JPH03140336A - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
JPH03140336A
JPH03140336A JP28070289A JP28070289A JPH03140336A JP H03140336 A JPH03140336 A JP H03140336A JP 28070289 A JP28070289 A JP 28070289A JP 28070289 A JP28070289 A JP 28070289A JP H03140336 A JPH03140336 A JP H03140336A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
film
spherical
particles
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28070289A
Other languages
Japanese (ja)
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP28070289A priority Critical patent/JPH03140336A/en
Publication of JPH03140336A publication Critical patent/JPH03140336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain the subject film having particular surface and excellent abrasion resistance and electrical insulation and suitable for magnetic recording medium, packaging film, capacitor film, etc., by using a thermoplastic resin containing inert particles such as spherical titanium oxide particles having a specific particle diameter as a main component. CONSTITUTION:The objective film having a thickness of 0.01-3mum is composed of (A) a thermoplastic resin (e.g. a crystalline polyester having a total reflection Raman crystallization index of <=20cm<-1>) and (B) 2-20wt.% of inert particles dispersed in the resin, having an average particle diameter corresponding to 0.2-5 times the thickness of the film and a relative standard deviation of <=0.6 and selected from spherical titanium oxide particle, spherical tungsten oxide particle, spherical molybdenum oxide particle and spherical silicone particle. Since the film has specific surface structure, the friction coefficient can be compatibilized with the output characteristics of a magnetic recording medium in high dimensional viewpoint and the film is useful for improving the picture quality of a video tape.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸配向熱可塑性樹脂フィルムに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a biaxially oriented thermoplastic resin film.

[従来の技術〕 二軸配向熱可塑性樹脂フィルムとしては少なくとも片面
の走行性が改良されたフィルムが知られている(例えば
、特開昭59−171623号公報等)。
[Prior Art] As a biaxially oriented thermoplastic resin film, a film with improved runnability on at least one side is known (for example, JP-A-59-171623, etc.).

し発明が解決しようとする課題] しかしながら、上記従来の二軸配向熱可塑性樹脂フィル
ムでは、例えば、磁気媒体用途における磁性層塗布、カ
レンダー工程、あるいは、できたビデオテープ等をダビ
ングしてソフトテープ等を製造する工程等の工程速度の
増大に伴い、接触するロールやガイドでフィルム表面に
傷がつくという欠点があった。また、従来のものでは、
上記ダビング時の画質低下のために、ビデオテープにし
た時の画質、すなわち、S/N (シグナル/ノイズ比
)も不十分という欠点があった。
[Problems to be Solved by the Invention] However, with the above-mentioned conventional biaxially oriented thermoplastic resin film, for example, the magnetic layer application in magnetic media applications, the calendering process, or the dubbing of the resulting videotape etc. into soft tapes etc. As the process speed increases in the manufacturing process, etc., there has been a drawback that the film surface is scratched by the contacting rolls and guides. In addition, in the conventional
Due to the deterioration in image quality during dubbing, the image quality when converted to videotape, that is, the S/N (signal/noise ratio), was also insufficient.

本発明はかかる課題を解決し、特に高速工程でフィルム
に傷がつきに<<(以下耐スクラッチ性に優れるという
)、シかもダビング時の画質低下の少ない(以下耐ダビ
ング性に優れるという)二軸配向熱可塑性樹脂フィルム
を提供することを目的とする。
The present invention has solved these problems, and has two types of film that are particularly resistant to scratches in high-speed processes (hereinafter referred to as "excellent scratch resistance") and have less deterioration in image quality during dubbing (hereinafter referred to as "excellent dubbing resistance"). The object is to provide an axially oriented thermoplastic resin film.

し課題を解決するための手段] 本発明は、球形酸化チタン粒子、球形酸化タングステン
粒子、球形酸化モリブデン粒子および球形シリコーン粒
子のいずれかから選ばれる不活性粒子を含有する熱可塑
性樹脂Aを主成分とするフィルムであって、該粒子の平
均粒径がフィルム厚さの0.2〜5倍、該粒子の含有量
が2〜20重量%であることを特徴とする厚さ0.01
〜3μmの二軸配向熱可塑性樹脂フィルムに関するもの
である。
[Means for Solving the Problems] The present invention is based on a thermoplastic resin A containing inert particles selected from spherical titanium oxide particles, spherical tungsten oxide particles, spherical molybdenum oxide particles, and spherical silicone particles. A film having a thickness of 0.01, characterized in that the average particle diameter of the particles is 0.2 to 5 times the thickness of the film, and the content of the particles is 2 to 20% by weight.
It concerns a biaxially oriented thermoplastic resin film of ~3 μm.

本発明を構成する熱可塑性樹脂Aはポリエステル、ポリ
オレフィン、ポリアミド、ポリフェニレンスルフィドな
ど特に限定されないが、特に、ポリエステル、なかでも
、エチレンテレフタレート、エチレンα、β−ビス(2
−クロルフェノキシ)エタン−4,4′−ジカルボキシ
レート、エチレン2.6−ナフタレート単位から選ばれ
た少なくとも一種の構造単位を主要構成成分とする場合
に耐スクラッチ性、耐ダビング性がより一層良好となる
ので望ましい。また、本発明を構成する熱可塑性樹脂は
結晶性、あるいは溶融時光学異方性である場合に耐スク
ラッチ性、耐ダビング性がより一層良好となるのできわ
めて望ましい。ここでいう結晶性とはいわゆる非晶質で
ないことを示すものであり、定量的には結晶化パラメー
タにおける冷結晶化温度Tccが検出され、かつ結晶化
パラメータΔTcgが150℃以下のものである。さら
に、示差走査熱量計で測定された融解熱(融解エンタル
ピー変化)が7.5cal/g以上の結晶性を示す場合
に耐スクラッチ性、耐ダビング性がより一層良好となる
のできわめて望ましい。また、エチレンテレフタレート
を主要構成成分とするポリエステルの場合に耐ダビング
性、耐スクラッチ性がより一層良好となるので特に望ま
しい。なお、本発明を阻害しない範囲内で、2種以上の
熱可塑性樹脂を混合しても良いし、共重合ポリマを用い
ても良い。
The thermoplastic resin A constituting the present invention is not particularly limited to polyester, polyolefin, polyamide, polyphenylene sulfide, etc., but polyester, especially ethylene terephthalate, ethylene α, β-bis(2
- Scratch resistance and dubbing resistance are even better when the main constituent is at least one structural unit selected from chlorophenoxy)ethane-4,4'-dicarboxylate and ethylene 2,6-naphthalate units. Therefore, it is desirable. Further, it is extremely desirable that the thermoplastic resin constituting the present invention be crystalline or optically anisotropic when melted, since this will further improve scratch resistance and dubbing resistance. Crystallinity here means that it is not so-called amorphous, and quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 150° C. or less. Furthermore, it is extremely desirable that the heat of fusion (change in enthalpy of fusion) measured by a differential scanning calorimeter exhibits crystallinity of 7.5 cal/g or more, since scratch resistance and dubbing resistance will be even better. In addition, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better dubbing resistance and scratch resistance. Note that two or more types of thermoplastic resins may be mixed or a copolymer may be used within a range that does not impede the present invention.

本発明の熱可塑性樹脂A中の不活性粒子は、特に球形状
の粒子の場合に耐スクラッチ性がより一層良好となる。
The inert particles in the thermoplastic resin A of the present invention have even better scratch resistance, especially when they are spherical particles.

