JPS6361028A - Biaxially orientated polyester film - Google Patents

Biaxially orientated polyester film

Info

Publication number
JPS6361028A
JPS6361028A JP61203836A JP20383686A JPS6361028A JP S6361028 A JPS6361028 A JP S6361028A JP 61203836 A JP61203836 A JP 61203836A JP 20383686 A JP20383686 A JP 20383686A JP S6361028 A JPS6361028 A JP S6361028A
Authority
JP
Japan
Prior art keywords
particles
film
particle size
component
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61203836A
Other languages
Japanese (ja)
Other versions
JPH0512374B2 (en
Inventor
Kinji Hasegawa
欣治 長谷川
Hisashi Hamano
浜野 久
Norihiro Nomi
能美 慶弘
Hideo Kato
秀雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP61203836A priority Critical patent/JPS6361028A/en
Priority to EP19870112416 priority patent/EP0261430B1/en
Priority to US07/089,571 priority patent/US4818581A/en
Priority to DE19873752302 priority patent/DE3752302T2/en
Priority to KR1019870009408A priority patent/KR910008997B1/en
Publication of JPS6361028A publication Critical patent/JPS6361028A/en
Publication of JPH0512374B2 publication Critical patent/JPH0512374B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the titled film, containing specific globular silica particles and other inert and fine inorganic particles having a smaller particle size than that of the above-mentioned silica particles, having excellent slip properties and shaving resistance and suitable for magnetic tape, condenser, etc. CONSTITUTION:In a reaction, for example, during ester interchange reaction for forming (A) a polyester (e.g. polyethylene terephthalate etc.) having preferably 0.4-0.9 intrinsic viscosity (B) 0.005-0.5wt% [based on the component (A)] globular silica particles having 0.4-2mum average particle size and 1.0-1.2 particle size ratio (major axis/minor axis) and (C) 0.005-0.5wt% [based on the component (A)] inert and fine inorganic particles (e.g. pulverized particles of calcium carbonate, etc.) having 0.05-0.6mum average particle size are added to a reaction system as, e.g. a slurry in glycol and the reaction mixture is polymerized, melt formed into film, biaxially drawn, and the thermally fixed to provide the aimed film.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向ポリエステルフィルムに関し、更に詳
しくは特定の球状シリカ粒子とこれより小さい粒径の他
の不活性無機微粒子を含有し、滑り性及び耐削れ性に優
れた二軸配向ポリエステルフィルムに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a biaxially oriented polyester film, more specifically, it contains specific spherical silica particles and other inert inorganic fine particles with a smaller particle size, and has a non-slip surface. The present invention relates to a biaxially oriented polyester film with excellent hardness and abrasion resistance.

ポリエチレンテレフタレートフィルムに代表されるポリ
エステルフィルムは、その優れた物理的、化学的特性の
故に、広い用途に用いられ。例えば磁気テープ用、コン
デンサー用、写真用、包装用。
Polyester films, typified by polyethylene terephthalate films, are used in a wide range of applications because of their excellent physical and chemical properties. For example, for magnetic tape, capacitors, photography, and packaging.

OHP用等に用いられている。It is used for OHP etc.

ポリエステルフィルムにおいてはその滑り性や耐削れ性
がフィルムの製造工程および各用途における加工工程の
作業性の良否、さらにはその製品品質の良否を左右する
大きな要因となっている。
In a polyester film, its slipperiness and abrasion resistance are major factors that determine the workability of the film manufacturing process and processing process in each application, as well as the quality of the product.

これらが不足すると、例えばポリエステルフィルム表面
に磁性層を塗布し、磁気テープとして用いる場合には、
磁性層塗布時におけるコーティングロールとフィルム表
面とのBt!lIが激しく、またこれによるフィルム表
面の摩耗も激しく、極端な場合はフィルム表面へのしわ
、擦り傷等が発生する。
If these are insufficient, for example, when applying a magnetic layer to the surface of a polyester film and using it as a magnetic tape,
Bt between the coating roll and the film surface when applying the magnetic layer! The II is severe, and the film surface is also abraded, and in extreme cases, wrinkles, scratches, etc. occur on the film surface.

また磁性層塗布後のフィルムをスリットしてオーディオ
、ビデオまたはコンピューター用テープ等に加工した後
でも、リールやカセット等からの引き出し、巻き上げそ
の他の操作の際に、多くのガイド部、再生ヘッド等との
間で摩耗が著しく生じ、擦り傷、歪の発生、さらにはポ
リエステルフィルム表面の削れ等による白粉状物質を析
出させる結果、磁気記録信号の欠落、即ちドロップアウ
トの大きな原因となることが多い。
Furthermore, even after slitting a film coated with a magnetic layer and processing it into audio, video, or computer tape, there are many guide parts, playback heads, etc. when pulling it out from a reel or cassette, winding it, or other operations. Significant abrasion occurs between the polyester film, causing scratches and distortion, and furthermore, the surface of the polyester film is scratched and a white powdery substance is deposited, which is often a major cause of missing magnetic recording signals, that is, dropouts.

一般にフィルムの滑り性の改良には、フィルム表面に凹
凸を付与することによりガイドロール等との間の接触面
積を減少せしめる方法が採用されており、大別して(D
フィルム原料に用いる高分子の触媒残漬から不活性の微
粒子を析出せしめる方法と、(m)不活性の無機微粒子
を添加せしめる方法が用いられている。これら原料微粒
子を添加せしめる方法が用いられている。これら原料高
分子中の微粒子は、その大きさが大きい程、滑り性の改
良効果が大であるのが一般的であるが、磁気テープ、特
にビデオ用のごとき精密用途には、その粒子が大きいこ
と自体がドロップアウト等の欠点発生の原因ともなり得
るため、フィルム表面の凹凸は出来るだけ微細である必
要があり、これら相反する特性を同時に満足すべき要求
がなされているのが現状である。
Generally, to improve the slipperiness of a film, a method is adopted in which the surface of the film is made uneven to reduce the contact area between the film and guide rolls, etc.
Two methods are used: one is to precipitate inactive fine particles from the residual polymer catalyst used as a film raw material, and the other is to add (m) inert inorganic fine particles. A method of adding these raw material fine particles is used. Generally speaking, the larger the size of the fine particles in these raw polymers, the greater the effect of improving slipperiness. Since this itself can cause defects such as dropouts, the unevenness on the film surface needs to be as fine as possible, and there is currently a demand to satisfy these contradictory characteristics at the same time.

