JPH01126340A - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film

Info

Publication number
JPH01126340A
JPH01126340A JP28318687A JP28318687A JPH01126340A JP H01126340 A JPH01126340 A JP H01126340A JP 28318687 A JP28318687 A JP 28318687A JP 28318687 A JP28318687 A JP 28318687A JP H01126340 A JPH01126340 A JP H01126340A
Authority
JP
Japan
Prior art keywords
film
particle size
fine particles
titanium oxide
aromatic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28318687A
Other languages
Japanese (ja)
Inventor
Norihiro Nomi
能美 慶弘
Kinji Hasegawa
欣治 長谷川
Hisashi Hamano
浜野 久
Hideo Kato
秀雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP28318687A priority Critical patent/JPH01126340A/en
Publication of JPH01126340A publication Critical patent/JPH01126340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a flat film having excellent slipperiness and scuff resistance, by blending an aromatic polyester with specific spherical fine titanium oxide particles. CONSTITUTION:A biaxially oriented polyester film formed from an intimate blend consisting of (A) an aromatic polyester and (B) 0.005-4wt.% [based on the component (A)] spherical fine titanium oxide particles having a particle diameter ratio defined by a ratio of the maximum to the minimum diameter within the range of not exceeding 1.2, 0.01-4mum average particle diameter and >=70m<2>/g BET specific surface area. An aromatic polyester containing an aromatic dicarboxylic acid as a main acidic component and a fatty acid glycol as a main glycol component is used as the component (A). The component (B) has preferably 0.05-3mum average particle diameter.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は二軸配向ポリエステルフィルムに関し、更に詳
しくはBET比表面積が70TIt/(]以上の球状酸
化チタン微粒子を含有し、平坦で滑り性及び耐擦り傷性
に優れた二軸配向ポリエステルフィルムに関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a biaxially oriented polyester film, more specifically, it contains spherical titanium oxide fine particles with a BET specific surface area of 70 TIt/() or more, and is flat, slippery, and This invention relates to a biaxially oriented polyester film with excellent scratch resistance.

〈従来技術〉 ポリエチレンテレフタレートに代表されるポリエステル
は、その優れた物理的および化学的特性の故に、磁気テ
ープ用、写真用、コンデンザー用。
<Prior art> Polyester, represented by polyethylene terephthalate, is used for magnetic tapes, photographs, and condensers because of its excellent physical and chemical properties.

包装用などのフィルムとして広く用いられている。Widely used as packaging film.

これらフィルムにおいては、その滑り性および耐擦り傷
性はフィルムの製造工程および各用途における加工工程
の作業性の良否、さらにはその製品品質の良否を左右す
る大きな要因となっている。
The slipperiness and scratch resistance of these films are major factors that determine the workability of the film manufacturing process and the processing process in each application, as well as the quality of the product.

特にポリエステルフィルム表面に磁性層塗布時における
コーティングロールとフィルム表面との摩擦および摩耗
が極めて激しく、フィルム表面へのしねおよび擦り傷が
発生しやすい。また磁性層塗布時のフィルムをスリット
してオーディオ、ビデオまたはコンピューター用テープ
等に加工した後でも、リールやカセット等からの引き出
し1巻き上げその伯の操作の際に、多くのガイド部、再
生ヘッド等との間で摩耗が著しく生じ、擦り傷、歪の発
生、ざらにはポリエステルフィルム表面の削れ等による
白粉状物質を析出させる結果、磁気記録信号の欠落、即
ちドロップアウトの大きな原因となることが多い。
In particular, when a magnetic layer is applied to the surface of a polyester film, the friction and abrasion between the coating roll and the film surface are extremely severe, and wrinkles and scratches are likely to occur on the film surface. Furthermore, even after slitting the film coated with the magnetic layer and processing it into audio, video, or computer tape, there are many guide parts, playback heads, etc. Significant abrasion occurs between the polyester film and the polyester film, causing scratches, distortion, and the precipitation of white powdery substances due to scratches on the surface of the polyester film, which can be a major cause of missing magnetic recording signals, that is, dropouts. many.

一般にフィルムの滑り性および耐擦り傷性の改良には、
フィルム表面に凹凸を付与することによりガイドロール
等との間の接触面積を減少せしめる方法が採用されてお
り、大別して(i)フィルム原料に用いる高分子の触媒
残渣から不活性の粒子を析出せしめる方法と、(ii)
不活性の無機粒子を添加せしめる方法が用いられている
。これら原料高分子中の微粒子は、その大きざが大きい
程、滑り性の改良効果が大であるのが一般的であるが、
磁気テープ、特にビデオ用のごとき精密用途には、その
粒子が大きいこと自体がドロップアウト等の欠点発生の
原因ともなり得るため、フィルム表面の凹凸は出来るだ
け微細である必要があり、相反する特性を同時に満足す
べき要求がなされているのが現状である。
In general, to improve the slipperiness and scratch resistance of films,
A method of reducing the contact area with guide rolls etc. by imparting irregularities to the film surface has been adopted, and can be broadly divided into (i) methods in which inert particles are precipitated from the polymer catalyst residue used as the film raw material; a method; and (ii)
A method of adding inert inorganic particles is used. Generally, the larger the size of the fine particles in these raw polymers, the greater the effect of improving slipperiness.
For precision applications such as magnetic tape, especially for video, the large particles themselves can cause defects such as dropouts, so the unevenness on the film surface must be as fine as possible, which is a conflicting characteristic. The current situation is that there are demands to satisfy both at the same time.

従来、フィルムの易滑性を向上させる方法として、フィ
ルム基質であるポリエステルに酸化ケイ素、二酸化チタ
ン、炭酸カルシウム、タルク、クレイ、焼成カオリン等
の無機質粒子を添加する方法(例えば特開昭54−57
582号公報参照)またはポリエステルを製造する重合
系内で、カルシウム。
Conventionally, as a method of improving the slipperiness of a film, a method of adding inorganic particles such as silicon oxide, titanium dioxide, calcium carbonate, talc, clay, calcined kaolin, etc. to polyester, which is a film substrate (for example, Japanese Patent Application Laid-Open No. 54-57
582) or within the polymerization system for producing polyester.

リチウム或いはリンを含む微粒子を析出せしめる方法が
提案されている(特公昭52−32914号公報参照)
。フィルム化した際、ポリエステルに不活性の上記微粒
子はフィルム表面に突起を生成し、この突起はフィルム
の滑り性を向上させる。
A method has been proposed in which fine particles containing lithium or phosphorus are precipitated (see Japanese Patent Publication No. 52-32914).
. When formed into a film, the fine particles that are inert to polyester form protrusions on the surface of the film, and these protrusions improve the slipperiness of the film.

しかしながら、微粒子による突起によって、フィルムの
滑り性を改善する方法は、突起が一方ではフィルム表面
の平坦性を阻害することとなる本質的な問題点を孕んで
いる。
However, the method of improving the slipperiness of a film by using protrusions made of fine particles has an essential problem in that the protrusions impair the flatness of the film surface.

これらの相反する平坦性と易滑性とを解決けんとする試
みとして、比較的大粒径の微粒子と比較的小粒径の微粒
子との複合微粒子系を利用する手段が提案されている。
In an attempt to resolve these contradictory issues of flatness and slipperiness, a method has been proposed that utilizes a composite particle system consisting of relatively large particles and relatively small particles.

米国特許用3.821.156号明細書は0.5〜30
μmの炭酸カルシウム微粒子0.02〜0.1重量%と
0.01〜1.0μmのシリカまたは水和アルミナシリ
ケート0.01〜0,5重間%との組合せを開示してい
る。
U.S. Patent No. 3.821.156 is 0.5 to 30
A combination of 0.02-0.1% by weight of micron calcium carbonate particles and 0.01-0.5% by weight of 0.01-1.0 micron silica or hydrated alumina silicate is disclosed.

米国特許用3.884.870号明細書は約0.5〜3
0μmの炭酸カルシウム、焼成ケイ酸アルミニウム。
U.S. Pat. No. 3,884,870 is approximately 0.5 to 3
0 μm calcium carbonate, calcined aluminum silicate.

水和ケイ酸アルミニウム、ケイ酸マグネシウム。Hydrated aluminum silicate, magnesium silicate.

ケイ酸カルシウム、リン酸カルシウム、シリカ。Calcium silicate, calcium phosphate, silica.

アルミナ、硫酸バリウム、マイカ、ケイソウ上等の不活
性微粒子約0.002〜0.01a 重量%と、約0.
01〜約1.0μmのシリカ、炭酸カルシウム、焼成ケ
イ酸カルシウム、水和ケイ酸カルシウム、リン酸カルシ
ウム、アルミナ、硫酸バリウム、硫酸マグネシウム、ケ
イソウ土等の不活性微粒子約0.3〜2.5重量%との
併用を開示している。
Approximately 0.002 to 0.01a weight % of inert fine particles such as alumina, barium sulfate, mica, diatomaceous, etc.;
0.3 to 2.5% by weight of inert fine particles such as silica, calcium carbonate, calcined calcium silicate, hydrated calcium silicate, calcium phosphate, alumina, barium sulfate, magnesium sulfate, diatomaceous earth, etc. Discloses its use in combination with

米国特許用3,980,611号明細書は粒径1.0μ
m以下、1〜2.5μmおよび2.5μm以上の3種の
粒径グレードのリン酸カルシウム微粒子を組合せて全f
fi5ooOppm以下でポリエステルに添加すること
を開示している。
US Pat. No. 3,980,611 has a particle size of 1.0μ
The total f
It discloses adding less than fi5ooOppm to polyester.

