JPH054415B2 - - Google Patents

Info

Publication number
JPH054415B2
JPH054415B2 JP62070433A JP7043387A JPH054415B2 JP H054415 B2 JPH054415 B2 JP H054415B2 JP 62070433 A JP62070433 A JP 62070433A JP 7043387 A JP7043387 A JP 7043387A JP H054415 B2 JPH054415 B2 JP H054415B2
Authority
JP
Japan
Prior art keywords
film
particles
particle size
component
spherical silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62070433A
Other languages
Japanese (ja)
Other versions
JPS63238135A (en
Inventor
Hideo Kato
Hisashi Hamano
Kinji Hasegawa
Norihiro Nomi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP7043387A priority Critical patent/JPS63238135A/en
Publication of JPS63238135A publication Critical patent/JPS63238135A/en
Publication of JPH054415B2 publication Critical patent/JPH054415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は二軸配向ポリエステルフイルムに関
し、更に詳しくは平均粒径の異なる球状シリカ粒
子を含有し、平坦で、滑り性、耐削れ性、耐スク
ラツチ性、捲取り性等に優れた二軸配向ポリエス
テルフイルムに関する。 [従来技術] ポリエチレンテレフタレートフイルムに代表さ
れるポリエステルフイルムは、その優れた物理
的、化学的特性の故に、広い用途に用いられ、例
えば磁気テープ用、コンデンサー用、写真用、包
装用、OHP用等に用いられている。 ポリエステルフイルムにおいては、その滑り性
や耐削れ性がフイルムの製造工程及び各用途にお
ける加工工程の作業性の良否、さらにはその製品
品質の良否を左右する大きな要因となつている。
これらが不足すると、例えばポリエステルフイル
ム表面に磁性層を塗布し、磁気テープとして用い
る場合に、磁性層塗布時におけるコーテイングロ
ールとフイルム表面の摩擦が激しく、またこれに
よるフイルム表面の摩耗も激しく、極端な場合に
はフイルム表面へのしわ、擦り傷等が発生する。
また磁性層塗布後のフイルムをスリツトしてオー
デイオ、ビデオまたはコンピユーター用テープ等
に加工した後でも、リールやカセツト等からの引
き出し、巻き上げその他の操作の際に、多くのガ
イド部、再生ヘツド等との間で摩耗が著しく生
じ、擦り傷、歪の発生、さらにはポリエステルフ
イルム表面の削れ等による白粉状物質を析出させ
る結果、磁気記録信号の欠落、即ちドロツプアウ
トの大きな原因となることが多い。 一般にフイルムの滑り性の改良には、フイルム
表面に凹凸を付与することによりガイドロール等
との間の接触面積を減少せしめる方法が採用され
ており、大別して()フイルム原料に用いる高
分子の触媒残渣から不活性の微粒子を析出せしめ
る方法と、()不活性無機微粒子を添加せしめ
る方法が用いられている。これら原料高分子中の
微粒子は、その大きさが大きい程、滑り性の改良
効果が大であるのが一般的であるが、磁気テー
プ、特にビデオ用のごとき精密用途には、その粒
子が大きいこと自体がドロツプアウト等の欠点発
生の原因ともなるため、フイルム表面の凹凸は出
来るだけ微細である必要があり、これら相反する
特性を同時に満足すべき要求がなされているのが
現状である。 また、上記不活性微粒子を含有するポリエステ
ルからなるフイルムは、通常二軸延伸によつて該
微粒子とポリエステルの境界に剥離が生じ、該微
粒子の囲りにボイドが形成されている。このボイ
ドは、微粒子が大きいほど、形状が板状より球状
ほど、また微粒子が単一粒子で変形しにくいほ
ど、そしてまた未延伸フイルムを延伸する際に延
伸面積倍率が大きいほど、また低温で行うほど大
きくなる。このボイドは、大きくなればなる程突
起の形状がゆるやかな形となり摩擦係数を高くす
ると共に繰り返し使用時に生じた二軸配向ポリエ
ステルフイルムのボイド上の小さな傷(スクラツ
チ)によつても粒子の脱落が起り、耐久性を低下
させるとともに削れ粉発生の原因となつている。
不活性微粒子として炭酸カルシウム、酸化チタ
ン、カオリン、コロイド状シリカ等の1種または
2種以上(大粒子と小粒子の組合せ)を添加する
ことが従来から良く行なわれているが、これら微
粒子は大きなボイドを形成することから上述の問
題を内在しており、この改善が望まれている。 [発明の目的] 本発明者は、これら不都合を解消し、粒子周辺
のボイドを少なくし且つフイルム表面が適度に粗
れることによつてフイルムの滑り性と耐削れ性が
向上し、しかも各用途に適した表面性の二軸配向
ポリエステルフイルムを得るべく鋭意検討の結
果、本発明に到達した。 従つて、本発明の目的は、ボイドが少なく、平
坦で滑り性、耐削れ性、耐スクラツチ性、捲取り
性等に優れた二軸配向ポリエステルフイルムを提
供することにある。 [発明の構成・効果] 本発明の目的は、本発明によれば、ポリエステ
ル中に、第1成分として平均粒径が0.3μm以上
0.6μm未満であり、粒径比(長径/短径)が1.0
〜1.2でありかつ下記式で表わされる相対標準偏
差が0.5以下である球状シリカ粒子を0.5重量%よ
り多く2.5重量%以下の範囲で含有し、かつ第2
成分として平均粒径が0.6〜3.0μmであり、粒径
比(長径/短径)が1.0〜1.2であり、かつ下記式
で表わされる相対標準偏差が0.5以下である球状
シリカ粒子を0.005〜2重量%の範囲内であつて
第1成分の量以下含有することを特徴とする二軸
配向ポリエステルフイルムによつて達成される。 ここで、 Di:個々の粒子の面積円相当径(μm) :面積円相当径の平均値 (=oi=1 Di/n)(μm) n:粒子の個数 を表わす。 本発明におけるポリエステルとは芳香族ジカル
ボン酸を主たる酸成分とし、脂肪族グリコールを
主たるグリコール成分とするポリエステルであ