本発明で球形粒子とは、粒径比(粒子の長径/短径)が
1.0〜1,3、好ましくは1.0〜1.2の粒子のこ
とをいう。
In the present invention, spherical particles refer to particles having a particle diameter ratio (longer diameter/breadth diameter of particles) of 1.0 to 1.3, preferably 1.0 to 1.2.

また、本発明の熱可塑性樹脂A中の不活性粒子は粒径の
相対標準偏差が0.6以下、好ましくは0.5以下の場
合に耐スクラッチ性、耐ダビング性がより一層良好とな
るので望ましい。
Furthermore, when the relative standard deviation of the particle size of the inert particles in the thermoplastic resin A of the present invention is 0.6 or less, preferably 0.5 or less, the scratch resistance and dabbing resistance will be even better. desirable.

本発明の熱可塑性樹脂A中の不活性粒子は球形酸化チタ
ン粒子、球形酸化タングステン粒子、球形酸化モリブデ
ン粒子、球形シリコーン粒子から選ばれた粒子とするこ
とにより、耐スクラッチ性、耐ダビング性がより一層良
好となる。
The inert particles in the thermoplastic resin A of the present invention are particles selected from spherical titanium oxide particles, spherical tungsten oxide particles, spherical molybdenum oxide particles, and spherical silicone particles, thereby improving scratch resistance and dabbing resistance. Even better.

不活性粒子の大きさは、フィルム中での平均粒径がフィ
ルム厚さの0.2〜5倍、好ましくは0゜5〜5倍、さ
らに好ましくは161〜3倍の範囲であることが必要で
ある。平均粒径/フィルム厚さ比が上記の範囲より小さ
いと耐スクラッチ性が不良となり、逆に大きくても耐ス
クラッチ性、耐ダビング性が不良となるので好ましくな
い。
Regarding the size of the inert particles, it is necessary that the average particle diameter in the film is in the range of 0.2 to 5 times, preferably 0.5 to 5 times, more preferably 161 to 3 times the film thickness. It is. If the average particle diameter/film thickness ratio is smaller than the above range, the scratch resistance will be poor, and if it is too large, the scratch resistance and dubbing resistance will be poor, which is not preferable.

本発明は、上記から選ばれた特定の粒子を特定のフィル
ム厚さ7粒径比で用いた時、特に耐スクラッチ性、耐ダ
ビング性が良好となるので極めて望ましい。
The present invention is extremely desirable because when the specific particles selected from the above are used in a specific film thickness and 7 particle diameter ratio, the scratch resistance and dubbing resistance are particularly good.

また熱可塑性樹脂A中の不活性粒子の平均粒径(直径)
が0.01〜1 μm、特に0602〜05μmの範囲
である場合に、耐スクラッチ性、耐ダビング性がより一
層良好となるので望ましい。
Also, the average particle size (diameter) of inert particles in thermoplastic resin A
is in the range of 0.01 to 1 .mu.m, particularly 0.602 to 0.5 .mu.m, as this provides even better scratch resistance and dubbing resistance.

本発明の熱可塑性樹脂A中の不活性粒子の含有量は2〜
20重量%、好ましくは2〜10重量%、さらに好まし
くは3〜8重量%であることが必要である。不活性粒子
の含有量が上記の範囲より少なくても、逆に大きくても
耐スクラッチ性が不良となるので好ましくない。
The content of inert particles in the thermoplastic resin A of the present invention is from 2 to
It is necessary that the amount is 20% by weight, preferably 2 to 10% by weight, and more preferably 3 to 8% by weight. Even if the content of inert particles is less than the above-mentioned range, it is not preferable that the content is greater than the above range because the scratch resistance becomes poor.

本発明フィルムは上記熱可塑性樹脂Aと不活性粒子から
なる組成物を主要成分とするが、本発明の目的を阻害し
ない範囲内で、他種ポリマをブレンドしてもよいし、ま
た酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有
機添加剤が通常添加される程度添加されていてもよい。
The main component of the film of the present invention is a composition consisting of the thermoplastic resin A and inert particles, but other types of polymers may be blended within a range that does not impede the purpose of the present invention, and antioxidants may be added. , heat stabilizers, lubricants, ultraviolet absorbers, and other organic additives may be added to the extent that they are normally added.

本発明フィルムは上記組成物を二軸配向せしめたフィル
ムである。−軸あるいは無配向フィルムでは耐スクラッ
チ性が不良となるので好ましくな0゜この配向の程度は
特に限定されないが、高分子の分子配向の程度の目安で
あるヤング率が長手方向、幅方向ともに350 k g
/mm2以上である場合に耐スクラッチ性がより一層良
好となるのできわめて望ましい。分子配向の程度の目安
であるヤング率の上限は特に限定されないが、通常、1
゜500 k g/mai2程度が製造上の限界である
The film of the present invention is a film in which the above composition is biaxially oriented. - Axial or non-oriented films have poor scratch resistance, so the preferred degree of orientation is 0°.The degree of orientation is not particularly limited, but the Young's modulus, which is a measure of the degree of molecular orientation of polymers, is 350° in both the longitudinal and width directions. kg g
/mm2 or more is extremely desirable because the scratch resistance becomes even better. The upper limit of Young's modulus, which is a measure of the degree of molecular orientation, is not particularly limited, but is usually 1
The manufacturing limit is about 500 kg/mai2.

また、本発明フィルムは、ヤング率が上記範囲内であっ
ても、フィルムの厚さ方向の一部分、例えば、表層付近
のポリマ分子の配向が無配向、あるいは、−軸配向にな
っていない、すなわち、厚さ方向の全部分の分子配向が
二軸配向である場合に耐スクラッチ性、耐ダビング性が
より一層良好となるので特に望ましい。
In addition, even if the Young's modulus of the film of the present invention is within the above range, the orientation of the polymer molecules in a portion of the thickness direction of the film, for example, near the surface layer, is not oriented or is not oriented in the -axis direction, i.e. It is particularly preferable that the molecular orientation in the entire thickness direction is biaxial because the scratch resistance and dubbing resistance will be even better.

特にアツベ屈折率計、レーザーを用いた屈折率計、全反
射レーザーラマン法などによって測定される分子配向が
、表面、裏面ともに二軸配向である場合に耐スクラッチ
性、耐ダビング性がより一層良好となるので特に望まし
い。
In particular, scratch resistance and dubbing resistance are even better when the molecular orientation measured by Atsube refractometer, laser refractometer, total internal reflection laser Raman method, etc. is biaxially oriented on both the front and back surfaces. This is particularly desirable.

さらに熱可塑性樹脂Aが結晶性ポリエステルであり、そ
の表面の全反射ラマン結晶化指数が20Cm−’以下、
好ましくは18cm−’以下、さらに17crrr’以
下の場合に耐スクラッチ性、耐ダビング性がより一層良
好となるのできわめて望ましい。
Further, the thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface thereof is 20 Cm-' or less,
Preferably, the thickness is 18 cm-' or less, and more preferably 17 crrr' or less, which is extremely desirable because scratch resistance and dubbing resistance are even better.

本発明の熱可塑性樹脂Aのフィルムの厚さは0゜01〜
3μm1好ましくは0.02〜1μm1さらに好ましく
は0.03〜0.5μmであることが必要である。フィ
ルム厚さが上記の範囲より小さいと耐ダビング性が不良
となり逆に大きいと耐スクラッチ性が不良となるので好
ましくない。
The thickness of the film of thermoplastic resin A of the present invention is 0°01~
It is necessary that the thickness is 3 μm, preferably 0.02 to 1 μm, and more preferably 0.03 to 0.5 μm. If the film thickness is smaller than the above range, the dubbing resistance will be poor, and if it is larger than the above range, the scratch resistance will be poor, which is not preferable.