特公昭55−41648号公報(特開昭53−7115
4号公報)は1.2〜2.5μmの微粒子0.22〜1
.0重量%と1.8〜10μmの微粒子0.003〜0
.25重層%との組合せであって、該微粒子が周期律表
の第■、■およびIV族の元素の酸化物または無機塩で
あることを提案している。
Japanese Patent Publication No. 55-41648 (Japanese Patent Publication No. 53-7115)
No. 4) is a fine particle of 1.2 to 2.5 μm, 0.22 to 1
.. 0% by weight and 1.8-10 μm fine particles 0.003-0
.. It is proposed that the fine particles are oxides or inorganic salts of elements of groups ①, ② and IV of the periodic table.

特公昭55−40929号公報(特開昭52−1190
8号公報)は、3〜6μmの不活性無機微粒子0.01
〜O,,08重量%と1〜2.5μmの不活性無機微粒
子O,Oa〜0.3重量%との組合せであって、粒径の
異なるこれらの微粒子の全量が0.1〜0.4重量%で
おり且つ小さい粒径の微粒子に対する大きい粒径の微粒
子の割合が0.1〜0.7である混合粒子を開示してい
る。
Japanese Patent Publication No. 55-40929 (Japanese Patent Publication No. 52-1190)
No. 8), inert inorganic fine particles of 3 to 6 μm 0.01
~O,08% by weight and ~0.3% by weight of inert inorganic fine particles O,Oa of 1-2.5 μm, the total amount of these fine particles having different particle sizes being 0.1-0.08% by weight. 4% by weight and the ratio of large particle size to small particle size particles is 0.1 to 0.7.

特開昭52−78953号公報は10〜1,000mμ
の不活性粒子0.01〜0.5重量%と0,5〜15μ
mの炭酸カルシウム0.11〜0.1)重量%とを含有
する二軸配向ポリエステルフィルムを開示している。特
開昭52−78953号公報には、10〜1000 m
μの不活性粒子として炭酸カルシウム以外の種々の無機
質物質が一般記載の中に列記されている。しかしながら
、この公報には通常10〜1000 mμの微粒子とし
て入手できるシリカあるいはクレーを無機質物質として
用いた具体例が開示されているにすぎない。
JP-A No. 52-78953 is 10 to 1,000 mμ
0.01-0.5% by weight of inert particles and 0.5-15μ
biaxially oriented polyester films containing 0.11 to 0.1% by weight of calcium carbonate. Japanese Patent Application Laid-open No. 52-78953 describes the range of 10 to 1000 m
Various inorganic substances other than calcium carbonate are listed in the general description as inert particles of μ. However, this publication merely discloses a specific example in which silica or clay, which is usually available as fine particles of 10 to 1000 mμ, is used as the inorganic substance.

〈発明の目的〉 本発明の目的は表面平坦性、易滑性およびi4涼り信性
に極めて優れた二軸配向ポリエステルフィルムを提供す
ることにある。
<Object of the Invention> The object of the present invention is to provide a biaxially oriented polyester film that is extremely excellent in surface flatness, slipperiness, and i4 cooling reliability.

本発明の他の目的は、フィルム表面に球状酸化チタン微
粒子に由来する多数の微細な突起を有し且つ表面平坦性
、易滑性および耐擦り信性に極めて優れた二軸配向ポリ
エステルフィルムを提供することにある。
Another object of the present invention is to provide a biaxially oriented polyester film that has a large number of fine protrusions derived from spherical titanium oxide fine particles on the film surface and has extremely excellent surface flatness, easy slipperiness, and abrasion resistance. It's about doing.

本発明のざらに他の目的および利点は以下の説明から明
らかとなろう。
Further objects and advantages of the present invention will become apparent from the following description.

〈発明の構成・効果〉 本発明によれば、本発明の上記目的および利点は、第一
に、 (I>芳香族ポリエステル、および (II)(a)最大径と最小径の比で定義される粒径比
が1.2を超えない範囲にあり、 (b) 0.01〜4μmの平均粒径を有し、そして (C) 70;m/1以上のBET比表面積を有する、 球状酸化チタン微粒子0.005〜4重M%(芳香族ポ
リエステルに対して) から成る緊密な混合物から形成された二軸配向ポリニス
デルフィルムによって達成される。
<Configuration/Effects of the Invention> According to the present invention, the above objects and advantages of the present invention are achieved by: (I>aromatic polyester, and (II) (a) defined by the ratio of the maximum diameter to the minimum diameter; (b) has an average particle size of 0.01 to 4 μm, and (C) has a BET specific surface area of 70; m/1 or more. This is achieved with a biaxially oriented polynisder film formed from an intimate mixture of 0.005 to 4 weight percent titanium particles (based on aromatic polyester).

本発明における芳香族ポリエステルは芳香族ジカルボン
酸を主たる酸成分とし、脂肪族グリコールを主たるグリ
コール成分とするポリエステルである。かかる芳香族ポ
リエステルは実質的に線状でおり、そしてフィルム形成
性特に溶融成形によるフィルム形成性を有する。芳香族
ジカルボン酸とは、例えばテレフタル酸、ナフタレンジ
カルボン酸、イソフタル酸、ジフエノキシエタンジカル
ボン酸、ジフェニルジカルボン酸、ジフェニルエーテル
ジカルボン酸、ジフェニルスルホンジカルボン酸、ジフ
ェニルケトンジカルボン ラセンジカルボン酸等である。脂肪族グリコールとは、
例えばエチレングリコール、トリメチレングリコール、
テトラメチレングリコール、ペンタメチレングリコール
、ヘキサメチレングリコール。
The aromatic polyester in the present invention is a polyester containing an aromatic dicarboxylic acid as a main acid component and an aliphatic glycol as a main glycol component. Such aromatic polyesters are substantially linear and have film forming properties, particularly by melt molding. Aromatic dicarboxylic acids include, for example, terephthalic acid, naphthalene dicarboxylic acid, isophthalic acid, diphenoxyethane dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenyl ketone dicarboxylic acid, and the like. What is aliphatic glycol?
For example, ethylene glycol, trimethylene glycol,
Tetramethylene glycol, pentamethylene glycol, hexamethylene glycol.

デカメチレングリコール等の如き炭素数2〜10のアル
キレングリコールあるいはシクロへキナンジメタノール
の如き脂環族ジオール等である。
These include alkylene glycols having 2 to 10 carbon atoms such as decamethylene glycol, and alicyclic diols such as cyclohequinane dimethanol.

本発明において、芳香族ポリエステルとしては、例えば
アルキレンテレフタレートおよび/またはアルキレンナ
フタレートを主たる構成成分と言るものが好ましく用い
られる。
In the present invention, as the aromatic polyester, for example, those whose main constituents are alkylene terephthalate and/or alkylene naphthalate are preferably used.

かかる芳香族ポリエステルのうちでも、例えばポリエチ
レンテレフタレート、ポリエチレンナフタレートはもち
ろんのこと、例えば全ジカルボン酸成分の80モル%以
上がテレフタル酸および/またはナフタレンジカルボン
酸であり、全グリコール成分の80’Eル%以上がエチ
レングリコールである共重合体が特に好ましい。
Among such aromatic polyesters, for example, not only polyethylene terephthalate and polyethylene naphthalate, but also terephthalic acid and/or naphthalene dicarboxylic acid account for 80 mol% or more of the total dicarboxylic acid component, and 80'E of the total glycol component. Particularly preferred are copolymers in which % or more is ethylene glycol.

その際、全酸成分の20モル%以下のジカルボン酸はテ
レフタル酸および/またはナフタレンジカルボン酸以外
の上記芳香族ジカルボン酸であることができ、また例え
ばアジピン酸,セパチン酸等の如き脂肪族ジカルボン酸
;シクロヘキサン−1。
In this case, the dicarboxylic acid that accounts for 20 mol% or less of the total acid component can be the above-mentioned aromatic dicarboxylic acids other than terephthalic acid and/or naphthalene dicarboxylic acid, and can also be an aliphatic dicarboxylic acid such as adipic acid, sepatic acid, etc. ;Cyclohexane-1.

4−ジカルボン酸の如ぎ脂環族ジカルボン酸等であるこ
とができる。また、全グリコール成分の20モル%以下
はエチレングリコール以外の上記グリコールであること
ができ、あるいは例えばハイドロキノン、レゾルシン、
 2.2’−ビス(4−ヒドロキシフェニル)プロパン
等の如き芳香族ジオール;1、4−ジヒドロキシメチル
ベンゼンの如き芳香環を有する脂肪族ジオール;ポリエ
チレングリコール、ポリプロピレングリコール、ポリテ
トラメチレングリコール等の如きポリアルキレングリコ
ール(ポリオキシアルキレングリコール)等であること
もできる。
It can be an alicyclic dicarboxylic acid such as 4-dicarboxylic acid. Further, up to 20 mol% of the total glycol component can be the above-mentioned glycols other than ethylene glycol, or for example, hydroquinone, resorcinol,
2. Aromatic diols such as 2'-bis(4-hydroxyphenyl)propane; aliphatic diols having an aromatic ring such as 1,4-dihydroxymethylbenzene; such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. It can also be polyalkylene glycol (polyoxyalkylene glycol) and the like.

また、本発明における芳香族ポリエステルには、例えば
ヒドロキシ安息香酸の如き芳香族オキシ酸;ω−ヒドロ
キシカプロン酸の如き脂肪族オキシ酸等のオキシカルボ
ン酸に由来する成分を、ジカルボン酸成分およびオキシ
カルボン酸成分の総量に対し20モル%以下で含有する
ものも包含される。
In addition, the aromatic polyester in the present invention includes a component derived from an oxycarboxylic acid such as an aromatic oxyacid such as hydroxybenzoic acid; an aliphatic oxyacid such as ω-hydroxycaproic acid; a dicarboxylic acid component and an oxycarboxylic acid component; Those containing 20 mol% or less based on the total amount of acid components are also included.