る。かかるポリエステルは実質的に線状であり、
そしてフイルム形成性特に溶融成形によるフイル
ム形成性を有する。芳香族ジカルボン酸として
は、例えばテレフタル酸、ナフタレンジカルボン
酸、イソフタル酸、ジフエニルエタンジカルボン
酸、ジフエニルジカルボン酸、ジフエニルエーテ
ルジカルボン酸、ジフエニルスルホンジカルボン
酸、ジフエニルケトンジカルボン酸、アンスラセ
ンジカルボン酸等を挙げることができる。脂肪族
グリコールとしては、例えばエチレングリコー
ル、トリメチレングリコール、テトラメチレング
リコール、ペンタメチレングリコール、ヘキサメ
チレングリコール、デカメチレングリコール等の
如き炭素数2〜10のポリメチレングリコールある
いはシクロヘキサンジメタノールの如き脂環族ジ
オール等を挙げることができる。 本発明において、ポリエステルとしては例えば
アルキレンテレフタレート及び/又はアルキレン
ナフタレートを主たる構成成分とするものが好ま
しく用いられる。 かかるポリエステルのうちでも、例えばポリエ
チレンテレフタレート、ポリエチレン−2,6−
ナフタレートはもちろんのこと、例えば全ジカル
ボン酸成分の80モル%以上がテレフタル酸及び/
又は2,6−ナフタレンジカルボン酸であり、全
グリコール成分の80モル%以上がエチレングリコ
ールである共重合体が好ましい。その際全酸成分
の20モル%以下のジカルボン酸はテレフタル酸及
び/又は2,6−ナフタレンジカルボン酸以外の
上記芳香族ジカルボン酸であることができ、また
例えばアジピン酸、セバチン酸等の如き脂肪族ジ
カルボン酸;シクロヘキサン−1,4−ジカルボ
ン酸の如き脂環族ジカルボン酸等であることがで
きる。また、全グリコール成分の20モル%以下
は、エチレングリコール以外の上記グリコールで
あることができ、あるいは例えばハイドロキノ
ン、レゾルシノール、2,2−ビス(4−ヒドロ
キシフエニル)プロパン等の如き芳香族ジオー
ル;1,4−ジヒドロキシメチルベンゼンの如き
芳香族を含む脂肪族ジオール;ポリエチレングリ
コール、ポリプロピレングリコール、ポリテトラ
メチレングリコール等の如きポリアルキレングリ
コール(ポリオキシアルキレングリコール)等で
あることもできる。 また、本発明で用いるポリエステルには、例え
ばヒドロキシ安息香酸の如き芳香族オキシ酸;ω
−ヒドロキシカプロン酸の如き脂肪族オキシ酸等
のオキシカルボン酸に由来する成分を、ジカルボ
ン酸成分およびオキシカルボン酸成分の総量に対
し20モル%以下で共重合或いは結合するものも包
含される。 さらに本発明におけるポリエステルには実質的
に線状である範囲の量、例えば全酸成分に対し2
モル%以下の量で、3官能以上のポリカルボン酸
又はポリヒドロキシ化合物、例えばトリメリツト
酸、ペンタエリスリトール等を共重合したものを
も包含される。 上記ポリエステルは、それ自体公知であり、且
つそれ自体公知の方法で製造することができる。 上記ポリエステルとしては、o−クロロフエノ
ール中の溶液として35℃で測定して求めた固有粘
度が約0.4〜約0.9のものが好ましい。 本発明の二軸配向ポリエステルフイルムは、そ
のフイルム表面に多数の微細な突起を有してい
る。それらの多数の微細な突起は本発明において
はポリエステル中に分散して含有される多数の球
状シリカ粒子に由来するものである。 かかる球状シリカ粒子を分散含有するポリエス
テルは、通常ポリエステルを形成するための反応
時、例えばエステル交換法による場合のエステル
交換反応中あるいは重縮合反応中の任意の時期、
又は直接重合法による場合の任意の時期に、球状
シリカ粒子(好ましくはグリコールのスラリーと
して)を反応系中に添加することにより製造する
ことができる。好ましくは、重縮合反応の初期例
えば固有粘度が約0.3に至るまでの間に、球状シ
リカ粒子を反応系中に添加するのが好ましい。 本発明においてポリエステル中に分散含有させ
る球状シリカ粒子は粒径比(長径/短径)が1.0
〜1.2、好ましくは1.0〜1.15、更に好ましくは1.0
〜1.1であるものであり、個々の形状が極めて真
球に近いものである。そして、この球状シリカ粒
子は平均粒径が0.3μm以上0.6μm未満、好ましく
は0.3〜0.55μm、更に好ましくは0.3〜0.5μmのも
の(第1成分)と、平均粒径が0.6〜3.0μm、好
ましくは0.7〜2.0μm、更に好ましくは0.8〜1.5μ
mのもの(第2成分)との2種である。かかる球
状シリカ粒子は、従来から滑剤として知られてい
るシリカ粒子が10mμm程度の超微細な塊状粒子
か、これらが凝集して0.5μm程度の凝集物(凝集
粒子)を形成しているのとは著しく異なる点に特
徴がある。第1成分としての球状シリカ粒子の平
均粒径が0.3μm未満になると滑り性の向上効果が
不充分であり、一方0.6μm以上になると表面平坦
性が不充分となり、好ましくない。また第2成分
としての球状シリカ粒子の平均粒径が3.0μmを超
えると表面平坦性が不充分となり、好ましくな
い。 ここで、球状シリカ粒子の長径、短径、面積円
相当径は粒子表面に金属を蒸着してのち電子顕微
鏡にて例えば1万〜3万倍に拡大した像から求
め、平均粒径、粒径比は次式で求める。 平均粒径=測定粒子の面積円相当径の総和 /
測定粒子の数 粒径比 =シリカ粒子の平均長径/該粒子の平均短径 また、球状シリカ粒子は粒径分布がシヤープで
あることが必要で、分布の急峻度を表わす相対標
準偏差が0.5以下であることが必要であり、更に
は0.3以下、特に0.12以下であることが好ましい。 この相対標準偏差は次式で表わされる。 こで、 Di:個々の粒子の面積円相当径(μm) :面積円相当径の平均値 (=oi=1 Di/n)(μm) n:粒子の測定個数 を表わす。 相対標準偏差が0.5以下の球状シリカ粒子を用
いると、該粒子が真球状で且つ粒度分布が極めて
急峻であることから、フイルム表面に形成される
突起の分布は極めて均一性が高く、突起高さのそ
ろつた滑り性の優れたポリエステルフイルムが得
られる。第1成分の平均粒径と第2成分の平均粒
径とは0.1μm以上、更には0.2μm以上の差のある
ことが好ましい。また第1成分と第2成分の粒度
分布は実質的に互いに重ならないことが好まし
い。 球状シリカ粒子は、上述の条件を満たせば、そ
の製法その他に何ら限定されるものではない。例
えば球状シリカ粒子は、オルトケイ酸エチル[Si
(OC2H54]の加水分解から含水シリカ[Si
(OH)4]単分散球をつくり、更にこの含水シリ
カ単分散球を脱水化処理してシリカ結合[≡Si−
O−Si≡]を三次元的に成長させることが製造で