本発明の熱可塑性樹脂Aのフィルムの表面の平均突起高
さは5〜500nm、好ましくは10〜300nm、さ
らに好ましくは15〜200nmの範囲である場合に耐
スクラッチ性、耐ダビング性がより一層良好となるので
特に望ましい。
When the average protrusion height on the surface of the thermoplastic resin A film of the present invention is in the range of 5 to 500 nm, preferably 10 to 300 nm, more preferably 15 to 200 nm, the scratch resistance and dubbing resistance are even better. This is particularly desirable.

本発明の熱可塑性樹脂へのフィルムの平均突起間隔は6
μm以下、好ましくは4μm以下である場合に耐スクラ
ッチ性、耐ダビング性がより一層良好となるので特に望
ましい。
The average distance between the protrusions of the film on the thermoplastic resin of the present invention is 6
It is particularly desirable that the thickness be less than .mu.m, preferably less than 4 .mu.m, since scratch resistance and dubbing resistance will be even better.

本発明フィルムは上述したように、構成する熱可塑性樹
脂が結晶性あるいは溶融光学異方性であることがきわめ
て望ましいが、溶融等方性フィルムの場合、結晶化パラ
メータΔTcgが25〜65℃である場合に耐スクラッ
チ性がより一層良好となるので特に望ましい。
As mentioned above, it is extremely desirable for the thermoplastic resin constituting the film of the present invention to be crystalline or melt optically anisotropic, but in the case of a melt isotropic film, the crystallization parameter ΔTcg is 25 to 65°C. This is particularly desirable since the scratch resistance will be even better in some cases.

なお熱可塑性樹脂Aがポリエステルの場合には熱可塑性
樹脂A面の厚さ方向屈折率が1.5以下の場合に耐スク
ラッチ性、耐ダビング性がより一層良好となるので特に
望ましい。さらにフィルムの固有粘度が0.60以上、
特に0.70以上の場合に耐スクラッチ性がより一層良
好となるので特に望ましい。
In addition, when the thermoplastic resin A is polyester, it is particularly preferable that the refractive index of the thermoplastic resin A surface in the thickness direction is 1.5 or less, since the scratch resistance and dubbing resistance will be even better. Furthermore, the intrinsic viscosity of the film is 0.60 or more,
In particular, when it is 0.70 or more, the scratch resistance becomes even better, so it is particularly desirable.

本発明フィルムは、もちろん単体(単層フィルム)でも
用いられるが、熱可塑性樹脂Bのフィルムの少なくとも
片面に上記熱可塑性樹脂Aのフィルムを積層した後、二
軸配向したフィルムの形で用いると、機械的特性が良好
となるのみならず、耐スクラッチ性、耐ダビング性もよ
り一層良好となるのできわめて望ましい。ここで熱可塑
性樹脂AとBは同じ種類でも、異なるものでも良い。
The film of the present invention can of course be used alone (single layer film), but if it is used in the form of a biaxially oriented film after laminating a film of thermoplastic resin A on at least one side of a film of thermoplastic resin B, This is extremely desirable because not only the mechanical properties are improved, but also the scratch resistance and dubbing resistance are further improved. Here, the thermoplastic resins A and B may be the same type or different types.

熱可塑性樹脂Bとしては結晶性ポリマが望ましく、特に
−、結晶性パラメータΔTcgが20〜100℃の範囲
の場合に、耐ダビング性がより一層良好となるので望ま
しい。具体例として、ポリエステル、ポリアミド、ポリ
フェニレンスルフィド、ポリオレフィンが挙げられるが
、ポリエステルの場合に耐ダビング性がより一層良好と
なるので特に望ましい。また、ポリエステルとしては、
エチレンテレフタレート、エチレンα、β−ビス(2−
クロルフェノキシ)エタン−4,4′−ジカルボキシレ
ート、エチレン2.6−ナフタレート単位から選ばれた
少なくとも一種の構造単位を主要構成成分とする場合に
耐ダビング性が特に良好となるので望ましい。ただし、
本発明を阻害しない範囲内、望ましい結晶性を損なわな
い範囲内で、好ましくは5モル%以内であれば他成分が
共重合されていてもよい。
As the thermoplastic resin B, a crystalline polymer is preferable, and it is particularly preferable that the crystallinity parameter ΔTcg is in the range of 20 to 100° C. because the dubbing resistance becomes even better. Specific examples include polyester, polyamide, polyphenylene sulfide, and polyolefin, but polyester is particularly preferred because it has even better dubbing resistance. In addition, as polyester,
Ethylene terephthalate, ethylene α, β-bis(2-
It is preferable that at least one structural unit selected from chlorophenoxy)ethane-4,4'-dicarboxylate and ethylene 2,6-naphthalate units be used as the main constituent, since the dubbing resistance will be particularly good. however,
Other components may be copolymerized within a range that does not impede the present invention, within a range that does not impair desirable crystallinity, and preferably within 5 mol%.

本発明の熱可塑性樹脂Bにも、本発明の目的を阻害しな
い範囲内で、他種ポリマをブレンドしてもよいし、また
酸化防止剤、熱安定剤、滑剤、紫外線吸収剤などの有機
添加剤が通常添加される程度添加されていてもよい。
The thermoplastic resin B of the present invention may also be blended with other types of polymers within the range that does not impede the purpose of the present invention, and organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may be added. The agent may be added to the extent that it is normally added.

熱可塑性樹脂Bのフィルム中には不活性粒子を含有して
いる必要は特にないが、平均粒径が0゜01〜2μm1
特に0.02〜0.5μmの不活性粒子が0.001〜
0.15重量%、特に0゜005〜0.05重量%含有
されていると、耐スクラッチ性がより一層良好となるの
みならず、フィルムの巻姿が良好となるのできわめて望
ましい。
There is no particular need to contain inert particles in the film of thermoplastic resin B, but if the average particle size is 0°01 to 2 μm1
In particular, inert particles of 0.02-0.5 μm are 0.001-
A content of 0.15% by weight, particularly 0.005 to 0.05% by weight, is extremely desirable because not only the scratch resistance is improved, but also the winding appearance of the film is improved.

熱可塑性樹脂AとBに含有する粒子の種類、大きさは同
じでも異なっていても良い。
The types and sizes of particles contained in thermoplastic resins A and B may be the same or different.

上記熱可塑性樹脂Aと熱可塑性樹脂Bの結晶化パラメー
タΔTcgの差(A−B)は特に限定されないが、−3
0〜+20℃の場合に、耐スクラッチ性、耐ダビング性
がより一層良好となるので特に望ましい。
The difference (A-B) in crystallization parameter ΔTcg between thermoplastic resin A and thermoplastic resin B is not particularly limited, but is -3
A temperature of 0 to +20° C. is particularly desirable because scratch resistance and dubbing resistance become even better.

次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.