さらに、本発明における芳香族ポリエステルには実質的
に線状である範囲の岳、例えば全酸成分に対し2モル%
以下の旧で、3官能以上のポリカルボン酸またはポリヒ
ドロキシ化合物、例えばトリメリット酸,ペンタエリス
リトール等を共重合したものをも包含される。
Furthermore, the aromatic polyester in the present invention has a substantially linear range, for example, 2 mol% of the total acid component.
The following examples also include copolymerized polycarboxylic acids or polyhydroxy compounds with trifunctional or higher functionality, such as trimellitic acid, pentaerythritol, etc.

上記芳香族ポリエステルは、それ自体公知であり、且つ
それ自体公知の方法で製造することができる。
The above-mentioned aromatic polyester is known per se, and can be produced by a method known per se.

上記芳香族ポリエステルとしては、0−クロロフェノー
ル中の溶液として35℃で測定して求めた固有粘度が約
0.4〜約1.0のものが好ましい。
The aromatic polyester preferably has an intrinsic viscosity of about 0.4 to about 1.0, measured as a solution in 0-chlorophenol at 35°C.

本発明の二軸配向ポリエステルフィルムはフィルム表面
に多数の微細な突起を有している。
The biaxially oriented polyester film of the present invention has many fine protrusions on the film surface.

それらの多数の微細な突起は本発明によれば芳香族ポリ
エステル中に分散して含有される多数の球状酸化チタン
微粒子に由来する。
According to the present invention, those many fine protrusions are derived from a large number of spherical titanium oxide fine particles dispersed and contained in the aromatic polyester.

本発明において球状酸化チタン微粒子は、(a)真球状
に近い形状,(b)小さな粒径、および(C)大きな比
表面積、更には(d)狭い粒径分布の特性によって特徴
づけられる。
In the present invention, the spherical titanium oxide fine particles are characterized by (a) a nearly spherical shape, (b) a small particle size, (C) a large specific surface area, and (d) a narrow particle size distribution.

即ち、本発明における球状酸化チタン微粒子は、(a)
最大径対最小径の比で定@される粒径比が1、2を超え
ない範囲にある。
That is, the spherical titanium oxide fine particles in the present invention are (a)
The particle size ratio determined by the ratio of the maximum diameter to the minimum diameter is in a range not exceeding 1 or 2.

好ましい粒径比は1.0〜1.15の範囲におり、より
好ましい粒径比は1,O〜1.12の範囲にある。
A preferred particle size ratio is in the range of 1.0 to 1.15, and a more preferable particle size ratio is in the range of 1.0 to 1.12.

上記球状酸化チタン微粒子は(b) 0.01〜4μm
の範囲に平均粒径を有する。平均粒径の好ましい範囲は
0. 05〜2μmiあり、より好ましい範囲は0、1
〜1.0μmである。
The spherical titanium oxide fine particles (b) have a diameter of 0.01 to 4 μm.
It has an average particle size in the range of . The preferred range of average particle size is 0. 05 to 2 μmi, and the more preferable range is 0 to 1
~1.0 μm.

更に、上記球状酸化チタン微粒子は(c) 70メ/g
以上のBET比表面積を有する。この比表面積の好まし
い範囲は90〜300 m/(]である。
Furthermore, the above spherical titanium oxide fine particles (c) 70 m/g
It has the above BET specific surface area. The preferable range of this specific surface area is 90 to 300 m/(].

本発明における球状酸化チタン微粒子は、上記のとおり
、個々の形状が極めて真球に近い球状であって且つ比表
面積が70 m / g以上と大きく、従来がら滑剤と
して知られている、比表面積が15〜40TIt/g程
度であって形状が不定である塊状の酸化チタン粒子とは
著しく異なる点に特徴がある。
As mentioned above, the spherical titanium oxide fine particles in the present invention have individual shapes that are extremely close to true spheres and have a large specific surface area of 70 m/g or more, and have a specific surface area that is conventionally known as a lubricant. It is characterized in that it is about 15 to 40 TIt/g and is significantly different from bulk titanium oxide particles whose shape is indeterminate.

本発明における球状酸化チタン微粒子は、更に、(d)
下記式 ここで、旧は個々の粒子の面積円相光径(μm)であり
、Dは面積円相光径の平均値(μm)であり、そしてn
は粒子の個数である。
The spherical titanium oxide fine particles in the present invention further include (d)
In the following formula, where old is the area circular diameter (μm) of each particle, D is the average value of the area circular diameter (μm), and n
is the number of particles.

但し、面積円相光径とは、個々の粒子を真珠に換算した
ときの直径を意味する。
However, the area circular diameter means the diameter when each particle is converted into a pearl.

で定義される粒径の相対標準偏差(σ)が0.5以下で
あることが好ましい。粒径の更に好ましい相対標準偏差
(σ)は0.3以下であり′、特に好ましいσは0,1
2以下である。
It is preferable that the relative standard deviation (σ) of the particle size defined by is 0.5 or less. A more preferable relative standard deviation (σ) of the particle size is 0.3 or less, and a particularly preferable σ is 0.1.
2 or less.

相対標準偏差(σ)が0.5以下であると、酸化チタン
微粒子は真珠に近い球状および極めてシャープな粒度分
布を有することになり、フィルム表面に高さが極めて均
一で且つ形状がシャープな突起を与える。
When the relative standard deviation (σ) is 0.5 or less, the titanium oxide fine particles will have a spherical shape similar to a pearl and an extremely sharp particle size distribution, resulting in protrusions with an extremely uniform height and sharp shape on the film surface. give.

このため、従来のフィルムにおける高さが不均一で、よ
りなだらかな形状の突起と比較して、同じ突起の数では
滑り性が極めて良好なフィルムを与える。
Therefore, the same number of protrusions provides a film with extremely good sliding properties, compared to conventional films with uneven heights and more gently shaped protrusions.

又、比表面積が70TIt/gと大きく、表面が極めて
活性であり、又種々の表面改質処理を施す事も可能であ
り、ポリエステルとの接着性をより一層向上させること
が出来る。
In addition, it has a large specific surface area of 70 TIt/g, has an extremely active surface, and can be subjected to various surface modification treatments, making it possible to further improve the adhesiveness with polyester.

上述の条件を満たす球状酸化チタン微粒子は、好ましく
は、チタンを含む金属アルコキシドから調製される。例
えばオルトチタン酸エチル[ri (002H5) 4
1の加水分解から[ri(OH)4]ゾル単分散球をつ
くり、更にこのゾルを脱水化処理してチタニア結合[ミ
Ti−0−Ti=]を三次元的に成長させることによっ
て製造出来る[工業材料1M29巻、第5@e P85
 、同第6号、 PIOI、 J。
Spherical titanium oxide fine particles that meet the above conditions are preferably prepared from a metal alkoxide containing titanium. For example, ethyl orthotitanate [ri (002H5) 4
It can be produced by creating [ri(OH)4] sol monodisperse spheres from the hydrolysis of 1, and then dehydrating this sol to grow titania bonds [Mi-Ti-0-Ti=] three-dimensionally. [Industrial Materials 1M Volume 29, Volume 5@e P85
, No. 6, PIOI, J.

Co11oid Interface Sci、 68
.308(1978)、 J。
Co11oid Interface Sci, 68
.. 308 (1978), J.

Co11oid Interface Sci、 61
.302(1977)]■i  (002H5)4  
+4Hz’0→Ti (OH> 4 +4C21−15
0HミTi−01−(+HO−Ti= →=1i−Q−4iミ十820 本発明のフィルムを形成する芳香族ポリエステル(1)
と球状酸化チタン微粒子(It>との緊密な混合物は、
該微粒子(II)を0.005〜4重ω%(芳香族ポリ
エステルに対して)含有している。
Co11oid Interface Sci, 61
.. 302 (1977)]■i (002H5)4
+4Hz'0→Ti (OH> 4 +4C21-15
0H Mi-Ti-01-(+HO-Ti= →=1i-Q-4i Miju 820 Aromatic polyester (1) forming the film of the present invention
and spherical titanium oxide fine particles (It>),
The fine particles (II) are contained in an amount of 0.005 to 4 wt % (based on the aromatic polyester).

該微粒子(II)の量が0.005重量%未満では、フ
ィルムの滑り性や耐擦り傷性の向上効果が不充分であり
、一方4重徂%を超えるとフィルムの平坦性が低下する
。該微粒子(II)の量はo、 oi〜2重量%、更に
は0.01〜1重母%(芳香族ポリエステルに対して)
が好ましい。
If the amount of the fine particles (II) is less than 0.005% by weight, the effect of improving the slipperiness and scratch resistance of the film will be insufficient, while if it exceeds 4% by weight, the flatness of the film will decrease. The amount of the fine particles (II) is o, oi to 2% by weight, and further 0.01 to 1% by weight (based on the aromatic polyester).
is preferred.

このような球状酸化チタン微粒子の添加により得られた
ポリエステルフィルムは、均一な凹凸表面特性、優れた
滑り性および耐擦り傷性を有し、擦り傷、白粉等の発生
量が著しく少ないという特徴を有する。この特徴、特に
優れた滑り性、耐擦り傷性を奏する理由はまだ充分に解
明されていない。
The polyester film obtained by adding such spherical titanium oxide fine particles has uniform uneven surface characteristics, excellent slipperiness and scratch resistance, and is characterized by significantly less generation of scratches, white powder, etc. The reason for this feature, particularly the excellent slipperiness and scratch resistance, has not yet been fully elucidated.