きる(日本化学会誌′81,No.9,P.1503)。 Si(OC2H54+4H2O →Si(OH)4+4C2H5OH ≡Si−OH+HO−Si≡ →≡Si−O−Si≡+H2O 本発明において第1成分としての球状シリカ粒
子の添加量は、ポリエステルに対して0.5重量%
より多く2.5重量%以下の範囲内にあり、好まし
くは0.55〜2.0重量%、更に好ましくは0.55〜1.5
重量%である。また第2成分としての球状シリカ
粒子の添加量は、ポリエステルに対して0.005〜
2重量%、好ましくは0.01〜1重量%、更に好ま
しくは0.02〜0.7重量%の範囲内であつて第1成
分の量以下である。第1成分の添加量が0.5重量
%以下では数千メートルのフイルムをロール上に
巻き上げた時にロール表面上に小さな異常突起や
しわが生じ、格下げ品の比率が高くなるので、好
ましくない。一方この添加量が2.5重量%より多
くなるとフイルム表面平坦性が不充分となるので
好ましくない。また、第2成分の添加量が0.005
重量%未満では滑り性や耐削れ性の向上効果が不
充分であり、一方2重量%より多くなるとフイル
ムの表面平坦性が不充分となるので、好ましくな
い。 また、第1成分及び第2成分の総和加量として
は、0.01〜4.0重量%、好ましくは0.02〜3.0重量
%、更に好ましくは0.04〜2.0重量%である。こ
の総添加量が4.0重量%を超えると表面平坦性が
低下し、好ましくない。 本発明の二軸配向ポリエステルフイルムは従来
から蓄積された二軸延伸フイルムの製造法に順じ
て製造できる。例えば、所定量の球状シリカ粒子
を含有するポリエステルを溶融製膜して非晶質の
未延伸フイルムとし、次いで該未延伸フイルムを
二軸方向に延伸し、熱固定し、必要であれば弛緩
熱処理することによつて製造される。その際、フ
イルム表面特性は、球状シリカ粒子の粒径、量等
によつて、また延伸条件によつて変化するので従
来の延伸条件か適宜選択する。また密度、熱収縮
率等も延伸、熱処理時の温度、倍率、速度等によ
つて変化するので、これらの特性を同時に満足す
る条件を定める。例えば、延伸温度は1段目延伸
温度(例えば縦方向延伸温度:T1)が(Tg−
10)〜(Tg+45)℃の範囲(但し、Tg:ポリエ
ステルのガラス転移温度)から、2段目延伸温度
(例えば横方向延伸温度:T2)が(T1+5)〜
(T1+40)℃の範囲から選択するとよい。また、
延伸倍率は一軸方向の延伸倍率が2.5以上、特に
3倍以上でかつ面積倍率が8倍以上、特に10倍以
上となる範囲から選択するとよい。更にまた、熱
固定温度は180〜250℃、更には200〜230℃の範囲
から選択するとよい。 本発明の二軸配向ポリエステルフイルムは、従
来のものに比してボイドが極めて少ないという特
徴がある。この球状シリカ粒子の周辺のボイドが
小さい理由は、該粒子のポリエステルへの親和性
の良さと、更に粒子そのものが極めて真球に近い
ことから、延伸において粒子周辺の応力が均等に
伝播し、ポリエステルと粒子の界面の一部に応力
が集中しないことによると推測される。 本発明においては、その粒径分布が極めてシヤ
ープである球状シリカ粒子の添加により、ポリエ
ステルフイルム表面に形成された突起の分布は極
めて均一性が高く、大小突起のそれぞれの高さの
そろつたポリエステルフイルムが得られる。 本発明の二軸配向ポリエステルフイルムは、均
一な凹凸表面特性、すぐれた滑り性、すぐれた耐
削れ性等を有し、例えばすりきず、白粉等の発生
量が著しく少ないという特徴を有する。この二軸
配向ポリエステルフイルムはこれらの特性を活か
して各種の用途に広く用いることができる。例え
ば、磁気記録用例えばビデオ用、オーデイオ用、
コンピユータ用等のベースフイルムとして用いる
と、優れた電磁変換特性、滑り性、走行耐久性等
が得られる。またコンデンサー用途に用いると、
低い摩擦係数、すぐれた巻回性、低いつぶれ荷
重、高い透明性等が得られる。上述のように、こ
の二軸配向ポリエステルフイルムは磁気記録媒体
のベースフイルム特に磁気テープのベースフイル
ムに用いるのが好ましいが、これに限定されるも
のでなく、電気用途、包装用途および蒸着用フイ
ルム等の他の分野へも広く適用する事が出来る。 [実施例] 以下、実施例を掲げて本発明を更に説明する。
なお本発明における種々の物性値および特性は以
下の如く測定されたものである。 (1) 球状シリカ粒子の粒径 粒子粒径の測定には次の状態がある。 (1) 粉体から平均粒径、粒径比等を求める場合 (2) フイルム中の粒子の平均粒径、粒径比等を求
める場合 (i) 粉体からの場合 電顕試料台上に粉体を個々の粒子ができるだけ
重ならないように散在せしめ、金スパツター装置
により表面に金薄膜蒸着層(厚み200Å〜300Å)
を形成せしめ、走査型電子顕微鏡にて例えば1万
〜3万倍の倍率で観察し、日本レギユレーター(株)
製ルーゼツクス(Luzex)500にて、少なくとも
100個の粒子の長径(Dli)、短径(Dsi)及び面積
円相当径(Di)を求める。そして、これらの次
式で表わされる数平均値をもつて、シリカ粒子の
長径(Di)、短径(Ds)、平均粒径()を表わ
す。 Dl=(oi=1 Dli)/n, Ds=(oi=1 Dsi)/n, =(oi=1 Di)/n (ii) フイルム中の粒子の場合 試料フイルム小片を走査型電子顕微鏡用試料台
に固定し、日本電子(株)製スパツターリング装置
(JFC−1100型イオンスパツターリング装置)を
用いてフイルム表面に下記条件にてイオンエツチ
ング処理を施す。条件はベルジヤー内に試料を設
置し、約10-3Torrの真空状態まで真空度を上げ、
電圧0.25KV、電流12.5mAにて約10分間イオン
エツチングを実施する。更に同装置にてフイルム
表面に金スパツターを施し、走査型電子顕微鏡に
て1万〜3万倍で観察し、日本レギユレーター(株)
製ルーゼツクス500にて少なくとも100個の粒子の
長径(Dli)、短径(Dsi)及び面積円相当径(Di)
を求める。以下、上記(i)と同様に行なう。 (2) 球状シリカ粒子以外の粒子の粒径等 (1) 平均粒径 島津製作所製CP−50型セントリフユグル パ
ーテイクル サイズ アナライザー
(Centrifugal Particle Size Analyser)を用い
て測定する。得られた遠心沈降曲線を基に算出し
た各粒径の粒子とその存在量との積算曲線から、
50マスパーセントに相当する粒径を読み取り、こ
の値を上記平均粒径とする(Book「粒度測定技
術」日刊工業新聞社発行、1975年、頁242〜247参
照)。 (2) 粒径比 フイルム小片をエポキシ樹脂にて固定成形し、
ミクロトームにて約600Åの厚みの超薄切片(フ