また、上記不活性微粒子を含有するポリエステルからな
るフィルムは、通常二軸延伸によって該微粒子とポリエ
ステルの境界に剥離が生じ、該微粒子の囲いにボイドが
形成されている。このボイドは、微粒子が大きいほど、
形状が板状より球状はど、また微粒子が単一粒子で変形
しにくいほど、そしてまた未延伸フィルムを延伸する際
に延伸面積倍率が大きいほど、また低温で行うほど大き
くなる。このボイドは、大きくなればなる程突起の形状
がゆやかな形となり摩耗係数を高くすると共に繰り返し
使用時に生じた二軸配向ポリエステルフィルムのボイド
上の小さな傷(スクラッチ)によっても粒子の脱落が起
り、耐久性を低下させるとともに削れ粉発生の原因とな
っている。不活性微粒子として炭酸カルシウム、酸化チ
タン、カオリン等の1種または2種以上(大粒子と小粒
子の組合せ)を添加することが従来から良く行なわれて
いる(特開昭51−34272.52−78953.5
2−78954゜53−41355.53−71154
号)が、これら微粒子は大きなボイドを形成することか
ら上述の問題を内在しており、この改善も望まれている
Further, in a film made of polyester containing the above-mentioned inert fine particles, peeling occurs at the boundary between the fine particles and the polyester due to biaxial stretching, and voids are formed around the fine particles. The larger the particle is, the larger the void is.
The shape becomes larger when the shape is more spherical than plate-like, when the fine particles are a single particle and are less likely to deform, when the unstretched film is stretched, the stretching area magnification is higher, and when stretching is carried out at a lower temperature. As these voids grow, the shape of the protrusions becomes gentler, increasing the wear coefficient, and small scratches on the voids of the biaxially oriented polyester film that occur during repeated use can also cause particles to fall off. This reduces durability and causes the generation of shavings. It has long been common practice to add one or more of calcium carbonate, titanium oxide, kaolin, etc. (a combination of large particles and small particles) as inert fine particles (JP-A-51-34272.52- 78953.5
2-78954゜53-41355.53-71154
However, since these fine particles form large voids, they have the above-mentioned problem, and improvements in this problem are also desired.

[発明の目的] 本発明者は、これら不都合を解消し、不活性微粒子周辺
のボイドが小さく且つフィルム表面が適度に粗れること
によってフィルムの滑り性と耐削れ性が向上し、しかも
各用途に適した表面性の二軸配向ポリエステルフィルム
を得るために鋭意検討の結果本発明に至ったものである
[Purpose of the Invention] The present inventor has solved these disadvantages, and has improved the slipperiness and abrasion resistance of the film by reducing the voids around the inert fine particles and making the film surface moderately rough. The present invention was developed as a result of intensive studies to obtain a biaxially oriented polyester film with suitable surface properties.

従って、本発明の目的は、ボイドが小さく、滑り性及び
耐削れ性に優れた二軸配向ポリエステルフィルムを提供
することにある。
Therefore, an object of the present invention is to provide a biaxially oriented polyester film with small voids and excellent slipperiness and abrasion resistance.

[発明の構成・効果] 本発明の目的は、本発明によれば、ポリエステル中に、
第1成分として平均粒径が0.4〜2μmでありかつ粒
径比(長径/短径)が1.0〜1.2である球状シリカ
粒子を0.005〜0.5重量%含有し、かつ第2成分
として平均粒径が第1成分より小さいが0.05〜0.
6μmの範囲にある他の不活、性態機微粒子を0.00
5〜0.5重量%含有することを特徴とする二軸配向ポ
リエステルフィルムによって達成される。
[Configuration and Effects of the Invention] According to the present invention, an object of the present invention is to
The first component contains 0.005 to 0.5% by weight of spherical silica particles having an average particle diameter of 0.4 to 2 μm and a particle size ratio (major axis/minor axis) of 1.0 to 1.2. , and the second component has an average particle size smaller than the first component, but is 0.05 to 0.
0.00 of other inert and organic particles in the range of 6 μm.
This is achieved by a biaxially oriented polyester film characterized by containing 5 to 0.5% by weight.

ここで、球状シリカ粒子の長径、短径9面積円相当径は
粒子表面に金属を蒸着してのち電子顕微鏡にて1万〜3
万倍に拡大した像から求め、平均粒径9粒径比は次式で
求める。
Here, the major axis and minor axis of spherical silica particles are determined to be 10,000 to 30,000 to 30,000 by electron microscopy after metal is deposited on the particle surface.
It is determined from an image magnified 10,000 times, and the average grain size 9 grain size ratio is determined by the following formula.

平均粒径 =測定粒子の面積用相当径の総和/測定粒子の数粒径比 一シリカ粒子の平均長径/該粒子の平均短径本発明にお
けるポリエステルとは芳香族ジカルボン酸を主たる酸成
分とし、脂肪族グリコールを主たるグリコール成分とす
るポリエステルである。
Average particle diameter = Sum of area equivalent diameters of measured particles / Number of particle diameter ratio of measured particles - Average major axis of silica particles / Average minor axis of the particles The polyester in the present invention has an aromatic dicarboxylic acid as the main acid component, It is a polyester whose main glycol component is aliphatic glycol.

かかるポリエステルは実質的に線状であり、そしてフィ
ルム形成性特に溶融成形によるフィルム形成性を有する
。芳香族ジカルボン酸としては、例えばテレフタル酸、
ナフタレンジカルボン酸、イソフタル酸、ジフェニルエ
タンジカルボン酸、ジフェニルジカルボン酸、ジフェニ
ルエーテルジカルボン酸、ジフェニルスルホンジカルボ
ン1!!、ジフェニルケトンジカルボン酸、アンスラセ
ンジカルボン酸等を挙げることができる。脂肪族グリコ
ールとしては、例えばエチレングリコール、トリメチレ
ングリコール、テトラメチレングリコール。
Such polyesters are substantially linear and have film forming properties, particularly by melt molding. Examples of aromatic dicarboxylic acids include terephthalic acid,
Naphthalenedicarboxylic acid, isophthalic acid, diphenylethanedicarboxylic acid, diphenyldicarboxylic acid, diphenyl etherdicarboxylic acid, diphenylsulfonedicarboxylic acid 1! ! , diphenylketone dicarboxylic acid, anthracene dicarboxylic acid, and the like. Examples of aliphatic glycols include ethylene glycol, trimethylene glycol, and tetramethylene glycol.

ペンタメチレングリコール、ヘキサメチレングリコール
、デカメチレングリコールの如き炭素数2〜10のフル
キレングリコール、ポリエチレングリコール、あるいは
シクロヘキサンジメタツールの如き脂環族ジオール等を
挙げることができる。
Examples include fullylene glycols having 2 to 10 carbon atoms such as pentamethylene glycol, hexamethylene glycol, and decamethylene glycol, polyethylene glycol, and alicyclic diols such as cyclohexane dimetatool.