まず、熱可塑性樹脂Aに不活性粒子を含有せしめる方法
としては、熱可塑性樹脂がポリエステルの場合には、ジ
オール成分であるエチレングリコールのスラリーの形で
分散せしめ、このエチレングリコールを所定のジカルボ
ン酸成分と重合せしめるのが本発明範囲の厚さと平均粒
径の関係、含有量のフィルムを得るのに有効である。ま
た、不活性粒子を含有するポリエステルの溶融粘度、共
重合成分などを調節して、その結晶化パラメータΔTc
gを40〜65℃の範囲にしておく方法は本発明範囲の
厚さと平均粒径の関係、含有量のフィルムを得るのに有
効である。
First, as a method for incorporating inert particles into thermoplastic resin A, when the thermoplastic resin is polyester, it is dispersed in the form of a slurry of ethylene glycol, which is a diol component, and this ethylene glycol is mixed with a predetermined dicarboxylic acid component. It is effective to obtain a film having a relationship between thickness and average particle size and content within the range of the present invention. In addition, by adjusting the melt viscosity, copolymerization components, etc. of the polyester containing inert particles, its crystallization parameter ΔTc
A method of keeping g in the range of 40 to 65°C is effective for obtaining a film having the relationship between thickness and average particle size and content within the range of the present invention.

また、不活性粒子のエチレングリコールのスラリーを1
40〜200℃、特に180〜200℃の温度で30分
〜5時間、特に1〜3時間熱処理する方法は本発明範囲
の厚さと平均粒径の関係、含有量のフィルムを得るのに
有効である。
Additionally, a slurry of ethylene glycol of inert particles was added to
A method of heat treatment at a temperature of 40 to 200°C, especially 180 to 200°C for 30 minutes to 5 hours, especially 1 to 3 hours, is effective for obtaining a film with the relationship between thickness and average particle size and content within the range of the present invention. be.

また熱可塑性樹脂に不活性粒子を含有せしめる方法とし
て、粒子をエチレングリコール中で熱処理した後、溶媒
を水に置換したスラリーの形で熱可塑性樹脂と混合し、
ベント方式の2軸押比機を用いて混練して熱可塑性樹脂
に練り込む方法も本発明範囲の厚さと平均粒径の関係、
含有量のフィルムを得るのにきわめて有効である。
In addition, as a method for incorporating inert particles into a thermoplastic resin, the particles are heat-treated in ethylene glycol, and then mixed with the thermoplastic resin in the form of a slurry in which the solvent is replaced with water.
The method of kneading and kneading into thermoplastic resin using a vent-type twin-screw press ratio machine also has the relationship between the thickness and average particle size within the range of the present invention,
It is very effective to obtain a film with high content.

粒子の含有量を調節する方法としては、上記方法で高濃
度マスターを作っておき、それを製膜時に不活性粒子を
実質的に含有しない熱可塑性樹脂で希釈して粒子の含有
量を調節する方法が有効である。
A method for adjusting the particle content is to prepare a high-concentration master using the above method, and then dilute it with a thermoplastic resin that does not substantially contain inert particles during film formation to adjust the particle content. The method is valid.

かくして、不活性粒子を所定量含有するベレットを必要
に応じて乾燥したのち、公知の溶融押出機に供給し、熱
可塑性樹脂の融点以上、分解点以下でスリット状のダイ
からシート状に押出し、キャスティングロール上で冷却
固化せしめて未延伸フィルムを作る。この場合、未延伸
フィルムに押出し成形する時の口金スリット間隙/未延
伸フィルム厚さの比を5〜30、好ましくは8〜20の
範囲にすることが本発明範囲の厚さと平均粒径の関係、
含有量の範囲のフィルムを得るのに有効である。
After drying the pellet containing a predetermined amount of inert particles as necessary, it is supplied to a known melt extruder and extruded into a sheet through a slit-shaped die at a temperature above the melting point and below the decomposition point of the thermoplastic resin. It is cooled and solidified on a casting roll to form an unstretched film. In this case, when extruding into an unstretched film, the ratio of die slit gap/unstretched film thickness should be in the range of 5 to 30, preferably 8 to 20. ,
It is effective to obtain films with a range of contents.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法または同時二軸
延伸法を用いることができる。ただし、最初に長手方向
、次に幅方向の延伸を行なう逐次二軸延伸法を用い、長
手方向の延伸を3段階以上に分けて、総縦延伸倍率を3
.0〜6,5倍で行なう方法は本発明範囲の厚さと平均
粒径の関係、含有量のフィルムを得るのに有効である。
Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, by using a sequential biaxial stretching method that first stretches in the longitudinal direction and then in the width direction, the longitudinal stretching is divided into three or more stages, and the total longitudinal stretching ratio is 3.
.. The method conducted at a magnification of 0 to 6.5 times is effective for obtaining a film having a relationship between thickness and average particle size and content within the range of the present invention.

ただし、熱可塑性樹脂が溶融光学異方性樹脂である場合
は長手方向延伸倍率は1.0〜1.1倍が適切である。
However, when the thermoplastic resin is a molten optically anisotropic resin, a longitudinal stretching ratio of 1.0 to 1.1 times is appropriate.

長手方向延伸温度は熱可塑性樹脂の種類によって異なり
一概には言えないが、通常、その1段目を50〜130
°Cとし、2段目以降はそれより高(することが本発明
範囲の厚さと平均粒径の関係、含有量、望ましい範囲の
配向状態のフィルムを得るのに有効である。長手方向延
伸速度は5.000〜50,000%/分の範囲が好適
である。
Although the longitudinal stretching temperature varies depending on the type of thermoplastic resin and cannot be generalized, it is usually 50 to 130 ℃ in the first stage.
°C, and higher than that in the second and subsequent stages.It is effective to obtain a film with the relationship between thickness and average grain size within the range of the present invention, content, and orientation state within the desired range.Longitudinal stretching speed is preferably in the range of 5.000 to 50,000%/min.

幅方向の延伸方法としてはステンタを用いる方法が一般
的である。延伸倍率は、3.0〜5.0倍の範囲が適当
である。幅方向の延伸速度は、1.000〜20.00
0%/分、温度は80〜160℃の範囲が好適である。
A common method for stretching in the width direction is to use a stenter. The appropriate stretching ratio is 3.0 to 5.0 times. The stretching speed in the width direction is 1.000 to 20.00
0%/min and the temperature is preferably in the range of 80 to 160°C.

次にこの延伸フィルムを熱処理する。この場合の熱処理
温度は170〜200℃、特に170〜190℃、時間
は0.5〜60秒の範囲が好適である。
Next, this stretched film is heat treated. In this case, the heat treatment temperature is preferably 170 to 200°C, particularly 170 to 190°C, and the time is preferably in the range of 0.5 to 60 seconds.

次に、熱可塑性樹脂Bのフィルムの少なくとも片面に熱
可塑性樹脂Aのフィルムを積層する方法としては、次の
方法が有効である。
Next, as a method for laminating a film of thermoplastic resin A on at least one side of a film of thermoplastic resin B, the following method is effective.

所定の熱可塑性樹脂入組成物と熱可塑性樹脂B(A、B
は同種、異種どちらでもよい)を公知の溶融積層用押出
機に供給し、スリット状のダイからシート状に押出し、
キャスティングロール上で冷却固化せしめて未延伸フィ
ルムを作る。すなわち、2または3台の押出し機、2ま
たは3層のマニホールドまたは合流ブロックを用いて、
熱可塑性樹脂A、Bを積層し、口金から2または3層の
シートを押し出し、キャスティングロールで冷却して未
延伸フィルムを作る。この場合、熱可塑性樹脂Aのポリ
マ流路に、スタティックミキサーギヤポンプを設置する
方法は本発明範囲の厚さと平均粒径の関係、含有量のフ
ィルムを得るのに有効である。また、熱可塑性樹脂A側
の押し出し機の溶融温度を熱可塑性樹脂B側より10〜
40°C高くすることが本発明範囲の厚さと平均粒径の
関係、含有量、望ましい範囲の配向状態のフィルムを得
るのに有効である。
Predetermined thermoplastic resin-containing composition and thermoplastic resin B (A, B
may be the same or different types) is fed to a known melt lamination extruder and extruded into a sheet from a slit-shaped die,
It is cooled and solidified on a casting roll to form an unstretched film. That is, using 2 or 3 extruders, 2 or 3 layer manifolds or merging blocks,
Thermoplastic resins A and B are laminated, two or three layers of sheets are extruded from a die, and the sheets are cooled with a casting roll to form an unstretched film. In this case, a method of installing a static mixer gear pump in the polymer flow path of thermoplastic resin A is effective for obtaining a film having the relationship between thickness and average particle size and content within the range of the present invention. In addition, the melting temperature of the extruder on the thermoplastic resin A side was set to 10 to
Increasing the temperature by 40°C is effective in obtaining a film having the relationship between thickness and average grain size, content within the range of the present invention, and orientation state within the desired range.