イルムの流れ方向に平行に切断する)を作成す
る。この試料を透過型電子顕微鏡(日立製作所
製:H−800型)にてフイルム中の無機粒子の断
面形状を観察し、該無機粒子の長軸と短軸の比で
表わす。 (3) 相対標準偏差 球状シリカの場合と同様にして測定を行ない、
球状以外の粒子はフイルム厚み方向について粒子
の粒径比から体積を算出し、等価球とした時の直
径をもつて粒径とし、相対標準偏差を算出する。 (3) フイルム表面粗さ(Ra) 中心線平均粗さ(Ra)としてJIS−B0601で定
義される値であり、本発明では(株)小坂研究所の触
針式表面粗さ計(SURFCORDER SE−30C)を
用いて測定する。測定条件等は次の通りである。 (a) 触針先端半径:2μm (b) 測定圧力 :30mg (c) カツトオフ :0.25mm (d) 測定長 :2.5mm (e) データーのまとめ方 同一試料について5回繰返し測定し、最も大き
い値を1つ除き、残り4つのデーターの平均値の
少数点以下4桁目を四捨五入し、小数点以下3桁
目まで表示する。 (4) フイルムの摩擦係数(μk) 温度20℃、湿度60%の環境で、巾1/2インチ
に裁断したフイルムを、固定棒(表面粗さ0.3μ
m)に角度θ=(152/180)πラジアン(152゜)
で接触させて毎分200cmの速さで移動(摩擦)さ
せる。入り口テンシヨンT1が30gとなるように
テンシヨンコントローラーを調整した時の出口テ
ンシヨン(T2:g)をフイルムが100m走行した
のちに出口テンシヨン検出機で検出し、次式で走
行摩擦係数μkを算出する。 μk=(2.303/θ)log(T2/T1) =0.868log(T2/30) (5) 削れ性 ベースフイルムの走行面の削れ性を5段のミニ
スーパーカレンダーを使用して評価する。カレン
ダーはナイロンロールとスチールロールの5段カ
レンダーであり、処理温度は80℃、フイルムにか
かる線圧は180Kg/cm、フイルムスピードは45
m/分で走行させる。走行フイルムは全長2500m
走行させた時点でカレンダーのトツプローラーに
付着する汚れでベースフイルムの削れ性を評価す
る。 <4段階判定> ◎ ナイロンロールの汚れ全くなし ○ ナイロンロールの汚れほとんどなし × ナイロンロールが汚れる ×× ナイロンロールがひどく汚れる (6) スクラツチ判定 巾1/2インチに裁断したフイルムを、上記(4)
の摩擦係数測定装置を用いてフイルム面が固定棒
に180゜の角度で接触する様にかけ、20cm/sec速
度で20m走行させ、これを50回繰り返した後の
1/2インチ巾ベースフイルムの表面に入つたス
クラツチの太さ、深さ、数を総合して、次の5段
階判定する。 <5段階判定> ◎ 1/2インチ巾ベースフイルムに全くスク
ラツチが認められない ○ 1/2インチ巾ベースフイルムにほとんど
スクラツチが認められない △ 1/2インチ巾ベースフイルムにスクラツ
チが認められる(何本か) × 1/2インチ巾ベースフイルムに太いスク
ラツチが何本か認められる ×× 1/2インチ巾ベースフイルムに太く深
いスクラツチが多数全面に認められる (7) 捲取り性 二軸配向ポリエステルフイルムの製造工程にお
いて、フイルムを500mm幅で4000mのロール状に
捲き上げ、このロールの外観を詳細に検査し、瘤
状の突起で長径2mm以上のものの個数を数え、次
のように格付ける。 0〜2 :○ 3〜5 :△ 6以上 :× 実施例1〜3及び比較例1〜4 ジメチルテレフタレートとエチレングリコール
を、エステル交換触媒として酢酸マンガンを、重
合触媒として三酸化アンチモンを、安定剤として
亜燐酸を、更に滑剤として第1表に示す無機粒子
を用いて、常法により重合し、固有粘度(オルソ
クロロフエノール、35℃)0.62のポリエチレンテ
レフタレートを得た。 このポリエチレンテレフタレートのペレツトを
170℃、3時間乾燥後押出機ホツパーに供給し、
溶融温度280〜300℃で溶融し、この溶融ポリマー
を間隔1mmのスリツト状ダイを通して表面仕上げ
0.3S程度、表面温度20℃の回転冷却ドラム上に形
成押出し、180μmの未延伸フイルムを得た。 このようにして得られた未延伸フイルムを75℃
にて予熱し、更に低速、高速のロール間で15mm上
方より900℃の表面温度のIRヒーター1本にて加
熱し、低、高速ロールの表面速度差により3.7倍
に縦方向に延伸し、急冷し、続いてステンターに
供給し105℃にて横方向に4.0倍延伸した。得られ
た二軸延伸フイルムを210℃の温度で5秒間熱固
定し、厚み12μmの熱固定二軸配向フイルムを得
た。 このフイルムの特性を第1表に示す。
[Industrial Application Field] The present invention relates to a biaxially oriented polyester film, more specifically, it contains spherical silica particles with different average particle diameters, is flat, and has properties such as smoothness, abrasion resistance, scratch resistance, and rollability. This invention relates to a biaxially oriented polyester film with excellent properties. [Prior Art] Polyester films, represented by polyethylene terephthalate films, are used in a wide range of applications due to their excellent physical and chemical properties, such as magnetic tapes, capacitors, photographs, packaging, and OHP applications. It is used in In a polyester film, its slipperiness and abrasion resistance are major factors that determine the workability of the film manufacturing process and the processing process in each application, as well as the quality of the product.