本発明において、ポリエステルとしては例えばアルキレ
ンテレフタレート及び/又はアルキレンナフタレートを
主たる構成成分とするものが好ましく用いられる。
In the present invention, polyesters containing, for example, alkylene terephthalate and/or alkylene naphthalate as main constituents are preferably used.

かかるポリエステルのうちでも、例えばポリエチレンテ
レフタレート、ポリエチレン−2,6−ナフタレートは
もちろんのこと、例えば全ジカルボン酸成分の80モル
%以上がテレフタル酸及び/又は2,6−ナフタレンジ
カルボン酸であり、全グリコール成分の80モル以上が
エチレングリコールである共重合体が好ましい。その際
全酸成分の20モル%以下はテレフタル酸及び/又はナ
フタレンジカルボン酸以外の上記芳香族ジカルボン酸で
あることができ、また例えばアジピン酸、セパチン酸の
如き脂肪族ジカルボン酸ニジクロヘキサン−1,4−ジ
カルボン酸の如き脂環族ジカルボン酸等であることがで
きる。また、全グリコール成分の20モル%以下は、エ
チレングリコール以外の上記グリコールであることがで
き、あるいは例えばハイドロキノン、レゾルシン、2.
2−ビス(4−ヒドロキシフェニル)ブOパンの如は芳
香族ジオール;1.4−ジヒドロキシメチルベンゼンの
如き芳香族を含む脂肪族ジオール;ポリエチレングリコ
ール、ポリプロピレングリコール、ポリテトラメチレン
グリコールの如きポリアルキレングリコール(ポリオキ
シアルキレングリコール)等であることもできる。
Among such polyesters, for example, not only polyethylene terephthalate and polyethylene-2,6-naphthalate, but also terephthalic acid and/or 2,6-naphthalenedicarboxylic acid account for 80 mol% or more of the total dicarboxylic acid component, and all glycol A copolymer in which 80 moles or more of the component is ethylene glycol is preferred. In this case, up to 20 mol% of the total acid component can be the above-mentioned aromatic dicarboxylic acids other than terephthalic acid and/or naphthalene dicarboxylic acid; , 4-dicarboxylic acid, and the like. Further, 20 mol% or less of the total glycol component can be the above-mentioned glycols other than ethylene glycol, or for example, hydroquinone, resorcinol, 2.
Aromatic diols such as 2-bis(4-hydroxyphenyl)butane; aliphatic diols containing aromatics such as 1,4-dihydroxymethylbenzene; polyalkylenes such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. It can also be glycol (polyoxyalkylene glycol) or the like.

また、本発明で用いるポリエステルには、例えばヒドロ
キシ安息香酸の如き芳香族オキシ酸;ω−ヒドロコシカ
プロン酸の如き脂肪族オキシ酸等のオキシカルボン酸に
由来する成分を、ジカルボン酸成分およびオキシカルボ
ン酸成分の総Rに対し20モル%以下で共重合或は結合
するものも包含される。
Furthermore, in the polyester used in the present invention, a component derived from an oxycarboxylic acid such as an aromatic oxyacid such as hydroxybenzoic acid; an aliphatic oxyacid such as ω-hydrococcaproic acid, a dicarboxylic acid component and an oxycarboxylic acid component. Those copolymerized or bonded in an amount of 20 mol % or less based on the total R of acid components are also included.

さらに本発明におけるポリエステルには実質的に線状で
ある範囲の量、例えば全酸成分に対し2モル%以下の量
で、3官能以上のポリカルボン酸又はポリヒドロキシ化
合物、例えばトリメリット酸、ペンタエリスリトールを
共重合したものをも包含される。
Furthermore, the polyester in the present invention contains a substantially linear amount of polycarboxylic acid or polyhydroxy compound, such as trimellitic acid, pentamellitic acid, etc., in an amount of 2 mol% or less based on the total acid component. It also includes those copolymerized with erythritol.

上記ポリエステルは、それ自体公知であり、且つそれ自
体公知の方法で製造することができる。
The above polyester is known per se, and can be produced by a method known per se.

上記ポリエステルとしては、0−クロロフェノール中の
溶液として35℃で測定して求めた固有粘度が約0.4
〜約0.9のものが好ましい。
The above polyester has an intrinsic viscosity of about 0.4 measured as a solution in 0-chlorophenol at 35°C.
~0.9 is preferred.

本発明の二軸配向ポリエステルフィルムはそのフィルム
表面に多数の微細な突起を有している。
The biaxially oriented polyester film of the present invention has many fine protrusions on its surface.

それらの多数の微細な突起は本発明によればポリエステ
ル中に分散して含有される多数の球状シリカ粒子(第1
成分)とこれより小粒径の他の不活性無機微粒子(第2
成分)に由来する。
According to the present invention, these many fine protrusions are formed by a large number of spherical silica particles (the first
component) and other inert inorganic fine particles with a smaller particle size (secondary component)
derived from ingredients).

これら不活性粒子を分散含有するポリエステルは、通常
ポリエステルを形成するための反応時、例えばエステル
交換法による場合のエステル交換反応中あるいは重縮合
反応中の任意の時期又は直接重合法による場合の任意の
時期に、球状シリカ粒子と他の不活性無機微粒子をそれ
ぞれまたは一緒に(好ましくはグリコール中のスラリー
として)反応系中に添加することにより製造することが
できる。好ましくは、重縮合反応の初期例えば固有粘度
が約0.3に至るまでの間に、これら不活性粒子を反応
系中に添加するのが好ましい。
The polyester containing these inert particles dispersed is usually used at any time during the reaction to form the polyester, for example, during the transesterification reaction or polycondensation reaction when using the transesterification method, or at any time during the polycondensation reaction when using the direct polymerization method. It can be prepared by adding spherical silica particles and other inert inorganic fine particles individually or together (preferably as a slurry in glycol) into the reaction system at a certain stage. Preferably, these inert particles are added to the reaction system at the beginning of the polycondensation reaction, for example, until the intrinsic viscosity reaches about 0.3.

本発明においてポリエステル中に分散含有させる第1成
分としての球状シリカ粒子は平均粒径が0.4〜2μm
でありかつ粒径比(長径/短径)が1.0〜1.2であ
るシリカ粒子である。この球状シリカ粒子は個々の形状
が極めて真球に近い球状であって、従来から滑剤として
知られているシリカ粒子が10mμ程度の超微細な塊状
粒子か、これらが凝集して0.5μ程度の凝集物(凝集
粒子)を形成しているのとは著しく異なる点に特徴があ
る。
In the present invention, the spherical silica particles as the first component dispersed in the polyester have an average particle size of 0.4 to 2 μm.
These are silica particles having a particle size ratio (major axis/breadth axis) of 1.0 to 1.2. These spherical silica particles have individual shapes that are extremely close to true spheres, and the silica particles conventionally known as lubricants are either ultra-fine lumpy particles of about 10 mμ, or they are agglomerated to form particles of about 0.5 μm. It is distinctive in that it is significantly different from forming aggregates (agglomerated particles).