次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る方法のポイントは、基本的に上述した単層フィルムと
同様である。ただし、積層フィルムの場合の延伸温度の
設定は熱可塑性樹脂Aを基準として設定する必要がある
。さらに2層積層フィルムの熱処理工程は、熱可塑性樹
脂A周に吹き付ける熱風温度を熱可塑性樹脂B層よりも
3〜20℃低くすることが本発明範囲の厚さと平均粒径
の関係、含有量、望ましい範囲の配向状態のフィルムを
得るのに有効である。
Next, the points of the method for biaxially stretching this unstretched film to achieve biaxial orientation are basically the same as those for the single-layer film described above. However, in the case of a laminated film, the stretching temperature must be set based on thermoplastic resin A. Furthermore, in the heat treatment process of the two-layer laminated film, the temperature of the hot air blown around the thermoplastic resin A should be lowered by 3 to 20 degrees Celsius than that of the thermoplastic resin B layer. This is effective in obtaining a film with a desired range of orientation.

[物性の測定方法ならびに効果の評価方法コ本発明の特
性値の測定方法並びに効果の評価方法は次の通りである
[Method for Measuring Physical Properties and Evaluating Effects] The methods for measuring the characteristic values and evaluating the effects of the present invention are as follows.

(1)粒子の平均粒径 フィルムから熱可塑性樹脂をプラズマ低温灰化処理法で
除去し粒子を露出させる。処理条件は熱可塑性樹脂は灰
化されるが粒子はダメージを受けない条件を選択する。
(1) Average particle size of particles The thermoplastic resin is removed from the film by plasma low-temperature ashing treatment to expose the particles. The processing conditions are selected so that the thermoplastic resin is incinerated but the particles are not damaged.

これを走査型電子顕微鏡で粒子数5000個以上を観察
し、粒子画像を画像処理装置で処理し、次式で求めた数
平均径りを平均粒径とした。
At least 5,000 particles were observed using a scanning electron microscope, the particle images were processed using an image processing device, and the number average diameter determined by the following formula was defined as the average particle diameter.

D=ΣDi/N ここで、Dfは粒子の円相当径、Nは個数である。D=ΣDi/N Here, Df is the circle-equivalent diameter of the particle, and N is the number of particles.

(2)粒径比 上記(1)の測定において個々の粒子の長径の平均値/
短径の平均値の比である。
(2) Particle size ratio In the measurement of (1) above, the average value of the long diameter of each particle /
It is the ratio of the average value of the short axis.

すなわち、下式で求められる。That is, it can be obtained using the following formula.

長径=ΣDli/N 短径=ΣD2i/N [)li、 D2iはそれぞれ個々の粒子の長径(最大
径)、短径(最短径)、Nは総個数である。
Major axis = ΣDli/N Minor axis = ΣD2i/N [)li, D2i are the major axis (maximum diameter) and minor axis (shortest axis) of each individual particle, and N is the total number.

(3)粒径の相対標準偏差 上記(1)の方法で測定された個々の粒径Di1平均平
均径9予 (=(Σ(D i −D) ’ /N) ”’ )を平
均径りで割った値(σ/D)で表わした。
(3) Relative standard deviation of particle diameter Individual particle diameter Di1 average mean diameter 9 (=(Σ(D i −D) '/N) '') measured by the method in (1) above is calculated as the average diameter. It is expressed as the value divided by (σ/D).

(4)粒子の含有量 熱可塑性樹脂は溶解し粒子は溶解させない溶媒を選択し
、粒子を熱可塑性樹脂から遠心分離し、粒子の全体重量
に対する比率(重量%)をもって粒子含有量とする。場
合によっては赤外分光法の併用も有効である。
(4) Particle content A solvent that dissolves the thermoplastic resin but does not dissolve the particles is selected, the particles are centrifuged from the thermoplastic resin, and the ratio (weight %) to the total weight of the particles is defined as the particle content. In some cases, infrared spectroscopy may also be effective.

(5)結晶化パラメータ610g1融解熱示差走査熱量
計を用いて測定した。測定条件は次の通りである。すな
わち、試料Longを示差走査熱量計にセットし、30
0℃の温度で5分間溶融した後、液体窒素中に急冷する
。この急冷試料を10℃/分で昇温し、ガラス転移点T
gを検知する。さらに昇温を続け、ガラス状態からの結
晶化発熱ピーク温度をもって冷結晶化温度Tccとした
。さらに昇温を続け、融解ピークから融解熱を求めた。
(5) Crystallization parameter 610g Heat of fusion was measured using a differential scanning calorimeter. The measurement conditions are as follows. That is, sample Long was set in a differential scanning calorimeter, and 30
After melting for 5 minutes at a temperature of 0° C., it is quenched in liquid nitrogen. This rapidly cooled sample was heated at a rate of 10°C/min, and the glass transition point T
g is detected. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc. The temperature was further increased, and the heat of fusion was determined from the melting peak.

ここでTccとTgの差(Tcc−Tg)を結晶化パラ
メータΔTcgと定義した。
Here, the difference between Tcc and Tg (Tcc - Tg) was defined as the crystallization parameter ΔTcg.

(6)表面の分子配向(屈折率)、表面の全反射ラマン
結晶化指数 ナトリウムD線(589nm)を光源として、アツベ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHにて測定した。ポリマの
二軸配向性は長手方向、幅方向、厚さ方向の屈折率をN
、 、N2、N、とした時、(Nl −N2 )の絶対
値が0507以下、かつ、N3 / [(Nu +N2
 )/2]が0.95以下であることをひとつの基準と
できる。また、レーザー型屈折率計を用いて屈折率を測
定しても良い。さらに、この方法では測定が難しい場合
は全反射レーザーラマン法を用いることもできる。
(6) Molecular orientation (refractive index) on the surface, total reflection Raman crystallization index on the surface Measured using an Atsube refractometer using sodium D line (589 nm) as a light source. Methylene iodide was used as the mounting solution, and the measurement was performed at 25° C. and 65% RH. The biaxial orientation of the polymer has a refractive index of N in the longitudinal direction, width direction, and thickness direction.
, , N2, N, the absolute value of (Nl - N2 ) is 0507 or less, and N3 / [(Nu + N2
)/2] is 0.95 or less. Alternatively, the refractive index may be measured using a laser refractometer. Furthermore, if measurement is difficult with this method, total internal reflection laser Raman method can also be used.