If these are insufficient, for example, when applying a magnetic layer to the surface of a polyester film and using it as a magnetic tape, there will be severe friction between the coating roll and the film surface during application of the magnetic layer, and this will also cause severe abrasion of the film surface, resulting in extreme In some cases, wrinkles, scratches, etc. may occur on the film surface.
Furthermore, even after slitting the film coated with the magnetic layer and processing it into audio, video, or computer tape, there are many guide parts, playback heads, etc. when pulling it out from a reel or cassette, winding it, or other operations. Significant wear occurs between the polyester film, causing scratches and distortion, and furthermore, the surface of the polyester film is scratched and a white powdery substance is deposited, which is often a major cause of missing magnetic recording signals, that is, dropouts. Generally, to improve the slipperiness of a film, a method is adopted in which the contact area between the film and guide rolls etc. is reduced by adding irregularities to the film surface. A method in which inert fine particles are precipitated from the residue and a method in which inert inorganic fine particles are added are used. Generally speaking, the larger the size of the fine particles in these raw polymers, the greater the effect of improving slipperiness. Since this itself can cause defects such as dropouts, the unevenness on the film surface needs to be as fine as possible, and the current situation is that there is a demand to satisfy these contradictory characteristics at the same time. Further, in a film made of polyester containing the above-mentioned inert fine particles, peeling occurs at the boundary between the fine particles and the polyester due to biaxial stretching, and voids are formed around the fine particles. These voids are formed when the fine particles are larger, when the shape is more spherical than plate-like, when the fine particles are single particles and are less likely to deform, and when the unstretched film is stretched, the larger the stretching area magnification is, and the lower the temperature is. The larger it becomes. As these voids get larger, the shape of the protrusions becomes gentler, increasing the coefficient of friction, and even small scratches on the voids of the biaxially oriented polyester film that occur during repeated use can prevent particles from falling off. This reduces durability and causes the generation of shavings.
It has traditionally been common practice to add one or more types (a combination of large particles and small particles) of calcium carbonate, titanium oxide, kaolin, colloidal silica, etc. as inert particles. The above-mentioned problem is inherent due to the formation of voids, and improvement of this problem is desired. [Objective of the Invention] The present inventor has solved these disadvantages, reduced the voids around the particles, and roughened the film surface to an appropriate degree, thereby improving the slipperiness and abrasion resistance of the film, and making it suitable for various uses. As a result of extensive research in order to obtain a biaxially oriented polyester film with surface properties suitable for this purpose, the present invention was achieved. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a biaxially oriented polyester film that has few voids, is flat, and has excellent slip properties, abrasion resistance, scratch resistance, and winding properties. [Configuration and Effects of the Invention] According to the present invention, an object of the present invention is to provide polyester with an average particle size of 0.3 μm or more as a first component.
Less than 0.6μm, particle size ratio (major axis/minor axis) is 1.0
~1.2 and the relative standard deviation expressed by the following formula is 0.5 or less in a range of more than 0.5% by weight and 2.5% by weight or less, and the second
As a component, spherical silica particles having an average particle diameter of 0.6 to 3.0 μm, a particle size ratio (major axis/breadth axis) of 1.0 to 1.2, and a relative standard deviation expressed by the following formula of 0.5 to 2. This is achieved by a biaxially oriented polyester film characterized in that it contains within the range of % by weight and below the amount of the first component. Here, Di: Equivalent area circle diameter of each particle (μm): Average value of area circle equivalent diameter (= oi=1 Di/n) (μm) n: Represents the number of particles. The polyester in the present invention is a polyester containing an aromatic dicarboxylic acid as a main acid component and an aliphatic glycol as a main glycol component. Such polyester is substantially linear;
It also has film-forming properties, particularly film-forming properties by melt molding. Examples of aromatic dicarboxylic acids include terephthalic acid, naphthalenedicarboxylic acid, isophthalic acid, diphenylethanedicarboxylic acid, diphenyldicarboxylic acid, diphenyletherdicarboxylic acid, diphenylsulfonedicarboxylic acid, diphenylketonedicarboxylic acid, and anthracenedicarboxylic acid. Examples include acids. Examples of aliphatic glycols include polymethylene glycols having 2 to 10 carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, and decamethylene glycol, and alicyclic glycols such as cyclohexanedimethanol. Diols and the like can be mentioned. In the present invention, polyesters containing, for example, alkylene terephthalate and/or alkylene naphthalate as main constituents are preferably used. Among such polyesters, for example, polyethylene terephthalate, polyethylene-2,6-
Not only naphthalate but also terephthalic acid and/or terephthalic acid and/or
Or 2,6-naphthalene dicarboxylic acid, and a copolymer in which 80 mol% or more of the total glycol component is ethylene glycol is preferred. In this case, up to 20 mol% of the dicarboxylic acid of the total acid component can be the above-mentioned aromatic dicarboxylic acids other than terephthalic acid and/or 2,6-naphthalene dicarboxylic acid, and also fatty acids such as adipic acid, sebacic acid, etc. group dicarboxylic acids; alicyclic dicarboxylic acids such as cyclohexane-1,4-dicarboxylic acid; In addition, up to 20 mol% of the total glycol component can be the above-mentioned glycols other than ethylene glycol, or aromatic diols such as hydroquinone, resorcinol, 2,2-bis(4-hydroxyphenyl)propane, etc.; Aliphatic diols containing aromatics such as 1,4-dihydroxymethylbenzene; polyalkylene glycols (polyoxyalkylene glycols) such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. can also be used. In addition, the polyester used in the present invention includes, for example, an aromatic oxyacid such as hydroxybenzoic acid;
Also included are those in which a component derived from an oxycarboxylic acid such as an aliphatic oxyacid such as -hydroxycaproic acid is copolymerized or combined in an amount of 20 mol % or less based on the total amount of the dicarboxylic acid component and the oxycarboxylic acid component. Furthermore, the polyester in the present invention has a substantially linear amount, e.g.
Also included are those copolymerized with a trifunctional or higher functional polycarboxylic acid or polyhydroxy compound, such as trimellitic acid, pentaerythritol, etc., in an amount of mol % or less. The above polyester is known per se, and can be produced by a method known per se. The polyester preferably has an intrinsic viscosity of about 0.4 to about 0.9 as measured as a solution in o-chlorophenol at 35°C. The biaxially oriented polyester film of the present invention has many fine protrusions on its surface. In the present invention, these many fine protrusions are derived from many spherical silica particles dispersed and contained in the polyester. The polyester containing such spherical silica particles dispersed therein is usually prepared at any time during the reaction to form the polyester, for example, during the transesterification reaction using the transesterification method, or during the polycondensation reaction.