球状シリカ粒子の平均粒径は好ましくは0.5〜1.7
μm、更に好ましくは0.6〜1.5μmである。
The average particle size of the spherical silica particles is preferably 0.5 to 1.7.
μm, more preferably 0.6 to 1.5 μm.

この平均粒径が0.4μm未満では滑り性や、耐削れ性
の向上効果が不充分であり、好ましくない。
If the average particle diameter is less than 0.4 μm, the effect of improving slipperiness and abrasion resistance is insufficient, which is not preferable.

また平均粒径が2μmを越えるとフィルム表面が粗れす
ぎて好ましくない。また球状シリカ粒子の粒径比は好ま
しくは1.0〜1,15 、更に好ましくは1.0〜1
.1である。
Moreover, if the average particle diameter exceeds 2 μm, the surface of the film becomes too rough, which is not preferable. The particle size ratio of the spherical silica particles is preferably 1.0 to 1.15, more preferably 1.0 to 1.
.. It is 1.

また、球状シリカ粒子は粒径分布がシャープであること
が好ましく、分布の急峻度を表わす相対標準偏差が0.
5以下、更には0,4以下、特に0.3以下であること
が好ましい。この相対標準偏差はつ次式で表わされる。
Further, it is preferable that the spherical silica particles have a sharp particle size distribution, and the relative standard deviation representing the steepness of the distribution is 0.
It is preferably 5 or less, more preferably 0.4 or less, particularly 0.3 or less. This relative standard deviation is expressed by the following equation.

ここで、Di =個々の粒子の面梢円相当径(μTrL
)を表わす。
Here, Di = surface circle equivalent diameter of each particle (μTrL
).

相対標準偏差が0.5以下の球状シリカ粒子を用いると
、該粒子が球状で且つ粒度分布が極めて忌峻であること
から、フィルム表面の大突起の高さが極めて均一となる
。更にフィルム表面の個々の大突起は、滑剤周辺のボイ
ドが小さいために、突起形状が非常にシャープであり、
従って、同じ大突起の数であっても他の滑剤によるもの
に比して滑り性が極めて良好となる。
When spherical silica particles with a relative standard deviation of 0.5 or less are used, the heights of the large protrusions on the film surface become extremely uniform because the particles are spherical and have an extremely narrow particle size distribution. Furthermore, the individual large protrusions on the film surface have very sharp protrusion shapes because the voids around the lubricant are small.
Therefore, even with the same number of large protrusions, the slipperiness is extremely good compared to those using other lubricants.

球状シリカ粒子は、上述の条件を満たせば、その製法そ
の他に何ら限定されるものではない。例えば球状シリカ
粒子は、オルトケイ酸エチル[Si  (OC2H5)
4 ]の加水分解から含水シリカ[Si  (OH)4
 ]単分散球をつくり、更にこの含水シリカ単分散法を
脱水化処理してシリカ結合[=Si−0−8iミ]を三
次元的に成長させることに製造できる(日本化学会誌 
’ 81. Nch9、 p’1503)。
The spherical silica particles are not limited in any way, including the manufacturing method, as long as the above-mentioned conditions are satisfied. For example, spherical silica particles are ethyl orthosilicate [Si (OC2H5)
Hydrolyzed silica [Si(OH)4]
] Monodisperse spheres are created, and this hydrated silica monodisperse method is further dehydrated to grow silica bonds [=Si-0-8i] three-dimensionally (Journal of the Chemical Society of Japan)
'81. Nch9, p'1503).

Si  (OC2H5)4 +4H20→Si  (O
H)a +4C2IIs 0H=Si −OH+HO−
8i= →;Si −0−8i=+Hz O 本発明において第1成分としての球状シリカ粒子の添加
量は、ポリエステルに対して0.005〜0.5重n%
とする必要があり、好ましくは0.01〜0.45重量
%、更に好ましくは0.02〜0.4重量%である。添
加量が0.005重量%未満では、漬り性や耐削れ性の
向上効果が不充分となり、一方0.5重量%を越えると
表面平坦性が低下し、好ましくない。
Si (OC2H5)4 +4H20→Si (O
H) a +4C2IIs 0H=Si -OH+HO-
8i= →; Si −0-8i=+Hz O In the present invention, the amount of spherical silica particles added as the first component is 0.005 to 0.5% by weight based on the polyester.
It is preferably 0.01 to 0.45% by weight, more preferably 0.02 to 0.4% by weight. If the amount added is less than 0.005% by weight, the effect of improving pickling resistance and abrasion resistance will be insufficient, while if it exceeds 0.5% by weight, surface flatness will deteriorate, which is not preferable.

本発明においてポリエステル中に分散含有させる第2成
分としての他の不活性無機微粒子は、平均粒径が第1成
分より小ざいが0.05〜0.6μmの範囲にあるもの
であれば特に限定されない。この他の不活性無機微粒子
は、触媒残渣からポリマー中に析出させた不活性無機微
粒子をも含むものであるが、例えば炭酸カルシウム、炭
酸マグネシウム、カオリン、クレー、ベントナイト、酸
化チタン、多孔質シリカ、硫酸バリウム、チタン酸カル
シウム、チタン酸バリウム、ホタル石、クロム酸バリウ
ム、ガラスピーズ等が挙げられる。これらは1種または
2種以上を用いることができる。
In the present invention, other inert inorganic fine particles as the second component to be dispersed and contained in the polyester are particularly limited as long as they have an average particle size smaller than that of the first component, but within the range of 0.05 to 0.6 μm. Not done. Other inert inorganic fine particles include inert inorganic fine particles precipitated into polymers from catalyst residues, such as calcium carbonate, magnesium carbonate, kaolin, clay, bentonite, titanium oxide, porous silica, and barium sulfate. , calcium titanate, barium titanate, fluorite, barium chromate, glass peas, and the like. These can be used alone or in combination of two or more.

かかる不活性無機微粒子の平均粒径は0.1〜0.5μ
、更には0.15〜0.4μであることが好ましい。
The average particle size of such inert inorganic fine particles is 0.1 to 0.5μ.
, and more preferably 0.15 to 0.4μ.