このように球状酸化チタン微粒子の添加により耐擦り傷
性の優れたフィルムを得ることができるが、本発明によ
れば、更に他の不活性微粒子を併用して2種類の粒子を
用いる利点を有しつつ、走行性、耐擦り信性、耐摩耗性
、耐疲労性、電気絶縁性および透明性等に優れたフィル
ムを提供しうることが明らかとなった。
In this way, a film with excellent scratch resistance can be obtained by adding spherical titanium oxide fine particles, but according to the present invention, there is an advantage of using two types of particles in combination with other inert fine particles. At the same time, it has become clear that it is possible to provide a film with excellent running properties, abrasion resistance, abrasion resistance, fatigue resistance, electrical insulation, transparency, etc.

すなわち、かかる二軸配向ポリエステルフィルムは、 (I)芳香族ポリエステル、 (II)(a)最大径と最小径の比で定義される粒径比
が1.2を超えない範囲にあり、 (b) 0.01〜4μmの平均粒径を有し、そして (C) 70TIi/g以上のBET比表面積を有する
、 球状酸化チタン微粒子0.005〜4重但%(重量族ポ
リエステルに対して)、および (III)0.01〜4μmの平均粒径を有する不活性
微粒子0.005〜4重量%(芳香族ポリエステルに対
して) から成る緊密な混合物から形成された二軸配向フィルム
である。
That is, such a biaxially oriented polyester film has (I) an aromatic polyester, (II) (a) a particle size ratio defined by the ratio of the maximum diameter to the minimum diameter that does not exceed 1.2, and (b ) having an average particle size of 0.01 to 4 μm, and (C) having a BET specific surface area of 70 TIi/g or more, 0.005 to 4 weight percent of spherical titanium oxide fine particles (based on heavy group polyester); and (III) 0.005 to 4% by weight (based on aromatic polyester) of inert microparticles having an average particle size of 0.01 to 4 μm.

上記芳香族ポリエステル(I>と球状酸化チタン微粒子
(II)については前述したとおりである。
The aromatic polyester (I>) and the spherical titanium oxide fine particles (II) are as described above.

上記不活性微粒子(III)としては、芳香族ポリエス
テルに不活性で不溶性でありそして常温で固体のものが
使用される。これらは外部添加粒子でも内部生成粒子で
もよい。また、例えば有機酸の金属塩でもよく、また無
機物でもよい。好ましい不活性微粒子(II)としては
、■炭酸カルシウム。
As the inert fine particles (III), those which are inert and insoluble in the aromatic polyester and are solid at room temperature are used. These may be externally added particles or internally generated particles. Further, for example, a metal salt of an organic acid may be used, or an inorganic substance may be used. Preferred inert fine particles (II) include: (1) Calcium carbonate.

■二酸化ケイ素(水和物、ケイ藻土、ケイ砂1石英等を
含む)、■アルミナ、■5iQz分を30重量%以上含
有するケイ酸塩(例えば非晶質或いは結晶質の粘土鉱物
、アルミノシリケート化合物(焼成物や水和物を含む)
、温石綿、ジルコン、フライアッシュ等)1.■Hg、
 Zn、 Zr、およびTiの酸化物、■Ca、および
8aの硫酸塩、■Li、 Ha、およびCaのリン酸塩
(1水素塩や2水素塩を含む)、■[i。
■Silicon dioxide (including hydrates, diatomaceous earth, silica sand, quartz, etc.), ■Alumina, ■Silicate containing 30% by weight or more of 5iQz (e.g., amorphous or crystalline clay minerals, aluminium, etc.) Silicate compounds (including fired products and hydrated products)
, warm asbestos, zircon, fly ash, etc.) 1. ■Hg,
Oxides of Zn, Zr, and Ti, ■ Sulfates of Ca and 8a, ■ Phosphates of Li, Ha, and Ca (including monohydrogen salts and dihydrogen salts), ■ [i.

Na、およびKの安息香酸塩、■Ca、 Zn、および
Hnのテレフタル酸塩、[株])fg、 Ca、 Ba
、 Zn、 Cd、 Pb。
Benzoate of Na and K, Terephthalate of Ca, Zn, and Hn, fg, Ca, Ba
, Zn, Cd, Pb.

sr、 )in、 Fe、 Co、およびNiのチタン
酸塩、□Ba。
sr, ) in, Fe, Co, and Ni titanates, □Ba.

およびpbのクロム酸塩、■炭素(例えばカーボンブラ
ック、グラファイト等)、■ガラス(例えばガラス粉、
ガラスピーズ等)、■H!1lcO3,■ホタル石、お
よび[株]ZnSが例示される。特に好ましいものとし
て、無水ケイ酸、含水ケイ酸、酸化アルミニウム、ケイ
酸アルミニウム(焼成物、水和物等を含む)、燐酸1リ
チウム、燐酸3リチウム。
and pb chromate, ■carbon (e.g. carbon black, graphite, etc.), ■glass (e.g. glass powder,
Glass Peas, etc.), ■H! Examples include 1lcO3, fluorite, and ZnS. Particularly preferred are anhydrous silicic acid, hydrated silicic acid, aluminum oxide, aluminum silicate (including fired products, hydrates, etc.), monolithium phosphate, and trilithium phosphate.

燐酸ナトリウム、燐酸カルシウム、硫酸バリウム。Sodium phosphate, calcium phosphate, barium sulfate.

酸化チタン、安息香酸リチウム、これらの化合物の複塩
(水和物を含む)、ガラス粉、粘土(カオリン、ベント
ナイト、白土等を含む)、タルク。
Titanium oxide, lithium benzoate, double salts of these compounds (including hydrates), glass powder, clay (including kaolin, bentonite, clay, etc.), talc.

ケイ藻上等が例示される。かかる不活性微粒子(1)の
中でも特に外部添加粒子が好ましい。
Examples include diatoms. Among such inert fine particles (1), externally added particles are particularly preferred.

球状酸化チタン微粒子(II>は0.01〜4μmの平
均粒径を有している。好ましくは0,05〜3μm、特
に好ましくは0.1〜2μmの平均粒径を有している。
The spherical titanium oxide fine particles (II>) have an average particle size of 0.01 to 4 μm, preferably 0.05 to 3 μm, particularly preferably 0.1 to 2 μm.

また、不活性粒子(I[I)はo、 oi〜4μmの平
均粒径を有するものが併用される。不活性微粒子(II
)は好ましくは0.05〜3μmの平均粒径、より好ま
しくは0.4〜2μmの平均粒径を有している。
In addition, inert particles (I [I) having an average particle diameter of o, oi to 4 μm are used in combination. Inert fine particles (II
) preferably has an average particle size of 0.05-3 μm, more preferably 0.4-2 μm.

不活性微粒子(I[I)の含有量は芳香族ポリエステル
に対し0.005〜4重量%であるが、0.01〜,2
重φ%、更には0.01〜1重量%、特に0.05〜0
.5重量%が好ましい。一方、球状酸化チタン微粒子(
II)の含有量は芳香族ポリエステルに対し0.005
〜4重量%であるが、0.01〜2重量%、更には0.
04〜i、o重量%、特にo、i〜0.5重量%が好ま
しい。
The content of inert fine particles (I[I) is 0.005 to 4% by weight based on the aromatic polyester, but 0.01 to 2% by weight.
Weight φ%, further 0.01 to 1% by weight, especially 0.05 to 0
.. 5% by weight is preferred. On the other hand, spherical titanium oxide fine particles (
The content of II) is 0.005 for aromatic polyester.
-4% by weight, but 0.01-2% by weight, and even 0.01-2% by weight.
04 to i, o% by weight, particularly o, i to 0.5% by weight are preferred.

不活性微粒子(III)或いは球状酸化チタン微粒子(
II)の含有量が少なすぎると、2種の粒子を用いる相
乗効果が得られず、走行性、耐摩耗性。
Inert fine particles (III) or spherical titanium oxide fine particles (
If the content of II) is too small, a synergistic effect using the two types of particles cannot be obtained, resulting in poor running performance and wear resistance.

耐疲労性、つぶれ性、端面揃い性等の特性が低下するの
で好ましくない。
This is not preferable because properties such as fatigue resistance, crushability, and end face alignment deteriorate.

一方、球状酸化チタン微粒子(I[>や不活性微粒子(
In>の含有量が多すぎると、フィルム表面が粗れすぎ
、例えば磁気テープにおける電磁変換特性が低下するの
で、好ましくない。
On the other hand, spherical titanium oxide fine particles (I [>) and inert fine particles (
If the content of In> is too large, the surface of the film becomes too rough and, for example, the electromagnetic conversion characteristics of a magnetic tape deteriorate, which is not preferable.

本発明の二軸配向フィルムを製造する際に、球状酸化チ
タン微粒子、あるいはそれと不活性微粒子を芳香族ポリ
エステルと緊密に混合するにはこれらの微粒子を、芳香
族ポリエステルの重合前または重合中に重合釜中で、重
合終了後ペレタイズするとき押出機中で、おるいはシー
ト状に溶融押出しする際押出機中で、該芳香族ポリエス
テルと十分に混錬すればよい。
When producing the biaxially oriented film of the present invention, in order to intimately mix spherical titanium oxide fine particles or inert fine particles thereof with aromatic polyester, these fine particles must be polymerized before or during the polymerization of aromatic polyester. It may be sufficiently kneaded with the aromatic polyester in a pot, in an extruder when pelletizing after completion of polymerization, or in an extruder when melt-extruding into a sheet.