Alternatively, it can be produced by adding spherical silica particles (preferably as a glycol slurry) to the reaction system at any time when using a direct polymerization method. Preferably, spherical silica particles are added to the reaction system at the beginning of the polycondensation reaction, for example, until the intrinsic viscosity reaches about 0.3. In the present invention, the spherical silica particles dispersed in polyester have a particle size ratio (major axis/minor axis) of 1.0.
-1.2, preferably 1.0-1.15, more preferably 1.0
~1.1, and the individual shapes are extremely close to perfect spheres. The spherical silica particles have an average particle size of 0.3 μm or more and less than 0.6 μm, preferably 0.3 to 0.55 μm, more preferably 0.3 to 0.5 μm (first component), and 0.6 to 3.0 μm average particle size. Preferably 0.7 to 2.0 μm, more preferably 0.8 to 1.5 μm
There are two types: m (second component). These spherical silica particles are conventionally known as lubricants, which are either ultra-fine lumpy particles of about 10 mμm, or aggregates of these particles to form aggregates (agglomerated particles) of about 0.5 μm. They are characterized by significant differences. If the average particle size of the spherical silica particles as the first component is less than 0.3 μm, the effect of improving slipperiness will be insufficient, while if it is 0.6 μm or more, the surface flatness will be insufficient, which is not preferable. Moreover, if the average particle diameter of the spherical silica particles as the second component exceeds 3.0 μm, the surface flatness will be insufficient, which is not preferable. Here, the major axis, minor axis, and area-equivalent diameter of the spherical silica particles are determined from an image magnified, for example, 10,000 to 30,000 times with an electron microscope after metal is deposited on the particle surface. The ratio is calculated using the following formula. Average particle diameter = sum of area circle equivalent diameters of measured particles /
Particle size ratio of measured particles = Average major axis of silica particles / Average minor axis of the particles In addition, spherical silica particles must have a sharp particle size distribution, and the relative standard deviation representing the steepness of the distribution is 0.5 or less. Further, it is preferably 0.3 or less, particularly 0.12 or less. This relative standard deviation is expressed by the following formula. Here, Di: Diameter equivalent to a circle of area of each particle (μm): Average value of equivalent circle diameter of area (= oi=1 Di/n) (μm) n: Represents the measured number of particles. When spherical silica particles with a relative standard deviation of 0.5 or less are used, the particles are truly spherical and have an extremely steep particle size distribution, so the distribution of protrusions formed on the film surface is extremely uniform, and the protrusion height is A polyester film with uniform smoothness and excellent slip properties can be obtained. It is preferable that the average particle size of the first component and the average particle size of the second component have a difference of 0.1 μm or more, more preferably 0.2 μm or more. Further, it is preferable that the particle size distributions of the first component and the second component do not substantially overlap each other. The spherical silica particles are not limited in any way, including the manufacturing method, as long as the above-mentioned conditions are satisfied. For example, spherical silica particles are made of ethyl orthosilicate [Si
Hydrous silica [ Si
(OH) 4 ] Monodisperse spheres are made, and the hydrated silica monodisperse spheres are further dehydrated to form silica bonds [≡Si−
O-Si≡] can be produced by three-dimensional growth (Journal of the Chemical Society of Japan '81, No. 9, P. 1503). Si(OC 2 H 5 ) 4 +4H 2 O →Si(OH) 4 +4C 2 H 5 OH ≡Si−OH+HO−Si≡ →≡Si−O−Si≡+H 2 O Spherical silica as the first component in the present invention Addition amount of particles is 0.5% by weight based on polyester
More preferably within the range of 2.5% by weight or less, preferably 0.55 to 2.0% by weight, more preferably 0.55 to 1.5% by weight.
Weight%. In addition, the amount of spherical silica particles added as the second component is 0.005~
It is within the range of 2% by weight, preferably 0.01 to 1% by weight, more preferably 0.02 to 0.7% by weight, and less than the amount of the first component. If the amount of the first component added is less than 0.5% by weight, it is not preferable because when several thousand meters of film are wound onto a roll, small abnormal protrusions and wrinkles will occur on the roll surface, resulting in a high proportion of downgraded products. On the other hand, if the amount added exceeds 2.5% by weight, the film surface flatness will become insufficient, which is not preferable. In addition, the amount of the second component added is 0.005
If it is less than 2% by weight, the effect of improving slipperiness and abrasion resistance will be insufficient, while if it is more than 2% by weight, the surface flatness of the film will be insufficient, which is not preferable. Further, the total amount of the first component and the second component is 0.01 to 4.0% by weight, preferably 0.02 to 3.0% by weight, and more preferably 0.04 to 2.0% by weight. If the total amount added exceeds 4.0% by weight, surface flatness will deteriorate, which is not preferable. The biaxially oriented polyester film of the present invention can be produced according to conventional methods for producing biaxially oriented films. For example, polyester containing a predetermined amount of spherical silica particles is melt-formed to form an amorphous unstretched film, then the unstretched film is stretched biaxially, heat-set, and if necessary, subjected to relaxation heat treatment. Manufactured by At this time, since the film surface characteristics change depending on the particle size, amount, etc. of the spherical silica particles, and also depending on the stretching conditions, conventional stretching conditions are selected as appropriate. Furthermore, since the density, thermal shrinkage rate, etc. change depending on the temperature, magnification, speed, etc. during stretching and heat treatment, conditions are determined to satisfy these characteristics at the same time. For example, the stretching temperature is such that the first stage stretching temperature (e.g. longitudinal stretching temperature: T 1 ) is (Tg-
10) - (Tg + 45) °C (however, Tg: glass transition temperature of polyester), the second-stage stretching temperature (for example, transverse direction stretching temperature: T 2 ) is (T 1 + 5) -
It is recommended to select from the range of (T 1 +40)°C. Also,
The stretching ratio is preferably selected from a range in which the uniaxial stretching ratio is 2.5 times or more, particularly 3 times or more, and the area magnification is 8 times or more, especially 10 times or more. Furthermore, the heat setting temperature is preferably selected from the range of 180 to 250°C, more preferably 200 to 230°C. The biaxially oriented polyester film of the present invention has an extremely small number of voids compared to conventional films. The reason why the voids around these spherical silica particles are small is that the particles have a good affinity for polyester, and the particles themselves are very close to true spheres, so the stress around the particles propagates evenly during stretching, and the polyester This is presumed to be due to the fact that stress is not concentrated on a part of the particle interface. In the present invention, by adding spherical silica particles whose particle size distribution is extremely sharp, the distribution of protrusions formed on the surface of the polyester film is extremely uniform, and the polyester film has large and small protrusions with uniform heights. is obtained. The biaxially oriented polyester film of the present invention has uniform uneven surface characteristics, excellent slipperiness, excellent abrasion resistance, etc., and is characterized in that, for example, the amount of scratches, white powder, etc. generated is extremely small. This biaxially oriented polyester film can be widely used in various applications by taking advantage of these properties. For example, for magnetic recording such as video, audio, etc.