所定の平均粒径の粒子を得るためには従来から知られて
いる粒子m製法を用いることができ、例えば粉砕処理1
分級操作等を施して所定の平均粒径。
In order to obtain particles with a predetermined average particle size, a conventionally known particle m production method can be used, for example, pulverization treatment 1
A predetermined average particle size is obtained by performing classification operations, etc.

粒度分布にすることが好ましい。It is preferable to have a particle size distribution.

本発明において第2成分としての不活性無機微粒子の含
有量は、ポリエステルに対して0.005〜0.5重量
%とする必要があり、好ましくは0.01〜0.45重
量%、更に好ましくは0.02〜0.4重量%である。
In the present invention, the content of the inert inorganic fine particles as the second component needs to be 0.005 to 0.5% by weight, preferably 0.01 to 0.45% by weight, and more preferably 0.01 to 0.45% by weight based on the polyester. is 0.02 to 0.4% by weight.

この含有量が0.005重量%未満では滑り性や耐削れ
性の向上効果が不充分となり、−方0.5重量%を越え
ると表面平坦性が低下し、好ましくない。
If this content is less than 0.005% by weight, the effect of improving slipperiness and abrasion resistance will be insufficient, and if it exceeds 0.5% by weight, surface flatness will deteriorate, which is not preferable.

本発明の二軸配向ポリエステルフィルムは従来から蓄積
された二軸配向フィルムの製造法に順じて製造できる。
The biaxially oriented polyester film of the present invention can be produced according to conventional methods for producing biaxially oriented films.

例えば、球状シリカ粒子及び他の不活性無機微粒子を含
有するポリエステルを溶融製膜して非晶質の未延伸フィ
ルムとし、次いで該未延伸フィルムを二輪方向に延伸し
、熱固定し、必要であれば弛緩熱処理することによって
製造される。その際、フィルム表面特性は、球状シリカ
粒子や他の不活性微粒子の粒径、量等によって、また延
伸条件によって変化するので従来の延伸条件から適宜選
択する。また密度、熱収縮率等も延伸、熱処理時の温度
0倍率、速度等によって変化するので、これらの特性を
同時に満足する条件を定める。例えば、延伸温度は1段
目延伸温度(例えば縦方向延伸温度二T1)が(To−
10)〜(T(] +45) ’Cの範囲(但し、Tg
:ポリエステルのガラス転移温度)から、2段目延伸温
度(例えば横方向延伸温度:T2)が(T++15)〜
(T+ +40) ’Cの範囲から選択するとよい。ま
た、延伸倍率は一軸方向の延伸倍率が2.5以上、特に
3倍以上でかつ面積倍率が8倍以上、特に10倍以上と
なる範囲から選択するとよい。更にまた、熱固定温度は
180〜250℃、更には200〜230℃の範囲から
選択するとよい。
For example, polyester containing spherical silica particles and other inert inorganic fine particles is melt-cast to form an amorphous unstretched film, then the unstretched film is stretched in the direction of the two wheels, heat-set, and if necessary It is produced by relaxation heat treatment. At this time, the surface properties of the film vary depending on the particle size, amount, etc. of the spherical silica particles and other inert fine particles, and also depending on the stretching conditions, so they are appropriately selected from conventional stretching conditions. In addition, since the density, thermal shrinkage rate, etc. change depending on the temperature, zero magnification, speed, etc. during stretching and heat treatment, conditions are determined to satisfy these characteristics at the same time. For example, the stretching temperature is such that the first stage stretching temperature (e.g. longitudinal stretching temperature 2T1) is (To-
10) to (T(] +45) 'C range (however, Tg
: glass transition temperature of polyester), the second-stage stretching temperature (for example, lateral stretching temperature: T2) is (T++15) ~
(T+ +40) 'It is best to select from the range of C. Further, the stretching ratio is preferably selected from a range in which the uniaxial stretching ratio is 2.5 or more, particularly 3 times or more, and the area magnification is 8 times or more, especially 10 times or more. Furthermore, the heat setting temperature is preferably selected from the range of 180 to 250°C, more preferably 200 to 230°C.

本発明の二軸配向ポリエステルフィルムは従来のものに
比べてボイドの小さいフィルムであるが、特に球状シリ
カ粒子の周辺におけるボイドが小さい特徴がある。この
球状シリカ粒子周辺のボイドが小さい理由は球状シリカ
粒子のポリエステルへの親和性の良さと、更に粒子その
ものが極めて真 ′球に近いことから、延伸において滑
剤周辺の応力が均等に伝播し、ポリエステルと滑剤の界
面の一部に応力が集中しないことによると推測される。
The biaxially oriented polyester film of the present invention has smaller voids than conventional films, and is characterized by smaller voids, especially around the spherical silica particles. The reason why the voids around the spherical silica particles are small is because the spherical silica particles have a good affinity for polyester, and because the particles themselves are very close to a true sphere, the stress around the lubricant is evenly propagated during stretching, and the polyester It is assumed that this is because stress is not concentrated on a part of the lubricant interface.

本発明においては、その粒径分布が極めてシャープであ
る球状シリカ粒子の添加によりポリエステルフィルムの
表面に形成された大突起の分布は極めて均一性が高く、
突起の高さのそろったポリエステルフィルムが得られる
。そしてこのフィルムに不活性無機微粒子を更に含有さ
せることによって削れ性を保持したまま、滑り性をより
一層向上させることが可能となっている。
In the present invention, the distribution of large projections formed on the surface of the polyester film is extremely uniform due to the addition of spherical silica particles whose particle size distribution is extremely sharp.
A polyester film with uniform protrusion heights can be obtained. By further containing inert inorganic fine particles in this film, it is possible to further improve the slipperiness while maintaining the abrasion resistance.

本発明の二軸配向ポリエステルフィルムは、均一な凹凸
表面特性、すぐれた滑り性及び耐削れ性を有し、すりき
ず、白粉等の発生量が著しく少ないという特徴を有する
。この二軸配向ポリエステルフィルムはこれらの特性を
活かして各種の用途に広く用いることができる。例えば
、磁気記録用例えばビデオ用、オーディオ用、コンピュ
ーター用などのベースフィルムとして用いると、優れた
電磁変換特性、滑り性、走行耐久性等が得られる。
The biaxially oriented polyester film of the present invention has uniform uneven surface characteristics, excellent slipperiness and abrasion resistance, and is characterized by significantly less generation of scratches, white powder, etc. This biaxially oriented polyester film can be widely used in various applications by taking advantage of these properties. For example, when used as a base film for magnetic recording, such as video, audio, and computer applications, excellent electromagnetic conversion characteristics, slipperiness, running durability, etc. can be obtained.