本発明のポリエステルフィルムは、例えば、融点(1m
 : ’C)ないしくTm+70)°Cの温度で芳香族
ポリエステルを溶融押出して固有粘度0.35〜0.9
dl/(Iの未延伸フィルムを得、該未延伸フィルムを
一軸方向く縦方向または横方向)に(Till−10)
〜(丁g+70) ℃の温度(但し、Tg:芳香族ポリ
エステルのガラス転移温度)で2.5〜5.0倍の倍率
で延伸し、次いで上記延伸方向と直角方向(−段目延伸
が縦方向の場合には、二段目延伸は横方向となる)にr
g(℃)〜(丁g+70)℃の温度で2.5〜5.0倍
の倍率で延伸することで製造できる。この場合、面積延
伸倍率は9〜22倍、更には12〜22倍にするのが好
ましい。延伸手段は同時二軸延伸。
The polyester film of the present invention has a melting point (1 m
: 'C) or Tm + 70) melt extrusion of aromatic polyester at a temperature of 0.35 to 0.9
dl/(I obtained an unstretched film, and the unstretched film was uniaxially longitudinally or transversely) (Till-10)
It is stretched at a magnification of 2.5 to 5.0 times at a temperature of ~ (Tg + 70) °C (Tg: glass transition temperature of aromatic polyester), and then in a direction perpendicular to the above stretching direction (the -th stage stretching is longitudinal). direction, the second stage stretching will be in the transverse direction)
It can be produced by stretching at a temperature of g(°C) to (g+70)°C at a magnification of 2.5 to 5.0 times. In this case, the area stretching ratio is preferably 9 to 22 times, more preferably 12 to 22 times. The stretching method is simultaneous biaxial stretching.

逐次二軸延伸のいずれでもよい。Either sequential biaxial stretching may be used.

更に、二軸配向フィルムは、(1g+70> ’C〜丁
m(℃)の温度で熱固定することができる。例えばポリ
エチレンテレフタレートフィルムについては190〜2
30’Cで熱固定することが好ましい。熱固定時間は例
えば1〜60秒である。
Furthermore, biaxially oriented films can be heat set at temperatures of (1g+70>'C to 1000F (°C); for example, for polyethylene terephthalate films, temperatures of 190 to 2
It is preferable to heat set at 30'C. The heat setting time is, for example, 1 to 60 seconds.

ポリエステルフィルムの厚みは、1〜100μm1更に
は1〜50μm、特に1〜25μmが好ましい。
The thickness of the polyester film is preferably 1 to 100 μm, more preferably 1 to 50 μm, and particularly preferably 1 to 25 μm.

本発明のポリエステルフィルムは、走行時の摩擦係数が
小さく、操作性が大変良好である。またこのフィルムを
磁気テープのベースとして用いると、磁気記録再生装置
(ハードウェア)の走行部分との接触摩擦によるベース
フィルムの削れが極めて少なく、耐久性が良好である。
The polyester film of the present invention has a small coefficient of friction during running and has very good operability. Furthermore, when this film is used as a base for a magnetic tape, there is very little wear of the base film due to contact friction with the running part of a magnetic recording/reproducing device (hardware), and the durability is good.

更に、本発明の二軸配向ポリエステルフィルムはフィル
ム形成時において巻き性が良好であり、カリ巻き皺が発
生しにくく、その上スリット段階において寸法安定的に
シャープに切断されるという長所がある。
Further, the biaxially oriented polyester film of the present invention has the advantage that it has good winding properties during film formation, is less likely to cause creases, and is dimensionally stable and sharply cut at the slitting stage.

以上のフィルム製品としての長所と、フィルム形成時の
長所との組合せによって、本発明のフィルムは、特に、
高級グレードの磁気用途分野のベースフィルムとして極
めて有用であり、またその製造も容易で安定に生産でき
る利点を持つ。本発明のポリエステルフィルムは高級グ
レードの磁気記録媒体、例えばマイクロ記録材、コンパ
クト化あるいは高密度化したフロッピーディスク製品。
By combining the above-mentioned advantages as a film product and advantages during film formation, the film of the present invention particularly has the following advantages:
It is extremely useful as a base film for high-grade magnetic applications, and has the advantage of being easy and stable to produce. The polyester film of the present invention is suitable for high-grade magnetic recording media, such as micro-recording materials, compact or high-density floppy disk products.

オーディオおよびビデオ等の長時間録画用の超薄物、高
密度記録生地フィルム、高品質画像記録再生用の磁気記
録フィルム、例えばメタルや蒸着磁気記録材等のベース
フィルムとして好適である。
It is suitable as an ultra-thin material for long-term recording of audio and video, a high-density recording fabric film, a magnetic recording film for high-quality image recording and reproduction, and a base film for metals, vapor-deposited magnetic recording materials, etc.

それ故、本発明によれば、上記本発明の二軸配向ポリエ
ステルフィルムの片側または両面に磁性層を設けた磁気
記録媒体が同様に提供される。
Therefore, according to the present invention, there is also provided a magnetic recording medium in which a magnetic layer is provided on one or both sides of the biaxially oriented polyester film of the present invention.

磁性層、および磁性層をベースフィルム上に設ける方法
はそれ自体公知であり、本発明においても公知の磁性層
、およびそれを設ける方法を採用することができる。
The magnetic layer and the method of providing the magnetic layer on the base film are known per se, and the known magnetic layer and method of providing the same can be employed in the present invention.

例えば磁性層をベースフィルム上に磁性塗料を塗布する
方法によって設ける場合には、磁性層に用いられる強磁
性粉体としてはT−Fe20wl、 Co含有のγ−F
e304 、 Co含有のFe304 、 Cr0z、
バリウムフェライト等、公知の強磁性体が使用できる。
For example, when a magnetic layer is provided by coating a magnetic paint on a base film, the ferromagnetic powder used for the magnetic layer is T-Fe20wl, Co-containing γ-F.
e304, Co-containing Fe304, Cr0z,
Known ferromagnetic materials such as barium ferrite can be used.

磁性粉体と共に使用されるバインダーとしては、公知の
熱可塑性樹脂、熱硬化性樹脂2反応型樹脂またはこれら
の混合物である。これらの樹脂として例えば塩化ビニル
−酢酸ビニル共重合体、ポリウレタンエラストマー等が
あげられる。
The binder used with the magnetic powder is a known thermoplastic resin, thermosetting resin, two-reaction type resin, or a mixture thereof. Examples of these resins include vinyl chloride-vinyl acetate copolymers and polyurethane elastomers.

磁性塗料は、さらに研磨剤(例えばα−AhO:+等)
、導電剤(例えばカーボンブラック等)2分散剤(例え
ばレシチン等)、潤滑剤(例えばn −ブチルステアレ
ート、レシチン酸等)、硬化剤(例えばエポキシ樹脂等
)および溶媒(例えばメチルエチルケトン、メチルイソ
ブチルケトン、トルエン等)等を含有することができる
The magnetic paint is further coated with an abrasive (e.g. α-AhO:+, etc.)
, conductive agent (e.g. carbon black, etc.), dispersant (e.g. lecithin, etc.), lubricant (e.g. n-butyl stearate, lecithic acid, etc.), curing agent (e.g. epoxy resin, etc.), and solvent (e.g. methyl ethyl ketone, methyl isobutyl ketone). , toluene, etc.).

磁性層を、ベースフィルム上に金属薄膜を形成ざぜる方
法によって設ける場合には、それ自体公知の真空蒸着法
、スパッタ法、イオンプレーディング法、 C,V、D
、 (Chemical Vapour Depsit
ion)法。
When the magnetic layer is provided by a method of forming a metal thin film on a base film, a method known per se such as vacuum evaporation method, sputtering method, ion plating method, C, V, D
, (Chemical Vapor Depsit
ion) law.

無電解メツキ法等の方法を採用することができる。A method such as an electroless plating method can be employed.

金属としては鉄、コバルト、ニッケル、およびそれらの
合金(例えばCo−N1−P合金、 CO−l−[e合
金、Co−cr金合金Co−Ni合金等)などがあげら
れる。
Examples of metals include iron, cobalt, nickel, and alloys thereof (eg, Co-N1-P alloy, CO-1-[e alloy, Co-cr gold alloy, Co-Ni alloy, etc.).

本発明の二軸配向ポリエステルは、上述の磁気記録媒体
の他に種々の用途に用いることができる。
The biaxially oriented polyester of the present invention can be used for various purposes in addition to the above-mentioned magnetic recording media.

例えば、コンデンサー用、包装用、蒸着用等の用途に有
用である。
For example, it is useful for uses such as capacitors, packaging, and vapor deposition.

なお、本発明における種々の物性値および特性は以下の
如くして測定されたものであり且つ定義される。
Note that various physical property values and characteristics in the present invention were measured and defined as follows.

(1)球状酸化チタン微粒子の粒径等 粒子粒径の測定には次の状態がある。(1) Particle size etc. of spherical titanium oxide fine particles There are the following conditions for particle size measurement.