When used as a base film for computers, etc., excellent electromagnetic conversion characteristics, slipperiness, running durability, etc. can be obtained. Also, when used in capacitor applications,
Low friction coefficient, excellent windability, low crushing load, high transparency, etc. can be obtained. As mentioned above, this biaxially oriented polyester film is preferably used as a base film for magnetic recording media, particularly as a base film for magnetic tapes, but is not limited thereto, and can be used for electrical applications, packaging applications, films for vapor deposition, etc. It can be widely applied to other fields as well. [Examples] The present invention will be further explained below with reference to Examples.
Note that various physical property values and characteristics in the present invention were measured as follows. (1) Particle size of spherical silica particles There are the following conditions for measuring particle size. (1) When calculating the average particle size, particle size ratio, etc. from powder (2) When calculating the average particle size, particle size ratio, etc. of particles in a film (i) From powder On the electron microscope sample stage The powder is scattered so that the individual particles do not overlap as much as possible, and a thin gold film (200 Å to 300 Å thick) is deposited on the surface using a gold sputtering device.
Formed and observed with a scanning electron microscope at a magnification of, for example, 10,000 to 30,000 times.
Manufactured by Luzex 500, at least
Find the major axis (Dli), minor axis (Dsi), and area equivalent diameter (Di) of 100 particles. Then, the major axis (Di), minor axis (Ds), and average particle diameter ( ) of the silica particles are expressed by the number average values expressed by the following equations. Dl = ( oi=1 Dli) / n, Ds = ( oi=1 Dsi) / n, = ( oi=1 Di) / n (ii) For particles in a film A small piece of the sample film The film was fixed on a sample stage for a scanning electron microscope, and the surface of the film was subjected to ion etching using a JEOL sputtering device (JFC-1100 type ion sputtering device) under the following conditions. The conditions were to place the sample in a bell gear, increase the vacuum level to approximately 10 -3 Torr, and
Ion etching is performed for about 10 minutes at a voltage of 0.25 KV and a current of 12.5 mA. Furthermore, gold sputtering was applied to the surface of the film using the same equipment, and it was observed using a scanning electron microscope at a magnification of 10,000 to 30,000 times.
The major axis (Dli), minor axis (Dsi) and area circle equivalent diameter (Di) of at least 100 particles in Luzetx 500
seek. The following steps are performed in the same manner as in (i) above. (2) Particle size, etc. of particles other than spherical silica particles (1) Average particle size Measured using a Centrifugal Particle Size Analyzer Model CP-50 manufactured by Shimadzu Corporation. From the integrated curve of particles of each particle size and their abundance calculated based on the obtained centrifugal sedimentation curve,
The particle size corresponding to 50 mass percent is read and this value is taken as the above-mentioned average particle size (see Book "Particle Size Measurement Technique", published by Nikkan Kogyo Shimbun, 1975, pp. 242-247). (2) Particle size ratio Fixed molding of small film pieces with epoxy resin,
Create ultra-thin sections (cut parallel to the film flow direction) with a thickness of approximately 600 Å using a microtome. The cross-sectional shape of the inorganic particles in the film was observed using a transmission electron microscope (model H-800, manufactured by Hitachi, Ltd.), and was expressed as the ratio of the long axis to the short axis of the inorganic particles. (3) Relative standard deviation Measurement was carried out in the same manner as for spherical silica,
For particles other than spherical, the volume is calculated from the particle size ratio in the film thickness direction, the particle size is determined by the diameter of an equivalent sphere, and the relative standard deviation is calculated. (3) Film surface roughness (Ra) This is the value defined in JIS-B0601 as the centerline average roughness (Ra). -30C). The measurement conditions are as follows. (a) Stylus tip radius: 2μm (b) Measuring pressure: 30mg (c) Cutoff: 0.25mm (d) Measuring length: 2.5mm (e) How to summarize data Measure the same sample 5 times and find the highest value Exclude one, round off the average value of the remaining four data to the fourth digit after the decimal point, and display it to the third digit after the decimal point. (4) Film friction coefficient (μk) In an environment with a temperature of 20℃ and a humidity of 60%, a film cut to a width of 1/2 inch was held with a fixed rod (surface roughness 0.3μ
m) angle θ = (152/180) π radian (152°)
make contact with each other and move (friction) at a speed of 200 cm/min. When the tension controller is adjusted so that the entrance tension T 1 is 30 g, the exit tension (T 2 : g) is detected by the exit tension detector after the film has traveled 100 m, and the running friction coefficient μk is calculated using the following formula. calculate. μk=(2.303/θ)log(T 2 /T 1 ) =0.868log(T 2 /30) (5) Abrasion resistance Evaluate the abrasion resistance of the running surface of the base film using a 5-stage mini super calendar. . The calendar is a 5-stage calendar made of nylon rolls and steel rolls, the processing temperature is 80℃, the linear pressure applied to the film is 180Kg/cm, and the film speed is 45.
Run at m/min. The total length of the running film is 2500m.
The abrasion resistance of the base film is evaluated based on the dirt that adheres to the top roller of the calendar during running. <Four-level judgment> ◎ No stains on the nylon roll ○ Almost no stains on the nylon roll × × Nylon roll gets dirty ×× Nylon roll gets very dirty (6) Scratch Judgment A film cut to a width of 1/2 inch was scratched using the above (4) )
The surface of the 1/2 inch wide base film was measured using a friction coefficient measuring device of The thickness, depth, and number of the scratches entered are taken into account and judged in the following five stages. <5-level judgment> ◎ No scratches are observed on the 1/2 inch wide base film ○ Almost no scratches are observed on the 1/2 inch wide base film △ Scratches are observed on the 1/2 inch wide base film (no scratches are observed on the 1/2 inch wide base film) × Several thick scratches are observed on the 1/2 inch wide base film × × Many thick and deep scratches are observed all over the 1/2 inch wide base film (7) Windability Biaxially oriented polyester film In the manufacturing process, the film is rolled up into a 4000m roll with a width of 500mm, the appearance of this roll is inspected in detail, the number of bump-like protrusions with a major diameter of 2mm or more is counted, and the film is graded as follows. 0-2: ○ 3-5: △ 6 or more: × Examples 1-3 and Comparative Examples 1-4 Dimethyl terephthalate and ethylene glycol, manganese acetate as a transesterification catalyst, antimony trioxide as a polymerization catalyst, stabilizer Using phosphorous acid as a lubricant and inorganic particles shown in Table 1 as a lubricant, polymerization was carried out in a conventional manner to obtain polyethylene terephthalate having an intrinsic viscosity (orthochlorophenol, 35°C) of 0.62. This polyethylene terephthalate pellet
After drying at 170℃ for 3 hours, feed it to the extruder hopper.