レーザー全反射ラマンの測定は、Jobin−Yvon
社製Ran+anor U −1000ラマンシステム
により、全反射ラマンスペクトルを測定し、例えばポリ
エチレンテレフタレートの場合では、1615cm(ベ
ンゼン環の骨格振動)と1730cm−’(カルボニル
基の伸縮振動)のバンド強度比の偏光測定比(YY/X
X比など。ここでYY:レーザーの偏光方向をYにして
Yに対して平行なうマン光検出、Xx:レーザーの偏光
方向をXにしてXに対して平行なうマン光検出)が分子
配向と対応することを利用できる。ポリマの二軸配向性
はラマン測定から得られたパラメータを長手方向、幅方
向の屈折率に換算して、その絶対値、差などから判定で
きる。またカルボニル基の伸縮振動である]、 730
 cm−’の半価幅をもって表面の全反射ラマン結晶化
指数とした。この場合の測定条件は次のとおりである。
Laser total internal reflection Raman measurement is performed by Jobin-Yvon
The total reflection Raman spectrum is measured using a Ran+anor U-1000 Raman system manufactured by the company.For example, in the case of polyethylene terephthalate, the polarization of the band intensity ratio of 1615 cm (skeletal vibration of benzene ring) and 1730 cm-' (stretching vibration of carbonyl group) is determined. Measurement ratio (YY/X
X ratio etc. Here, YY: polarization direction of the laser is set to Y and the detection of the man light parallel to Y, Xx: the direction of polarization of the laser is set to X and the detection of the man light parallel to Available. The biaxial orientation of a polymer can be determined by converting the parameters obtained from Raman measurement into refractive indices in the longitudinal direction and width direction, and based on their absolute values, differences, etc. It is also a stretching vibration of carbonyl group], 730
The half width in cm-' was taken as the total reflection Raman crystallization index of the surface. The measurement conditions in this case are as follows.

■光源 アルゴンイオンレーザ−(5145A)■試料のセツテ
ィング フィルム表面を全反射プリズムに圧着させ、レーザのプ
リズムへの入射角(フィルム厚さ方向との角度)は60
’とした。
■Light source Argon ion laser (5145A) ■Setting the sample The surface of the film is pressed against a total reflection prism, and the incident angle of the laser to the prism (angle with the film thickness direction) is 60°.
'.

■検出器 PM : RCA31034/Photon Coun
liB S7slem(flamaS75le C12
31))  (supply 1600V)■測定条件 5LIT        1000μmLASERI[
lOmW GATE TIME     +、θ5ecSCAN 
5PEED     12cF’/minSAMPLI
NG INTER1’AL 02cmREPEAT T
IIVE6 (7)表面突起の平均高さ 2検出器力式の走査型電子顕微鏡と断面測定装置におい
てフィルム表面の平坦面の高さを0として走査した時の
突起の高さ測定値を画像処理装置に送り、画像処理装置
上にフィルム表面突起画像を再構築する。また、この2
値化された個々の突起部分の中で最も高い値をその突起
の高さとし、これを個々の突起について求める。この測
定を場所をかえて500回繰返し、測定された全突起に
ついてその高さの平均値を平均高さとした。走査型電子
顕微鏡の倍率は、1,000〜10,000倍の間の値
を選択する。
■Detector PM: RCA31034/Photon Coun
liB S7slem (flamaS75le C12
31)) (supply 1600V) ■Measurement conditions 5LIT 1000μm LASERI [
lOmW GATE TIME +, θ5ecSCAN
5PEED 12cF'/minSAMPLI
NG INTER1'AL 02cmREPEAT T
IIVE6 (7) Average height of surface protrusions 2 The measured value of the height of the protrusions when scanning with the height of the flat surface of the film surface as 0 using a two-detector type scanning electron microscope and a cross-sectional measuring device is measured by the image processing device. to reconstruct the film surface protrusion image on an image processing device. Also, these 2
The highest value among the valued individual protrusion portions is determined as the height of the protrusion, and this value is determined for each protrusion. This measurement was repeated 500 times at different locations, and the average value of the heights of all the measured protrusions was taken as the average height. The magnification of the scanning electron microscope is selected to be between 1,000 and 10,000 times.

(8)ヤング率 J l5−Z−1702に規定された方法にしたがって
、インストロンタイプの引っ張り試験機を用いて、25
℃、65%RHにて測定した。
(8) Young's modulus J15-Z-1702
Measured at 65% RH.

(9)固有粘度[ηコ (単位は617g)オルトクロ
ロフェノール中、25°Cで測定した溶液粘度から下記
式から計算される値を用いる。
(9) Intrinsic viscosity [η (unit: 617 g) A value calculated from the following formula from the solution viscosity measured at 25°C in orthochlorophenol is used.

すなわち、 η、、/C=  [η] +K [ηコ 2 ・ にこ
で、η3.=(溶液粘度/溶媒粘度)−1、Cは溶媒1
00m1あたりの溶解ポリマ重fi (g/100m1
.通常1.2)、Kはハギンス定数(0,343とする
)。また、溶液粘度、溶媒粘度はオストワルド粘度計を
用いて測定した。
That is, η,, /C= [η] +K [ηko 2 ・Nikode, η3. = (solution viscosity/solvent viscosity) -1, C is solvent 1
Dissolved polymer weight per 00ml (g/100ml
.. Usually 1.2), K is Huggins constant (assumed to be 0,343). In addition, solution viscosity and solvent viscosity were measured using an Ostwald viscometer.

(10)耐スクラッチ性 フィルムを幅1/、2インチのテープ状にスリットした
ものをテープ走行性試験機を使用して、ガイドピン(表
面粗度:Raで10100n上を走行させる(走行速度
f、000m/分、走行回数10パス、巻き付は角コロ
0°、走行張力;65g)。
(10) A scratch-resistant film slit into a 1/2 inch wide tape was run on a guide pin (surface roughness: Ra, 10100n) using a tape runnability tester (running speed f , 000 m/min, number of running passes: 10, winding angle: 0°, running tension: 65 g).

この時、フィルムに入った傷を顕微鏡で観察し、幅2.
5μm以上の傷がテープ幅あたり2本未満は優、2本以
上10本未満は良、10本以上は不良と判定した。優が
望ましいが、良でも実用的には使用可能である。
At this time, the scratches in the film were observed under a microscope, and the width was 2.
If there were less than two scratches per tape width of 5 μm or more, it was determined to be excellent, if there were 2 or more and less than 10 scratches, it was determined to be good, and if there were 10 or more scratches, it was determined to be poor. Excellent is desirable, but good is still usable for practical purposes.

(11)耐ダビング性 フィルムに下記組成の磁性塗料をグラビヤロールにより
塗布し、磁気配向させ、乾燥させる。さらに、小型テス
トカレンダー装置(スチールロール/ナイロンロール、
5段)で、温度ニア0℃、線圧:200kg/cmでカ
レンダー処理した後、70℃、48時間キユアリングす
る。上記テープ原反を1/2インチにスリットし、パン
ケーキを作成した。このパンケーキから長さ250mの
長さをVTRカセットに組み込みVTRカセットテープ
とした。
(11) A magnetic paint having the following composition is applied to a dubbing-resistant film using a gravure roll, magnetically oriented, and dried. In addition, a small test calender device (steel roll/nylon roll,
After calendering at a temperature of near 0°C and a linear pressure of 200 kg/cm, the product was cured at 70°C for 48 hours. The original tape was slit into 1/2 inch pieces to make pancakes. A length of 250 m from this pancake was assembled into a VTR cassette to make a VTR cassette tape.