またコンデンサー用途に用いると、低い摩擦係数、すぐ
れた巻回性、低いつぶれ荷重、高い透明性等が得られる
。上述のように、この二軸配向ポリエステルフィルムは
磁気記録媒体のベースフィルム特に磁気テープのベース
フィルムに用いるのが好ましいが、これに限定されるも
のでなく、電気用途、包装用途および蒸着用フィルム等
の他の分野へも広く適用する事が出来る。
Furthermore, when used in capacitor applications, low coefficient of friction, excellent windability, low crushing load, high transparency, etc. can be obtained. As mentioned above, this biaxially oriented polyester film is preferably used as a base film for magnetic recording media, particularly as a base film for magnetic tapes, but is not limited thereto, and can be used for electrical applications, packaging applications, vapor deposition films, etc. It can be widely applied to other fields as well.

[実施例] 以下、実施例を掲げて本発明を更に説明する。[Example] The present invention will be further explained below with reference to Examples.

なお本発明における種々の物性値および特性は以下の如
く測定されたものである。
Note that various physical property values and characteristics in the present invention were measured as follows.

(1)粒子の粒径 粒子粒径の測定には次の状態がある。(1) Particle size There are the following conditions for particle size measurement.

1)粉体から、平均粒径1粒径比等を求める場合 2)フィルム中粒子の平均粒径2粒径比等を求める場合 1)粉体からの場合 電顕資料台上に粉体を個々の粒子ができるだけ重らない
ように散在せしめ、金スパッター装置によりこの表面に
金薄膜熱@層を厚み200人〜300八で形成せしめ、
走査型電子顕微鏡にてて10,000〜30,000倍
で観察し、日本レギュレーター謹製ルーゼックス500
にて、少なくとも100個の粒子の長径(Dli)、短
径(Dsi)及び面積用相当(Di )を求める。そし
て、これらの次式で表わされる数平均値をもって、シリ
カ粒子の長径(DI)、短径(Ds)、平均粒径(D)
を表わす。
1) When calculating the average particle size 1 particle size ratio etc. from powder 2) When calculating the average particle size 2 particle size ratio etc. of particles in the film 1) From powder Place the powder on an electron microscope table. The individual particles are scattered so as not to overlap as much as possible, and a gold thin film heat layer is formed on the surface using a gold sputtering device to a thickness of 200 to 300 mm,
Observed with a scanning electron microscope at 10,000 to 30,000 times, and
The major axis (Dli), minor axis (Dsi), and area equivalent (Di) of at least 100 particles are determined. Then, with the number average value expressed by the following formula, the major axis (DI), minor axis (Ds), and average particle diameter (D) of the silica particles are calculated.
represents.

2)フィルム中の粒子の場合 試料フィルム小片を走査型電子顕微鏡用試料台に固定し
、日本電子■製スパッターリング装置(JFC−110
0型イオンエツチング装置)を用いてフィルム表面に下
記条件にてイオンエツチング処理を施した。条件は、ペ
ルジャー内に試料を設置し、約1O−3Torrの真空
状態まで真空度を上げ、電圧0.25 KV、 1N1
2,51 Aニr約10分間イオンエツチングを実施し
た。更に同装置にて、フィルム表面に金スパッターを施
し、走査型電子顕微鏡にて10,000〜30,000
倍で観察し、日本レギュレーター■製ルーゼックス50
0にて少なくとも100個の粒子の長径(Dli)、短
径(DSi)及び面積円相当径 (Dl)を求める。以
下、上&!1)と同様に行なう。
2) In the case of particles in a film, a small piece of sample film was fixed on a sample stage for a scanning electron microscope, and sputtering equipment (JFC-110 manufactured by JEOL Ltd.) was used.
The surface of the film was subjected to ion etching using a Type 0 ion etching apparatus under the following conditions. The conditions were to place the sample in a Pel jar, increase the degree of vacuum to approximately 1O-3 Torr, and apply a voltage of 0.25 KV and 1N1.
Ion etching was performed at 2,51 A for about 10 minutes. Furthermore, using the same equipment, gold sputtering was applied to the film surface, and a scanning electron microscope gave a gold sputter of 10,000 to 30,000.
Observe at double magnification and use Luzex 50 manufactured by Nippon Regulator ■.
0, the major axis (Dli), minor axis (DSi), and area circle equivalent diameter (Dl) of at least 100 particles are determined. Below, above &! Proceed in the same manner as 1).

(2フィルム表面粗さくRa ) 中心線平均粗さくRa )としてJIS−B。(2 film surface roughness Ra) JIS-B as center line average roughness (Ra).

601で定義される値であり、本発明では■小板研究所
の触針式表面粗さ計(StJRFCORDER8E −
30C)を用いて測定する。測定条件等は次の通りであ
る。
601, and in the present invention ■ Koita Research Institute's stylus type surface roughness meter (StJRFCORDER8E-
30C). The measurement conditions are as follows.

(a)  触針先端半径=2μm (b)  測定圧力  :30IIg (C)  カットオフ :0.25am(小 測定長 
  :  2.5m+ (lil)  データーのまとめ方 向−試料について5回繰返し測定し、最も大きい値を1
つ除き、残り4つのデーターの平均値の小数点以下4桁
目を四捨五入し、小数点以下3桁目まで表示する。
(a) Stylus tip radius = 2μm (b) Measurement pressure: 30IIg (C) Cutoff: 0.25am (small measurement length)
: 2.5m+ (lil) Data summary direction - Repeat measurements for the sample 5 times, and take the largest value as 1
The average value of the remaining four data is rounded off to the fourth decimal place and displayed to the third decimal place.

(3)  ボイド比 上記(1)−2)の方法に従ってフィルム中(表面)の
滑剤周辺を暴露し、少なくとも50個の固体微粒子の長
径とボイドの長径を測定し、次式ボイド比=ボイドの長
径/固体微粒子の長径で求めるボイド比の数平均値で表
わす。
(3) Void ratio The area around the lubricant in the film (surface) is exposed according to the method (1)-2) above, and the long diameter of at least 50 solid particles and the long diameter of the voids are measured. It is expressed as the number average value of the void ratio determined by long axis/long axis of solid fine particles.

(4)  フィルムの摩擦係数(μk)温度20℃、湿
度60%の環境で、巾172インチに裁断したフィルム
を、固定棒(表面粗さ0.3μm)に角度θ= 152
/ 1807rラジアン(152°)で接触させて毎分
200備の速さで移動(II擦)させる。入口テンショ
ンT+が359となるようにテンションコントローラー
を調整した詩の出口テンション(Tz:g)をフィルム
が90m走行したのちに出口テンション検出機で検出し
、次式で走行rJ擦係数μkを算出する。
(4) Film friction coefficient (μk) In an environment with a temperature of 20°C and a humidity of 60%, a film cut to a width of 172 inches was held at a fixed rod (surface roughness 0.3 μm) at an angle θ = 152.
/ 1807 r radians (152°) and moved at a speed of 200 m/min (II rub). The tension controller is adjusted so that the entrance tension T+ is 359. After the film has traveled 90 meters, the exit tension (Tz: g) is detected by the exit tension detector, and the travel rJ friction coefficient μk is calculated using the following formula. .