1)粉体から、平均粒径1粒径比等を求める場合2)フ
ィルム中の粒子の平均粒径2粒径比等を求める場合 1)粉体からの場合: 電顕試料台上に粉体を個々の粒子ができるだけ重ならな
いように散在せしめ、金スパッター装置により表面に金
薄膜蒸着層(層厚み200〜300人)を形成せしめ、
走査型電子顕微鏡にて1万〜3万倍の倍率で観察し、日
本レギュレーター■製ルーゼックス(Luzex)50
0にて、少なくとも100個の粒子の最大径(Dli)
、最小径(Dsi)および面積円相光径(01)を求め
る。そして、これらの次式で表わされる数平均値をもっ
て、粒子の最大径(Di) 、 R小径(Os) 、平
均粒径(C1)を表わす。
1) When calculating the average particle size 1 particle size ratio etc. from powder 2) When calculating the average particle size 2 particle size ratio etc. of particles in a film 1) From powder: Place the powder on the electron microscope sample stage. The bodies were scattered so that the individual particles did not overlap as much as possible, and a thin gold film deposited layer (layer thickness of 200 to 300 particles) was formed on the surface using a gold sputtering device.
Observe with a scanning electron microscope at a magnification of 10,000 to 30,000 times, and use Luzex 50 manufactured by Nippon Regulator ■.
Maximum diameter of at least 100 particles (Dli) at 0
, the minimum diameter (Dsi) and the area circular phase diameter (01) are determined. Then, the maximum diameter (Di), the small R diameter (Os), and the average particle diameter (C1) of the particles are expressed by the number average values expressed by the following equations.

01=(Σ Dli)/n。01=(Σ Dli)/n.

:=1 03=(Σ 0si)/n。:=1 03=(Σ 0si)/n.

i=1 ’C1=(Σ Di)/n 1=1 2)フィルム中の粒子の場合: 試料フィルム小片を走査型電子顕微鏡用試料台に固定し
、日本電子■製スパッターリング装置(JFC−110
0型イオンスパツタリング装置)を用いてフィルム表面
に下記条件にてイオンエツチング処理を施す。条件は、
ペルジャー内に試料を設置し、約10−3 TOrrの
真空状態まで真空度を上げ、電圧0.25kV、電流1
2゜5mAにて約10分間イオンエツヂングを実施する
i = 1 'C1 = (Σ Di) / n 1 = 1 2) In the case of particles in a film: A small piece of sample film was fixed on a sample stage for a scanning electron microscope, and sputtered using a sputtering device (JFC-110) manufactured by JEOL ■.
The surface of the film is subjected to ion etching using a Type 0 ion sputtering device under the following conditions. condition is,
Place the sample in a Pel jar, raise the vacuum to approximately 10-3 Torr, and apply a voltage of 0.25 kV and a current of 1.
Ion etching is performed at 2.5 mA for about 10 minutes.

更に同装置にて、フィルム表面に金スパッターを施し、
走査型電子顕微鏡にて10,000〜30、000倍で
観察し、日本レギュレーター■製ルーセックス500に
て少なくとも100個の粒子の最大径(Dli)、最小
径(Dsi)および面積円相光径(Di)を求める。以
下、上記1)と同様に行なう。
Furthermore, using the same equipment, gold sputtering was applied to the film surface.
Observe with a scanning electron microscope at 10,000 to 30,000 times, and measure the maximum diameter (Dli), minimum diameter (Dsi), and area circular phase diameter of at least 100 particles using Lucex 500 manufactured by Nippon Regulator ■. Find (Di). The following steps are carried out in the same manner as in 1) above.

(2)球状酸化チタン微粒子以外の粒子の粒径等1)平
均粒径 島津製作所製CP−50型セントリフニゲルパーティク
ル サイズ アナライザー (Centrifugal  Particle  5
ize  Analyser)  を用いて測定し、1
qられた遠心沈降曲線を基に算出した各粒径の粒子とそ
の存在量との積算曲線から、50マスパーセントに相当
する粒径を読み取り、この値を上記平均粒径とする(B
ookf’粒度測定技術」日刊工業新聞社発行。
(2) Particle size, etc. of particles other than spherical titanium oxide fine particles 1) Average particle size Centrifugal Particle Size Analyzer CP-50 model manufactured by Shimadzu Corporation (Centrifugal Particle 5)
ize Analyser) and 1
The particle size corresponding to 50 mass percent is read from the integrated curve of particles of each particle size and their abundance calculated based on the centrifugal sedimentation curve obtained by q, and this value is taken as the above average particle size (B
ookf' Particle Size Measurement Technology'' published by Nikkan Kogyo Shimbun.

1975年2頁242〜247参照)。1975, 2, pp. 242-247).

2)粒径比 フィルム小片をエポキシ樹脂にて固定成形し、ミクロト
ームにて約600人の厚みの超薄切片(フィルムの流れ
方向に平行に切断する)を作成する。この試料を透過型
電子顕微鏡(日立製作新製: 11−800型)にてフ
ィルム中の滑剤の断面形状を観察し、滑剤の長軸と短軸
の比で表わす。
2) Particle size ratio A small piece of the film is fixed and molded with epoxy resin, and an ultra-thin section (cut parallel to the film flow direction) with a thickness of approximately 600 mm is created using a microtome. The cross-sectional shape of the lubricant in the film was observed using a transmission electron microscope (New Model 11-800 manufactured by Hitachi) and expressed as the ratio of the long axis to the short axis of the lubricant.

3)相対標準偏差 1)項の積算曲線より差分粒度分布を求め、次の相対標
準偏差の定義式にもとづいて相対標準偏差を算出する。
3) Relative standard deviation A differential particle size distribution is obtained from the integration curve in section 1), and the relative standard deviation is calculated based on the following definition formula for relative standard deviation.

相対標準偏差= 、4’  i=1 ここで0; : 1)項で求めた各々の粒径D:1)項
で求めた平均径 n:1)項での積算曲線を求めたときの分割数 φi:各粒径粒径子の存在確率(マスパーセント) を表わす。
Relative standard deviation = , 4' i=1 where 0; : Each particle size D determined in 1): Average diameter n determined in 1): Division when calculating the integrated curve in 1) Number φi: represents the existence probability (mass percent) of each particle size particle.

(3)比表面積 B E Tの吸着理論を適用して求める。測定法として
は定圧容量法を採用し、吸着気体としてN2を用い、液
体窒素浴を用いて測定温度−195℃にする。
(3) Determine the specific surface area BET by applying the adsorption theory. A constant pressure volumetric method is adopted as the measurement method, N2 is used as the adsorption gas, and the measurement temperature is set to -195°C using a liquid nitrogen bath.

BET式 P        I      K−I     P
V(Rs−P)     VmK     VmK  
   PS但しPS:測定温度における窒素飽和蒸気圧
力P:吸着平衡時の窒素圧 V:吸着平衡時の吸着量 vm:単分子図吸着昆 に:定数 P      P を用いて□と−との関係をグラ V(Ps−P)    Ps フに画き、−が0.05〜0.35の範囲で直線をPS 引き、その切片と勾配からVmおよびKを算出する。こ
の場合窒素分子の占有面積を16.2人2とする。
BET type P I K-I P
V(Rs-P) VmK VmK
PS However, PS: Nitrogen saturated vapor pressure at measurement temperature P: Nitrogen pressure at adsorption equilibrium V: Adsorption amount at adsorption equilibrium vm: Single molecule diagram adsorption: Using the constant P P, graph the relationship between □ and -. V(Ps-P) Ps Draw a straight line in the range of -0.05 to 0.35, and calculate Vm and K from its intercept and slope. In this case, the area occupied by nitrogen molecules is 16.2 people.

(4)フィルム表面粗さ(Ra) 中心線平均粗さ(Ra)としてJIS−BO601で定
義される値であり、本発明では■小板研究所の触針式表
面粗さ計(StlRFCORDER5E−30C)を用
いて測定する。測定条件は次の通りである。
(4) Film surface roughness (Ra) This is the value defined in JIS-BO601 as the center line average roughness (Ra), and in the present invention, ). The measurement conditions are as follows.

(a)触針先端半径:2μm (b)測定圧力  : 30mg (C)カットオフ :0.25mm (d)測定長   =2.5…m (e)データーのまとめ方 同−資料について5回繰返し測定し、最も大きい値を1
つ除き、残り4つのデーターの平均値の小数点以下4桁
目を四捨五入し、小数点以下3桁目まで表示する。
(a) Stylus tip radius: 2 μm (b) Measuring pressure: 30 mg (C) Cutoff: 0.25 mm (d) Measuring length = 2.5 m (e) How to summarize data - Repeat 5 times for the same material Measure and set the largest value to 1
The average value of the remaining four data is rounded off to the fourth decimal place and displayed to the third decimal place.

(5)フィルムの摩擦係数(μk) 温度20℃、湿度60%の環境で、巾172インチに裁
断したフィルムを、固定棒(表面粗さ0.3μm)に角
度θ= (152/180)πラジアン(152°)で
接触させて毎分200C…の速さで移動(摩IM>ざぜ
る。入りロテンションT1が35gとなるようにテンシ
ョンコントローラーを調整した時の出口テンション(T
2:(])をフィルムが90m走行したのちに出口テン
ション検出機で検出し、次式で走行摩擦係数μkを算出
する。
(5) Film friction coefficient (μk) In an environment with a temperature of 20°C and a humidity of 60%, a film cut to a width of 172 inches is placed on a fixed rod (surface roughness 0.3 μm) at an angle θ = (152/180)π radian (152°) and move at a speed of 200 C per minute (rubbing IM > Rubbing. Exit tension (T) when the tension controller is adjusted so that the entry tension T1 is 35 g
2: (]) is detected by an exit tension detector after the film has traveled 90 m, and the running friction coefficient μk is calculated using the following formula.