(磁性塗料の組成) ・Co含有酸化鉄       =100重量部・塩化
ビニル/酢酸ビニル共重合体:10重滑部・ポリウレタ
ンエラストマ    :10重量部・ポリイソシアネー
ト)       :  5ffiffi部・レシチン
           二 1重量部・メチルエチルケ
トン      ニア5重最部・メチルイソブチルケト
ン    ニア5重量部・トルエン         
  ニア5重量部・カーボンブラック       :
 2重量部・ラウリン酸         :1.5重
量部このテープに家庭用VTRを用いてテレビ試験波形
発生器により100%クロマ信号を記録し、その再生信
号からカラービデオノイズ測定器でクロマS/Nを測定
しAとした。また上記と同じ信号を記録したマスターテ
ープのパンケーキを磁界転写方式のビデオソフト高速プ
リントシステム(スプリンタ)を用いてAを測定したの
と同じ試料テープ(未記録)のパンケーキへダビングし
た後のテープのクロマS/Nを上記と同様にして測定し
、Bとした。このダビングによるクロマS/Nの低下(
A−B)が3dB未満の場合は耐ダビング性:優、3d
B以上5dB未満の場合は良、5dB以上は不良と判定
した。優が望ましいが、良でも実用的には使用可能であ
る。
(Composition of magnetic paint) Co-containing iron oxide = 100 parts by weight Vinyl chloride/vinyl acetate copolymer: 10 parts by weight Polyurethane elastomer: 10 parts by weight Polyisocyanate): 5ffiffi parts Lecithin 2 1 part by weight Methyl ethyl ketone Nia 5 parts by weight / Methyl isobutyl ketone Nia 5 parts by weight / Toluene
Near 5 parts by weight/carbon black:
2 parts by weight Lauric acid: 1.5 parts by weight A 100% chroma signal was recorded on this tape using a TV test waveform generator using a home VTR, and the chroma S/N was measured from the playback signal using a color video noise measuring device. It was measured and marked as A. Also, after dubbing the pancake of the master tape on which the same signal as above was recorded onto the pancake of the same sample tape (unrecorded) on which A was measured using a magnetic field transfer video software high-speed print system (Sprinter). The chroma S/N of the tape was measured in the same manner as above, and it was designated as B. Decrease in chroma S/N due to this dubbing (
If A-B) is less than 3dB, dubbing resistance: Excellent, 3d
A value of B or more and less than 5 dB was determined to be good, and a value of 5 dB or more was determined to be poor. Excellent is desirable, but good is still usable for practical purposes.

[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.

実施例1〜4、比較例1〜4 平均粒径の異なる球形酸化チタン粒子、球形酸化モリブ
デン粒子およびコロイダルシリカを含有するエチレング
リコールスラリーを調製し、このエチレングリコールス
ラリーを190℃で1.5時間熱処理した後、テレフタ
ル酸ジメチルとエステル交換反応後、重縮合し、該粒子
を1−〜10重量%含有するポリエチレンテレフタレー
トのペレットを作った。この時、重縮合時間を調節し固
有粘度を0.65とした(熱可塑性樹脂A)。また、常
法によって、固有粘度0.62の実質的に不活性粒子を
含有しないポリエチレンテレフタレートを製造し、熱可
塑性樹脂Bとした。これらのポリマをそれぞれ180℃
で6時間減圧乾燥(3Torr)した。熱可塑性樹脂A
を押出機1に供給し290℃で溶融し、さらに、熱可塑
性樹脂Bを押出機2に供給、285℃で溶融し、これら
のポリマを合流ブロック(フィードブロック)で合流積
層し、静電印加キャスト法を用いて表面温度25℃のキ
ャスティング・ドラムに巻きつけて冷却固化し、2層構
造の未延伸フィルムを作った。この時、口金スリット間
隙、/未延伸フィルム厚さの比を10として未延伸フィ
ルムを作った。また、それぞれの押出機の吐出量を調節
し総厚さ、熱可塑性樹脂六層の厚さを調節した。この未
延伸フィルムを温度85℃にて長手方向に3.5倍延伸
した。この延伸は2組ずつのロールの周速差で、4段階
で行なった。この−軸延伸フィルムをステンタを用いて
延伸速度2,000%/分で100°Cで幅方向に4゜
0倍延伸し、定長下で、210°Cにて5秒間熱処理し
、総厚さ15μm、熱可塑性樹脂A層厚さ0゜02〜7
.5μmの二軸配向積層フィルムを得た。
Examples 1 to 4, Comparative Examples 1 to 4 Ethylene glycol slurry containing spherical titanium oxide particles, spherical molybdenum oxide particles and colloidal silica having different average particle sizes was prepared, and this ethylene glycol slurry was heated at 190°C for 1.5 hours. After heat treatment, the mixture was transesterified with dimethyl terephthalate and then polycondensed to produce pellets of polyethylene terephthalate containing 1-10% by weight of the particles. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.65 (thermoplastic resin A). In addition, polyethylene terephthalate having an intrinsic viscosity of 0.62 and containing substantially no inert particles was produced as thermoplastic resin B by a conventional method. Each of these polymers was heated to 180°C.
The mixture was dried under reduced pressure (3 Torr) for 6 hours. Thermoplastic resin A
is supplied to extruder 1 and melted at 290°C, furthermore, thermoplastic resin B is supplied to extruder 2 and melted at 285°C, these polymers are merged and laminated in a merging block (feed block), and electrostatic charge is applied. Using a casting method, it was wound around a casting drum with a surface temperature of 25° C., and cooled and solidified to produce an unstretched film with a two-layer structure. At this time, an unstretched film was prepared with the ratio of die slit gap/unstretched film thickness to 10. In addition, the total thickness and the thickness of the six thermoplastic resin layers were adjusted by adjusting the discharge rate of each extruder. This unstretched film was stretched 3.5 times in the longitudinal direction at a temperature of 85°C. This stretching was carried out in four stages with a difference in peripheral speed between two sets of rolls. This axially stretched film was stretched 4°0 times in the width direction at 100°C at a stretching rate of 2,000%/min using a stenter, and then heat-treated at 210°C for 5 seconds at a constant length to reduce the total thickness. Thickness: 15 μm, thermoplastic resin A layer thickness: 0°02~7
.. A biaxially oriented laminated film of 5 μm was obtained.

これらのフィルムの本発明のパラメータは第1表に示し
たとおりであり、本発明のパラメータが範囲内の場合は
耐スクラッチ性、耐ダビング性は第1表に示したとおり
優または良であったが、そうでない場合は耐スクラッチ
性、耐ダビング性を両立するフィルムは得られなかった
The parameters of the present invention for these films are as shown in Table 1, and when the parameters of the present invention were within the range, the scratch resistance and dubbing resistance were excellent or good as shown in Table 1. However, in other cases, a film having both scratch resistance and dubbing resistance could not be obtained.