μk = (2,303/θ) 10!II  (T2
 /TI )= 0.868100 (T 2 / 3
5)(5)  削れ性 ベースフィルムの走行面の削れ性を5段のミニスーパー
カレンダーを使用して評価した。カレンダーはナイロン
O−)しとスチールロールレンダーであり、処理温度は
80℃.フィルムにがかる線圧は20ON# / cm
 、フィルムスピードは50m/分で走行させた。走行
フィルムは全長20007FL走行させた時点でカレン
ダーのトップローラ−に付着する汚れでベースフィルム
の削れ性を評価した。
μk = (2,303/θ) 10! II (T2
/TI)=0.868100 (T2/3
5) (5) Scrapability The scratchability of the running surface of the base film was evaluated using a 5-stage mini super calendar. The calender was a nylon O-) and steel roll render, and the processing temperature was 80°C. The linear pressure applied to the film is 20ON#/cm
The film was run at a speed of 50 m/min. The running film was run for a total length of 20,007 FL, and the abrasion resistance of the base film was evaluated based on dirt adhering to the top roller of the calendar.

く4段階判定〉 ◎ ナイロンロールの汚れ全くなし O ナイロンロールの汚れほとんどなし× ナイロンロ
ールが非常に汚れる ×× ナイロンロールがひどく汚れる (6)ヘーズ(曇り度) JIS−に674に準じ、日本精密光学社製,積分球式
HTRメーターによりフィルムのヘーズを求めた。
4-level judgment> ◎ No stains on the nylon roll O Almost no stains on the nylon roll × Very dirty on the nylon roll × × Severely dirty on the nylon roll (6) Haze (cloudiness) According to JIS-674, Japan Seimitsu The haze of the film was determined using an integrating sphere HTR meter manufactured by Kogaku Co., Ltd.

比較例−1〜−6 ジメチルテレフタレートとエチレングリコールとを、エ
ステル交換触媒として酢酸マンガンを、重合触媒として
三酸化アンチモンを、安定剤として亜燐酸を、更に滑剤
として第1表に示す無機微粒子を用いて常法により重合
し、固有粘度(オルソクロロフェノール、35℃)  
0.62のポリエチレンテレフタレートを得た。
Comparative Examples -1 to -6 Using dimethyl terephthalate and ethylene glycol, manganese acetate as a transesterification catalyst, antimony trioxide as a polymerization catalyst, phosphorous acid as a stabilizer, and inorganic fine particles shown in Table 1 as a lubricant. Polymerize using a conventional method, and the intrinsic viscosity (orthochlorophenol, 35°C)
0.62 of polyethylene terephthalate was obtained.

このポリエチレンテレフタレート(以下PETと略称)
のベレットを110℃、3時間乾燥後押出機ホッパーに
供給し、溶融温度280〜300℃で溶融し、この溶融
ポリマーを1履のスリット状ダイを通して、表面仕上げ
0.3S程度、表面温度20℃の回転冷却ドラム上に成
形押出し、200μmの未延伸フィルムを得た。
This polyethylene terephthalate (hereinafter abbreviated as PET)
After drying at 110°C for 3 hours, the pellet is fed to the extruder hopper and melted at a melting temperature of 280 to 300°C.The molten polymer is passed through a slit die with a surface finish of about 0.3S and a surface temperature of 20°C. The film was formed and extruded onto a rotating cooling drum to obtain a 200 μm unstretched film.

このようにして得られた未延伸フィルムを75℃にて予
熱し、更に低速、高速のロール間で15M上方より90
0℃の表面温度のIRヒーター1本にて加熱し、3.6
倍に延伸し、急冷し、続いてステンターに供給し105
℃にて横方向に3.7倍に延伸した。得らた二輪延伸フ
ィルムを205℃の温度で5秒間熱固定し、厚み15μ
雇の熱固定二軸延伸フィルムを得た。
The unstretched film thus obtained was preheated at 75°C, and then passed between low-speed and high-speed rolls at 90°C from 15M above.
Heated with one IR heater with a surface temperature of 0℃, 3.6
Stretched to double, rapidly cooled, and then fed to a stenter 105
It was stretched 3.7 times in the transverse direction at °C. The obtained two-wheel stretched film was heat-set at a temperature of 205°C for 5 seconds to a thickness of 15 μm.
A heat-set biaxially stretched film was obtained.

これらのフィルムの特性を第1表に示す。The properties of these films are shown in Table 1.

実施例−1〜−8 カオリンの代りに第2表に示す第1成分としての球状シ
リカ(日本触媒化学工業■製)及び第2成分としての他
の不活性無機微粒子を用いる以外は比岐例−1と同様に
行って二軸配向ポリエステルフィルムを得た。
Examples -1 to -8 Comparative examples except that spherical silica (manufactured by Nippon Shokubai Chemical Co., Ltd.) as the first component shown in Table 2 and other inert inorganic fine particles as the second component were used instead of kaolin. A biaxially oriented polyester film was obtained in the same manner as in -1.

これらのフィルムの特性を第2表に示す。。The properties of these films are shown in Table 2. .

Claims (1)