μk = (2.303/θ) 10g(T2/T+)
=0.86810(+  (Tz/35)(6)スクラ
ッチ判定 巾1/2インチに裁断したフィルムを、上記(5)の摩
擦係数測定装置を用いてフィルム面が固定棒に152°
の角度で接触する様にかけ、20Cm/ Sec速度で
10m走行させ、これを50回繰返した後のフィルムの
表面に入ったスクラッチの太さ、深さ、数を総合して次
の5段階判定する。
μk = (2.303/θ) 10g (T2/T+)
= 0.86810 (+ (Tz/35) (6) The film cut to a scratch judgment width of 1/2 inch was measured using the friction coefficient measuring device described in (5) above so that the film surface was 152° to the fixed rod.
The film was run for 10 meters at a speed of 20 cm/sec, and after repeating this process 50 times, the thickness, depth, and number of scratches on the surface of the film were evaluated based on the following five grades. .

〈5段階判定〉 ◎ フィルムに全くスクラッチが認められない ○ フィルムにほとんどスクラッチが認められない △ フィルムにスクラッチが認められる(何本か) X フィルムに太いスクラッチが何本か認められる ×× フィルムに太く深いスクラッチが多数全面に認め
られる (7)削れ性 フィルムの走行面の削れ性を5段のミニスーパーカレン
ダーを使用して評価する。カレンダーはナイロンロール
とスチールロール レンダーであり、処理温度は80℃,フィルムにかかる
線圧は200にMCm,フィルムスピードは50 m/
分で走行フィルムは全長2000m走行させた時点でカ
レンダーのトップローラ−に付着する汚れでベースフィ
ルムの削れ性を評価する。
<5-level evaluation> ◎ There are no scratches on the film ○ There are almost no scratches on the film △ There are scratches on the film (several scratches) X There are several thick scratches on the film ×× On the film Many thick and deep scratches are observed on the entire surface (7) Abrasion resistance The abrasion resistance of the running surface of the film is evaluated using a 5-stage mini super calendar. The calender was a nylon roll and a steel roll renderer, the processing temperature was 80°C, the linear pressure on the film was 200 MCm, and the film speed was 50 m/min.
After running the film for a total length of 2000 m, the abrasion resistance of the base film was evaluated based on the dirt that adhered to the top roller of the calendar.

く5段階判定〉 ◎ ナイロンロールの汚れ全くなし O ナイロンロールの汚れほとんどなし△ ナイロンロ
ールが少し汚れる X ナイロンロールがかなり汚れる XX  ナイロンロールがひどく汚れる(8)固有粘度
[η] 0−クロロフェノールを溶媒として用い、35℃で測定
した値、単位は100 CC/gである。
5-level evaluation> ◎ No stains on the nylon roll O Almost no stains on the nylon roll △ Slight stain on the nylon roll The value measured at 35°C using as a solvent is 100 CC/g.

〈実施例〉 以下、実施例を挙げて本発明を説明する。<Example> The present invention will be explained below with reference to Examples.

比較例1 ジメチルプレフタレートとエチレングリコールを、酢酸
マンガン(エステル交換触媒)、三酸化アンチモン(重
合触媒)、亜燐酸(安定剤)および平均粒径1,2μm
1体積形状係数0.06のカオリン(滑剤)の存在下、
常法により重合し、固有粘度0,62のポリエチレンテ
レフタレートを得た。
Comparative Example 1 Dimethyl prephthalate and ethylene glycol were mixed with manganese acetate (ester exchange catalyst), antimony trioxide (polymerization catalyst), phosphorous acid (stabilizer) and average particle size of 1.2 μm.
1 In the presence of kaolin (lubricant) with a volume shape factor of 0.06,
Polyethylene terephthalate with an intrinsic viscosity of 0.62 was obtained by polymerization using a conventional method.

このポリエチレンテレフタレートのペレットを、170
℃、3時間乾燥後、押出機ホッパーに供給し、溶融温度
280〜300℃で溶融し、この溶融ポリマーを1mm
のスリット状ダイを通して、表面仕上げ0.3S程度1
表面温度20℃の回転冷却ドラム上に押出し、200μ
mの未延伸フィルムを(qた。
This polyethylene terephthalate pellet was
℃, after drying for 3 hours, the molten polymer is fed to an extruder hopper and melted at a melting temperature of 280 to 300℃.
Through the slit-shaped die, the surface finish is about 0.3S1
Extruded onto a rotating cooling drum with a surface temperature of 20℃, 200μ
m unstretched film (q).

このようにして得られた未延伸フィルムを75℃にて予
熱し、更に低速、高速のロール間で15mm上方より9
00℃の表面温度のIRヒーター1本にて加熱し、低、
高速ロール表面速度差により3.5倍に縦延伸し、急冷
し、続いてステンターに供給して105℃にて横方向に
3.7倍延伸した。得られた二軸延伸フィルムを205
℃の温度で5秒間熱固定し、厚み15μmの熱固定二軸
延伸フィルムを得た。
The unstretched film thus obtained was preheated at 75°C, and further rolled between low speed and high speed rolls from 15 mm above.
Heated with one IR heater with a surface temperature of 00℃, low,
The film was longitudinally stretched 3.5 times by a difference in the surface speed of high-speed rolls, rapidly cooled, and then supplied to a stenter and stretched 3.7 times in the transverse direction at 105°C. The obtained biaxially stretched film was
The film was heat-set for 5 seconds at a temperature of .degree. C. to obtain a heat-set biaxially stretched film having a thickness of 15 .mu.m.

得られたフィルムは擦り傷が多数発生し、不満足なもの
であった。このフィルムの特性を第1表に示す。
The obtained film had many scratches and was unsatisfactory. The properties of this film are shown in Table 1.

比較例2 カオリンの代りに平均粒径0.8μm2粒径比1.4の
炭酸カルシウムを用いる以外は比較例1と同様にして、
ポリエチレンテレフタレートのペレットを得た。
Comparative Example 2 Same as Comparative Example 1 except that calcium carbonate with an average particle size of 0.8 μm and a 2 particle size ratio of 1.4 was used instead of kaolin.
Pellets of polyethylene terephthalate were obtained.

このペレットを用いて、比較例1と同様にして厚み15
μmの二軸延伸フィルムを得た。このフィルムは擦り傷
は比較的少なく、走行性は良いものの、カレンダー工程
にて白粉が発生した。このフィルムの特性を第1表に示
す。
Using this pellet, the thickness was 15 mm in the same manner as in Comparative Example 1.
A biaxially stretched film of μm was obtained. Although this film had relatively few scratches and had good running properties, white powder was generated during the calendering process. The properties of this film are shown in Table 1.

比較例3,4 カオリンの代りに平均粒径016μm1粒径比10の多
孔質シリカ、または平均粒径0.35μm1粒径比1,
4の炭酸カルシウムを用いる以外は比較例1と同様にし
て、ポリエチレンテレフタレートのペレットを得た。
Comparative Examples 3 and 4 Instead of kaolin, porous silica with an average particle size of 016 μm and a particle size ratio of 10, or an average particle size of 0.35 μm and a particle size ratio of 1,
Pellets of polyethylene terephthalate were obtained in the same manner as in Comparative Example 1 except that calcium carbonate No. 4 was used.

このペレットを用いて、比較例1と同様にして厚み15
μmの二輪延伸フィルムを1qた。
Using this pellet, the thickness was 15 mm in the same manner as in Comparative Example 1.
1 q of μm two-wheel stretched film was obtained.

比較例3のものは削れ性は良いものの擦り傷が多数発生
し、不満足なものであった。また比較例4のものは、表
面は平坦であるが、走行性に劣り且つ白粉が発生し、不
満足なものであった。これらの特性を第1表に示す。
Although the material of Comparative Example 3 had good abrasion properties, many scratches occurred and was unsatisfactory. Furthermore, although the surface of Comparative Example 4 was flat, the running properties were poor and white powder was generated, which was unsatisfactory. These properties are shown in Table 1.

実施例1〜3 カオリンの代りに、第1表記載の球状酸化チタンを用い
る以外は比較例1と同様にして厚み15μmの二軸配向
フィルムを得た。いずれのものも表面平坦ながら走行性
に優れ、且つ擦り傷、白粉の発生量が少なく満足なもの
であった。これらの特性を第1表に示す。
Examples 1 to 3 Biaxially oriented films with a thickness of 15 μm were obtained in the same manner as in Comparative Example 1, except that spherical titanium oxide listed in Table 1 was used instead of kaolin. All of them had a flat surface but had excellent running properties, and were satisfactory in that the amount of scratches and white powder produced was small. These properties are shown in Table 1.

比較例5 カオリンの代りに、第1表記載の球状酸化チタンを用い
る以外は比較例1と同様にして厚み15μmの二軸配向
フィルムを得た。このフィルムは球状酸化チタンの粒径
が過大であるため、走行性および耐擦り偏性は良好であ
るが、表面が粗であり且つ白粉の発生量が多く、不満足
なものであった。これらの特性を第1表に示す。
Comparative Example 5 A biaxially oriented film with a thickness of 15 μm was obtained in the same manner as in Comparative Example 1 except that spherical titanium oxide listed in Table 1 was used instead of kaolin. Since the particle size of the spherical titanium oxide was too large, this film had good running properties and uneven scratch resistance, but was unsatisfactory because the surface was rough and a large amount of white powder was generated. These properties are shown in Table 1.

比較例6〜8 ジメヂルプレフタレートとエチレングリコールを、酢酸
マンガン(エステル交換触媒〉、三酸化アンチモン(重
合触媒〉、亜燐酸(安定剤〉および第2表に示す滑剤粒
子の存在下、エステル交換および重縮合を行ない、固有
粘度([η] ) 0.65のポリエチレンテレツタレ
ートを得た。
Comparative Examples 6 to 8 Dimethyl prephthalate and ethylene glycol were transesterified in the presence of manganese acetate (transesterification catalyst), antimony trioxide (polymerization catalyst), phosphorous acid (stabilizer), and lubricant particles shown in Table 2. Then, polycondensation was performed to obtain polyethylene terestalate having an intrinsic viscosity ([η]) of 0.65.

