP1289398A 1989-11-07 1989-11-07 Method for producing biaxially oriented thermoplastic resin film Expired - Lifetime JP2569838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289398A JP2569838B2 (en) 1989-11-07 1989-11-07 Method for producing biaxially oriented thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289398A JP2569838B2 (en) 1989-11-07 1989-11-07 Method for producing biaxially oriented thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH03150127A true JPH03150127A (en) 1991-06-26
JP2569838B2 JP2569838B2 (en) 1997-01-08

Family

ID=17742713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289398A Expired - Lifetime JP2569838B2 (en) 1989-11-07 1989-11-07 Method for producing biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JP2569838B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401559A (en) * 1991-11-18 1995-03-28 Toray Industries, Inc. Biaxially oriented thermoplastic resin film
EP0719631A3 (en) * 1994-12-22 1997-03-19 Toyo Boseki Biaxially oriented polyamide resin film and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401559A (en) * 1991-11-18 1995-03-28 Toray Industries, Inc. Biaxially oriented thermoplastic resin film
EP0719631A3 (en) * 1994-12-22 1997-03-19 Toyo Boseki Biaxially oriented polyamide resin film and production thereof
CN1074988C (en) * 1994-12-22 2001-11-21 东洋纺绩株式会社 Double-axle orientation polyamide series resin film and preparation method

Also Published As

Publication number Publication date
JP2569838B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
US5069962A (en) Biaxially oriented laminated film
JPH0277431A (en) Biaxially oriented thermoplastic resin film
KR100241146B1 (en) Biaxially oriented thermoplastic resin film
JP2817302B2 (en) Biaxially oriented polyester film
JPH03150127A (en) Manufacture of biaxially stretched thermoplastic resin film
JP2692320B2 (en) Biaxially oriented polyester film
JP2706338B2 (en) Biaxially oriented polyester film and its processed product
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2682178B2 (en) Biaxially oriented thermoplastic resin film and method for producing the same
JPH04105935A (en) Biaxially oriented thermoplastic resin film
JP2510741B2 (en) Biaxially oriented thermoplastic resin film
JP2853878B2 (en) Biaxially oriented thermoplastic resin film
JP2555739B2 (en) Biaxially oriented thermoplastic resin film
JPH04119845A (en) Biaxially oriented thermoplastic resin film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JP2570444B2 (en) Biaxially oriented thermoplastic resin film
JP2922070B2 (en) Biaxially oriented thermoplastic resin film
JPH04259548A (en) Biaxially oriented polyester film
JPH03192131A (en) Biaxially oriented thermoplastic resin film
JPH03187723A (en) Biaxially oriented thermoplastic resin film
JPH06128393A (en) Biaxially oriented film
JPH02158628A (en) Biaxially orientated thermoplastic resin film
JPH02143836A (en) Biaxially-oriented polyester film and its manufacture
JPH06256543A (en) Biaxially oriented thermoplastic resin film
JPH05309728A (en) Easily recovery biaxial oriented laminated thermoplastic resin film