【特許請求の範囲】 1、ポリエステル中に、第1成分として平均粒径が0.
4〜2μmでありかつ粒径比(長径/短径)が1.0〜
1.2である球状シリカ粒子を0.005〜0.5重量
%含有し、かつ第2成分として平均粒径が第1成分より
小さいが0.05〜0.6μmの範囲にある他の不活性
無機微粒子を0.005〜0.5重量%含有することを
特徴とする二軸配向ポリエステルフィルム。 2、球状シリカ粒子の下記式で表わされる相対標準偏差
が0.5以下である特許請求の範囲第1項記載の二軸配
向ポリエステルフィルム。 相対標準偏差=▲数式、化学式、表等があります▼ ここで、Di:個々の粒子の面積円相当径(μm)@D
@:面積円相当径の平均値(=▲数式、化学式、表等が
あります▼)(μm)n:粒子の個数 を表わす。 3、他の不活性微粒子がカオリン、ベントナイト、酸化
チタン、炭酸カルシウム及び多孔質シリカよりなる群か
ら選ばれる少くとも一種である特許請求の範囲第1項ま
たは第2項記載の二軸配向ポリエステルフィルム。
[Claims] 1. In the polyester, as the first component, the average particle size is 0.
4 to 2 μm and a particle size ratio (major axis/breadth axis) of 1.0 to
1.2 containing 0.005 to 0.5% by weight of spherical silica particles, and as a second component, other impurities having an average particle diameter smaller than that of the first component but in the range of 0.05 to 0.6 μm. A biaxially oriented polyester film containing 0.005 to 0.5% by weight of active inorganic fine particles. 2. The biaxially oriented polyester film according to claim 1, wherein the relative standard deviation of the spherical silica particles expressed by the following formula is 0.5 or less. Relative standard deviation = ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Where, Di: Area circle equivalent diameter of individual particles (μm) @D
@: Average value of area circle equivalent diameter (=▲There are mathematical formulas, chemical formulas, tables, etc.▼) (μm) n: Represents the number of particles. 3. The biaxially oriented polyester film according to claim 1 or 2, wherein the other inert fine particles are at least one selected from the group consisting of kaolin, bentonite, titanium oxide, calcium carbonate, and porous silica. .
JP61203836A 1986-08-27 1986-09-01 Biaxially orientated polyester film Granted JPS6361028A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61203836A JPS6361028A (en) 1986-09-01 1986-09-01 Biaxially orientated polyester film
EP19870112416 EP0261430B1 (en) 1986-08-27 1987-08-26 Biaxially oriented polyester film
US07/089,571 US4818581A (en) 1986-08-27 1987-08-26 Biaxially oriented polyester film
DE19873752302 DE3752302T2 (en) 1986-08-27 1987-08-26 Biaxially oriented polyester films
KR1019870009408A KR910008997B1 (en) 1986-08-27 1987-08-27 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203836A JPS6361028A (en) 1986-09-01 1986-09-01 Biaxially orientated polyester film

Publications (2)

Publication Number Publication Date
JPS6361028A true JPS6361028A (en) 1988-03-17
JPH0512374B2 JPH0512374B2 (en) 1993-02-17

Family

ID=16480506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203836A Granted JPS6361028A (en) 1986-08-27 1986-09-01 Biaxially orientated polyester film

Country Status (1)

Country Link
JP (1) JPS6361028A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199244A (en) * 1987-02-12 1988-08-17 Diafoil Co Ltd Biaxially oriented polyester film
JPS6411135A (en) * 1987-07-03 1989-01-13 Toyo Boseki Thermoplastic film
JPH05310964A (en) * 1992-04-30 1993-11-22 Diafoil Co Ltd Biaxially oriented polyester film
JPH06312453A (en) * 1993-04-24 1994-11-08 Hoechst Ag Polyester raw material and film manufactured out of it
JPH07173374A (en) * 1993-10-15 1995-07-11 Ici Americas Inc Polyester film containing precipitated silica particle and baked clay
JPH1046012A (en) * 1996-08-07 1998-02-17 Teijin Ltd Polyester film for photoresist
JPH11509254A (en) * 1995-07-11 1999-08-17 ダブリユ・アール・グレイス・アンド・カンパニー−コネテイカツト Film with improved surface properties by using a combination of spherical and layered fine particles
KR100558566B1 (en) * 1998-01-03 2006-06-16 도레이새한 주식회사 Biaxially Stretched Polyester Film for Magnetic Recording Media
JP2019111811A (en) * 2017-12-21 2019-07-11 コーロン インダストリーズ インク Polyester film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082325A (en) * 1983-10-11 1985-05-10 Toyobo Co Ltd Oriented polyester film
JPS60166435A (en) * 1984-02-09 1985-08-29 Toyobo Co Ltd Oriented polyester film
JPS61236852A (en) * 1985-04-15 1986-10-22 Toyobo Co Ltd Oriented polyester film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082325A (en) * 1983-10-11 1985-05-10 Toyobo Co Ltd Oriented polyester film
JPS60166435A (en) * 1984-02-09 1985-08-29 Toyobo Co Ltd Oriented polyester film
JPS61236852A (en) * 1985-04-15 1986-10-22 Toyobo Co Ltd Oriented polyester film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199244A (en) * 1987-02-12 1988-08-17 Diafoil Co Ltd Biaxially oriented polyester film
JPS6411135A (en) * 1987-07-03 1989-01-13 Toyo Boseki Thermoplastic film
JPH05310964A (en) * 1992-04-30 1993-11-22 Diafoil Co Ltd Biaxially oriented polyester film
JPH06312453A (en) * 1993-04-24 1994-11-08 Hoechst Ag Polyester raw material and film manufactured out of it
JPH07173374A (en) * 1993-10-15 1995-07-11 Ici Americas Inc Polyester film containing precipitated silica particle and baked clay
JPH11509254A (en) * 1995-07-11 1999-08-17 ダブリユ・アール・グレイス・アンド・カンパニー−コネテイカツト Film with improved surface properties by using a combination of spherical and layered fine particles
JPH1046012A (en) * 1996-08-07 1998-02-17 Teijin Ltd Polyester film for photoresist
KR100558566B1 (en) * 1998-01-03 2006-06-16 도레이새한 주식회사 Biaxially Stretched Polyester Film for Magnetic Recording Media
JP2019111811A (en) * 2017-12-21 2019-07-11 コーロン インダストリーズ インク Polyester film

Also Published As

Publication number Publication date
JPH0512374B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
JPS6361028A (en) Biaxially orientated polyester film
JPS63178144A (en) Biaxially oriented polyester film
JPS6372729A (en) Biaxially orientated polyester film
JPS63108037A (en) Biaxially oriented polyester film
JPH05331299A (en) Polyester film
JPS63235336A (en) Biaxially oriented polyester film
JPS63221132A (en) Biaxially oriented polyester film
JPS6372730A (en) Biaxially orientated polyester film
JPH01126340A (en) Biaxially oriented polyester film
JPS63235337A (en) Biaxially oriented polyester film
JPH055247B2 (en)
JPH01299832A (en) Biaxially oriented polyester film
JPS63238135A (en) Biaxially oriented polyester film
JPS63234038A (en) Biaxially oriented polyester film
JPS63221134A (en) Biaxially oriented polyester film
JPS63220417A (en) Biaxially oriented polyester film for magnetic recording medium
JPS63235335A (en) Biaxially oriented polyester film
JPS63238136A (en) Biaxially oriented polyester film
JPH0513979B2 (en)
JPH02155934A (en) Biaxially oriented polyester film
JPH07166034A (en) Polyester film
JPH054412B2 (en)
JPH06234907A (en) Polyester film
JPH0356538A (en) Biaxially oriented polyester film for magnetic recording medium
JPH061864A (en) Polyester film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term