なお、上記滑剤はエチレングリコールに添加し、超音波
分散処理して得られたグリコール分散液として添加した
The above lubricant was added to ethylene glycol and added as a glycol dispersion obtained by ultrasonic dispersion treatment.

このポリエチレンテレフタレートのペレットを170’
Cで乾燥し、280°Cで溶融押出し、40℃に保持し
たキャスティングドラム上で急冷固化せしめて厚さ20
0μmの未延伸フィルムを得た。
This polyethylene terephthalate pellet is 170'
It was dried at C, melt extruded at 280°C, and rapidly solidified on a casting drum kept at 40°C to a thickness of 20°C.
An unstretched film of 0 μm was obtained.

このようにして得られた未延伸フィルムを75℃にて予
熱し、更に低速、高速のロール間で15mm上方より9
00℃の表面温度のIRヒーター1本にて加熱して3.
6倍に延伸し、急冷し、続いてステンターに供給し10
5℃にて横方向に3,7倍に延伸した。得られた二軸延
伸フィルムを205℃の温度で5秒間熱固定し、厚み1
5μmの熱固定二軸配向フィルムを得た。
The unstretched film thus obtained was preheated at 75°C, and further rolled between low speed and high speed rolls from 15 mm above.
3. Heating with one IR heater with a surface temperature of 00°C.
Stretched 6 times, rapidly cooled, and then fed to a stenter for 10
It was stretched 3.7 times in the transverse direction at 5°C. The obtained biaxially stretched film was heat-set at a temperature of 205°C for 5 seconds to a thickness of 1
A heat-set biaxially oriented film of 5 μm was obtained.

このフィルムの特性を第2表に示す。The properties of this film are shown in Table 2.

比較例6〜8のものは、比較例1〜4のものが不満足で
あった為に粒径の小なる炭酸カルシウムを粒径の大なる
カオリン或いは多孔質シリカとともに添加する事により
、削れ性の改良を81つたものであるが、擦り信性は悪
化し不満足なものであった。
In Comparative Examples 6 to 8, since Comparative Examples 1 to 4 were unsatisfactory, calcium carbonate with a small particle size was added together with kaolin or porous silica with a large particle size to improve the abrasion resistance. Although 81 improvements were made, the reliability deteriorated and was unsatisfactory.

実施例4〜7 第2表に示す滑剤粒子を用いる以外は比較例6と同様に
して厚み15μmの二軸配向ポリニスデルフィルムを得
た。これらのフィルムには小粒子として球状酸化チタン
を用いているので走行抵抗が低く、且つ擦り傷、白粉の
発生が極めて少なく、満足なものであった。これらの特
性を第2表に示す。
Examples 4 to 7 Biaxially oriented polynisdel films with a thickness of 15 μm were obtained in the same manner as in Comparative Example 6 except that the lubricant particles shown in Table 2 were used. Since these films used spherical titanium oxide as small particles, the running resistance was low, and the occurrence of scratches and white powder was extremely low, so they were satisfactory. These properties are shown in Table 2.

Claims (1)

【特許請求の範囲】 1、( I )芳香族ポリエステル、及び (II)(a)最大径と最小径の比で定義される粒径比が
1.2を超えない範囲にあり、 (b)0.01〜4μmの平均粒径を有し、そして (c)70m^2/g以上のBET比表面積を有する、 球状酸化チタン微粒子0.005〜4重量%(芳香族ポ
リエステルに対して) から成る緊密な混合物から形成された二軸配向ポリエス
テルフィルム。 2、芳香族ポリエステルが芳香族ジカルボン酸を主たる
酸成分とし、そして脂肪酸グリコールを主たるグリコー
ル成分として成るポリエステルである特許請求の範囲第
1項記載のフィルム。 3、球状酸化チタン微粒子の粒径比が1.0〜1.15
の範囲にある特許請求の範囲第1項記載のフィルム。 4、球状酸化チタン微粒子の平均粒径が0.05〜3μ
mの範囲にある特許請求の範囲第1項記載のフィルム。 5、球状酸化チタン微粒子の量が0.01〜2.0重量
%(芳香族ポリエステルに対し)である特許請求の範囲
第1項記載のフィルム。 6、球状酸化チタン微粒子の下記式で表わされる相対標
準偏差が0.5以下である特許請求の範囲第1項記載の
フィルム。 相対標準偏差= ▲数式、化学式、表等があります▼ ここで、Di:個々の粒子の面積円相当径(μm)@D
@:面積円相当径の平均値 ▲数式、化学式、表等があります▼(μm) n:粒子の個数 を表わす。 7、( I )芳香族ポリエステル、 (II)(a)最大径と最小径の比で定義される粒径比が
1.0〜1.2であり、 (b)0.01〜4μmの平均粒径を有し、そして (b)70m^2/g以上のBET比表面積を有する、 球状酸化チタン微粒子0.005〜4重量%(芳香族ポ
リエステルに対して)、及び (III)0.01〜4μmの平均粒径を有する他の不活
性微粒子0.005〜4重量%(芳香族ポリエステルに
対して) から成る緊密な混合物から形成された二軸配向ポリエス
テルフィルム。
[Claims] 1. (I) an aromatic polyester, and (II) (a) a particle size ratio defined by the ratio of the maximum diameter to the minimum diameter does not exceed 1.2, and (b) From 0.005 to 4% by weight (based on aromatic polyester) of spherical titanium oxide fine particles having an average particle size of 0.01 to 4 μm and (c) a BET specific surface area of 70 m^2/g or more A biaxially oriented polyester film formed from an intimate mixture consisting of: 2. The film according to claim 1, wherein the aromatic polyester is a polyester comprising an aromatic dicarboxylic acid as a main acid component and a fatty acid glycol as a main glycol component. 3. Particle size ratio of spherical titanium oxide fine particles is 1.0 to 1.15
A film according to claim 1 falling within the scope of claim 1. 4. The average particle size of spherical titanium oxide fine particles is 0.05 to 3μ
The film according to claim 1, which is in the range of m. 5. The film according to claim 1, wherein the amount of spherical titanium oxide fine particles is 0.01 to 2.0% by weight (based on the aromatic polyester). 6. The film according to claim 1, wherein the relative standard deviation of the spherical titanium oxide fine particles expressed by the following formula is 0.5 or less. Relative standard deviation = ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Here, Di: Area circle equivalent diameter of individual particles (μm) @D
@: Average value of area circle equivalent diameter ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (μm) n: Represents the number of particles. 7, (I) Aromatic polyester, (II) (a) The particle size ratio defined by the ratio of the maximum diameter to the minimum diameter is 1.0 to 1.2, (b) An average of 0.01 to 4 μm and (b) 0.005 to 4% by weight (based on aromatic polyester) of spherical titanium oxide fine particles having a BET specific surface area of 70 m^2/g or more, and (III) 0.01 Biaxially oriented polyester film formed from an intimate mixture of 0.005 to 4% by weight (based on aromatic polyester) of other inert particulates having an average particle size of ~4 μm.
JP28318687A 1987-11-11 1987-11-11 Biaxially oriented polyester film Pending JPH01126340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28318687A JPH01126340A (en) 1987-11-11 1987-11-11 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28318687A JPH01126340A (en) 1987-11-11 1987-11-11 Biaxially oriented polyester film

Publications (1)

Publication Number Publication Date
JPH01126340A true JPH01126340A (en) 1989-05-18

Family

ID=17662247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28318687A Pending JPH01126340A (en) 1987-11-11 1987-11-11 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPH01126340A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140336A (en) * 1989-10-27 1991-06-14 Toray Ind Inc Biaxially oriented thermoplastic resin film
US5252388A (en) * 1990-12-13 1993-10-12 Teijin Limited Biaxially oriented polyester film for magnetic recording media
KR960000956A (en) * 1994-06-30 1996-01-25 하기주 Agricultural Polyester Film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140336A (en) * 1989-10-27 1991-06-14 Toray Ind Inc Biaxially oriented thermoplastic resin film
US5252388A (en) * 1990-12-13 1993-10-12 Teijin Limited Biaxially oriented polyester film for magnetic recording media
KR960000956A (en) * 1994-06-30 1996-01-25 하기주 Agricultural Polyester Film

Similar Documents

Publication Publication Date Title
KR930005824B1 (en) Biaxially oriented aromatic polyester film
EP0261430B1 (en) Biaxially oriented polyester film
JP2650928B2 (en) Biaxially oriented polyester film
JPS63278939A (en) Biaxially oriented polyester film
JPS6361028A (en) Biaxially orientated polyester film
JPS63108037A (en) Biaxially oriented polyester film
JPH01126340A (en) Biaxially oriented polyester film
JPH01123836A (en) Biaxially oriented polyester film
JPH0518327B2 (en)
JPH01299832A (en) Biaxially oriented polyester film
JPH01161025A (en) Biaxially oriented polyester film
JPH0513977B2 (en)
JPH054412B2 (en)
JPS63220417A (en) Biaxially oriented polyester film for magnetic recording medium
JPH0513980B2 (en)
JPH0367628B2 (en)
JPH055247B2 (en)
JPS63286438A (en) Biaxially oriented polyester film
JPH0513978B2 (en)
JPS63221132A (en) Biaxially oriented polyester film
JPH054415B2 (en)
JPS61261026A (en) Biaxially oriented polyester film
JPH0513979B2 (en)
JPS6372730A (en) Biaxially orientated polyester film
JPH054414B2 (en)