[発明の効果] 本発明は、特定の粒子を用いたことにより、従来得られ
なかった特殊な表面形態のフィルムとしたので、摩擦係
数と磁気記録媒体用に用いたときの出力特性を極めて高
い次元で両立できるフィルムが得られたものであり、今
後のビデオテープの高画質化に有用である。また、特異
な表面のため耐摩耗性にも優れた苛酷使用にも耐え得る
フィルムとなり、各用途でのフィルム加工速度の増大に
対応できるものである。本発明フィルムの用途は特に限
定されないが、上述した磁気記録媒体以外にも摩擦係数
に関わるハンドリング性と特殊な表面に起因する透明性
の良さを利用した包装用、さらには特殊な表面に起因す
る電気絶縁性の良さを利用したコンデンサー用など広く
各用途に展開できるものである。なお、本発明フィルム
のうち2層構造のものは本発明の範囲内の表面形態を有
する面が非機能面(磁気記録媒体用では磁性層を塗布し
ない面、その他の用途では印刷やその他塗材の塗布など
の処理がほどこされていない面)として用いることが望
ましい。
[Effects of the Invention] The present invention uses specific particles to create a film with a special surface morphology that could not be obtained conventionally, so it has an extremely high coefficient of friction and output characteristics when used for magnetic recording media. A film that is compatible with both dimensions has been obtained, and will be useful for improving the image quality of future videotapes. Furthermore, due to the unique surface, the film has excellent abrasion resistance and can withstand severe use, making it suitable for increasing film processing speeds in various applications. Applications of the film of the present invention are not particularly limited, but in addition to the above-mentioned magnetic recording media, it can also be used for packaging that takes advantage of the handling properties related to the coefficient of friction and the good transparency resulting from the special surface, and furthermore, for packaging that takes advantage of the good transparency resulting from the special surface. It can be used in a wide variety of applications, such as capacitors, which take advantage of its good electrical insulation properties. Note that for films of the present invention with a two-layer structure, the surface having a surface morphology within the scope of the present invention is a non-functional surface (the surface on which no magnetic layer is coated for magnetic recording media, and the surface for printing or other coating materials for other uses). It is desirable to use it as a surface that has not been subjected to any treatment such as coating.

Claims (5)

【特許請求の範囲】[Claims] (1)球形酸化チタン粒子、球形酸化タングステン粒子
、球形酸化モリブデン粒子および球形シリコーン粒子の
いずれかから選ばれる不活性粒子を含有する熱可塑性樹
脂Aを主成分とするフィルムであって、該粒子の平均粒
径がフィルム厚さの0.2〜5倍、該粒子の含有量が2
〜20重量%であることを特徴とする厚さ0.01〜3
μmの二軸配向熱可塑性樹脂フィルム。
(1) A film mainly composed of thermoplastic resin A containing inert particles selected from spherical titanium oxide particles, spherical tungsten oxide particles, spherical molybdenum oxide particles, and spherical silicone particles, The average particle size is 0.2 to 5 times the film thickness, and the particle content is 2
Thickness 0.01-3, characterized in that it is ~20% by weight
μm biaxially oriented thermoplastic resin film.
(2)実質的に不活性粒子を含有しない熱可塑性樹脂B
を主成分とするフィルムの少なくとも片面に請求項(1
)記載の熱可塑性樹脂フィルムを積層してなる二軸配向
熱可塑性樹脂フィルム。
(2) Thermoplastic resin B that does not substantially contain inert particles
Claim (1) on at least one side of the film mainly composed of
) A biaxially oriented thermoplastic resin film obtained by laminating the thermoplastic resin films described in ).
(3)平均粒径が0.01〜2μmの不活性粒子を0.
001〜0.15重量%含有する熱可塑性樹脂Bを主成
分とするフィルムの少なくとも片面に請求項(1)記載
の熱可塑性樹脂フィルムを積層してなる二軸配向熱可塑
性樹脂フィルム。
(3) Inert particles with an average particle size of 0.01 to 2 μm.
A biaxially oriented thermoplastic resin film obtained by laminating the thermoplastic resin film according to claim 1 on at least one side of a film whose main component is thermoplastic resin B containing 0.001 to 0.15% by weight.
(4)熱可塑性樹脂Aに含有する不活性粒子の粒径の相
対標準偏差が0.6以下である請求項(1)〜(3)の
いずれかに記載の二軸配向熱可塑性樹脂フィルム。
(4) The biaxially oriented thermoplastic resin film according to any one of claims (1) to (3), wherein the relative standard deviation of the particle size of the inert particles contained in the thermoplastic resin A is 0.6 or less.
(5)熱可塑性樹脂Aが結晶性ポリエステルであり、か
つ、該熱可塑性樹脂表面の全反射ラマン結晶化指数が2
0cm^−^1以下であることを特徴とする請求項(1
)〜(4)のいずれかに記載の二軸配向熱可塑性樹脂フ
ィルム。
(5) Thermoplastic resin A is crystalline polyester, and the total reflection Raman crystallization index of the thermoplastic resin surface is 2.
Claim (1) characterized in that it is 0 cm^-^1 or less
The biaxially oriented thermoplastic resin film according to any one of ) to (4).
JP28070289A 1989-10-27 1989-10-27 Biaxially oriented thermoplastic resin film Pending JPH03140336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28070289A JPH03140336A (en) 1989-10-27 1989-10-27 Biaxially oriented thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28070289A JPH03140336A (en) 1989-10-27 1989-10-27 Biaxially oriented thermoplastic resin film

Publications (1)

Publication Number Publication Date
JPH03140336A true JPH03140336A (en) 1991-06-14

Family

ID=17628764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28070289A Pending JPH03140336A (en) 1989-10-27 1989-10-27 Biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPH03140336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604057A1 (en) * 1992-12-23 1994-06-29 Imperial Chemical Industries Plc Polymeric film
US5480715A (en) * 1992-12-23 1996-01-02 Imperial Chemical Industries Plc Polymeric film containing silicone resin particles
US7582369B2 (en) * 2004-02-17 2009-09-01 Toray Industries, Inc. Biaxially oriented polyester film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126340A (en) * 1987-11-11 1989-05-18 Teijin Ltd Biaxially oriented polyester film
JPH02214657A (en) * 1989-02-16 1990-08-27 Teijin Ltd Laminate biaxially oriented film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01126340A (en) * 1987-11-11 1989-05-18 Teijin Ltd Biaxially oriented polyester film
JPH02214657A (en) * 1989-02-16 1990-08-27 Teijin Ltd Laminate biaxially oriented film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604057A1 (en) * 1992-12-23 1994-06-29 Imperial Chemical Industries Plc Polymeric film
US5480715A (en) * 1992-12-23 1996-01-02 Imperial Chemical Industries Plc Polymeric film containing silicone resin particles
US7582369B2 (en) * 2004-02-17 2009-09-01 Toray Industries, Inc. Biaxially oriented polyester film

Similar Documents

Publication Publication Date Title
US5069962A (en) Biaxially oriented laminated film
JPH0277431A (en) Biaxially oriented thermoplastic resin film
KR100241146B1 (en) Biaxially oriented thermoplastic resin film
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2692320B2 (en) Biaxially oriented polyester film
JP2569838B2 (en) Method for producing biaxially oriented thermoplastic resin film
JP2510741B2 (en) Biaxially oriented thermoplastic resin film
JP2998456B2 (en) Biaxially oriented film
JP2853878B2 (en) Biaxially oriented thermoplastic resin film
JP2922070B2 (en) Biaxially oriented thermoplastic resin film
JP2581287B2 (en) Biaxially oriented thermoplastic resin film
JP3687127B2 (en) Biaxially oriented polyethylene-2,6-naphthalene dicarboxylate film
JPH04105935A (en) Biaxially oriented thermoplastic resin film
JP2570444B2 (en) Biaxially oriented thermoplastic resin film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JP2892273B2 (en) Biaxially oriented thermoplastic resin film
JP2998457B2 (en) Biaxially oriented film
JPH03187723A (en) Biaxially oriented thermoplastic resin film
JP2804434B2 (en) Biaxially oriented thermoplastic resin film
JPH03210339A (en) Biaxially oriented thermoplastic resin film and production thereof
JP2812136B2 (en) Biaxially oriented laminated film
JPH03192131A (en) Biaxially oriented thermoplastic resin film
JPH06322147A (en) Biaxially oriented film
JPH02143836A (en) Biaxially-oriented polyester film and its manufacture
JPH04259548A (en) Biaxially oriented polyester film