The molten polymer is melted at a melting temperature of 280 to 300°C and passed through a slit die with a spacing of 1 mm for surface finishing.
The film was formed and extruded on a rotating cooling drum at a temperature of about 0.3S and a surface temperature of 20°C to obtain an unstretched film of 180 μm. The unstretched film thus obtained was heated at 75°C.
The material is then preheated with a single IR heater with a surface temperature of 900°C from 15 mm above between low and high speed rolls, stretched 3.7 times in the longitudinal direction due to the difference in surface speed between the low and high speed rolls, and then rapidly cooled. Then, it was supplied to a stenter and stretched 4.0 times in the transverse direction at 105°C. The obtained biaxially stretched film was heat set at a temperature of 210° C. for 5 seconds to obtain a heat set biaxially oriented film having a thickness of 12 μm. The properties of this film are shown in Table 1.

【表】【table】

【表】 第1表から、比較例1では削れ性と捲取り性が
不満足であり、比較例2では滑り性とスクラツチ
性と捲取り性が不満足であり、比較例3では滑り
性と削れ性が不満足であり、比較例4では滑り性
と削れ性とスクラツチ性が不満足であり、実施例
1,2,3ではいずれも満足すべき品質のフイル
ムの得られていることが明らかである。 実施例 4 第2表に記載の滑剤を用いる以外は比較例1と
同様に行つて二軸配向フイルムを得た。このフイ
ルムは良好な表面平坦性及び走行性を有し、且つ
耐削れ性、耐スクラツチ性及び捲取性に特に優れ
たものであつた。 このフイルムの特性を第2表に示す。
[Table] From Table 1, Comparative Example 1 is unsatisfactory in scrapability and rollability, Comparative Example 2 is unsatisfactory in slipperiness, scratchability, and rollability, and Comparative Example 3 is unsatisfactory in slipperiness and scratchability. It is clear that Comparative Example 4 was unsatisfactory in slip properties, abrasion properties, and scratch properties, and Examples 1, 2, and 3 all produced films of satisfactory quality. Example 4 A biaxially oriented film was obtained in the same manner as in Comparative Example 1 except that the lubricant listed in Table 2 was used. This film had good surface flatness and runnability, and was particularly excellent in abrasion resistance, scratch resistance, and rollability. The properties of this film are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリエステル中に、第1成分として平均粒径
が0.3μm以上0.6μm未満であり、粒径比(長径/
短径)が1.0〜1.2でありかつ下記式で表わされる
相対標準偏差が0.5以下である球状シリカ粒子を
0.5重量%より多く2.5重量%以下の範囲で含有
し、かつ第2成分として平均粒径が0.6〜3.0μm
であり、粒径比(長径/短径)が1.0〜1.2であり
かつ下記式で表わされる相対標準偏差が0.5以下
である球状シリカ粒子を0.005〜2重量%の範囲
内であつて第1成分の量以下含有することを特徴
とする二軸配向ポリエステルフイルム。 ここで、 Di:個々の粒子の面積円相当径(μm) :面積円相当径の平均値 (=oi=1 Di/n)(μm) n:粒子の個数 を表わす。
[Claims] 1. In the polyester, as a first component, the average particle size is 0.3 μm or more and less than 0.6 μm, and the particle size ratio (longer diameter /
Spherical silica particles with a short axis) of 1.0 to 1.2 and a relative standard deviation of 0.5 or less expressed by the following formula are used.
Contains in a range of more than 0.5% by weight and 2.5% by weight or less, and has an average particle size of 0.6 to 3.0 μm as a second component
The first component contains spherical silica particles having a particle diameter ratio (major axis/minor axis) of 1.0 to 1.2 and a relative standard deviation of 0.5 or less expressed by the following formula in a range of 0.005 to 2% by weight. A biaxially oriented polyester film characterized in that it contains an amount of not more than . Here, Di: Area circle equivalent diameter of each particle (μm): Average value of area circle equivalent diameter (= oi=1 Di/n) (μm) n: Represents the number of particles.
JP7043387A 1987-03-26 1987-03-26 Biaxially oriented polyester film Granted JPS63238135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7043387A JPS63238135A (en) 1987-03-26 1987-03-26 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7043387A JPS63238135A (en) 1987-03-26 1987-03-26 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPS63238135A JPS63238135A (en) 1988-10-04
JPH054415B2 true JPH054415B2 (en) 1993-01-20

Family

ID=13431341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7043387A Granted JPS63238135A (en) 1987-03-26 1987-03-26 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPS63238135A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089672B2 (en) * 1987-10-09 1996-01-31 東レ株式会社 Biaxially oriented polyester film
CN114341264B (en) * 2019-08-29 2023-08-04 东丽株式会社 Polyester composition and polyester fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371154A (en) * 1976-12-06 1978-06-24 Toray Ind Inc Biaxially oriented polyester film
JPS59171623A (en) * 1983-03-18 1984-09-28 Teijin Ltd Biaxially stretched polyester film
JPS60166435A (en) * 1984-02-09 1985-08-29 Toyobo Co Ltd Oriented polyester film
JPS615431A (en) * 1984-06-19 1986-01-11 Toray Ind Inc Polyester film for magnetic recording medium
JPS6253374A (en) * 1985-08-31 1987-03-09 Toray Ind Inc Thermoplastic polymer film and production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371154A (en) * 1976-12-06 1978-06-24 Toray Ind Inc Biaxially oriented polyester film
JPS59171623A (en) * 1983-03-18 1984-09-28 Teijin Ltd Biaxially stretched polyester film
JPS60166435A (en) * 1984-02-09 1985-08-29 Toyobo Co Ltd Oriented polyester film
JPS615431A (en) * 1984-06-19 1986-01-11 Toray Ind Inc Polyester film for magnetic recording medium
JPS6253374A (en) * 1985-08-31 1987-03-09 Toray Ind Inc Thermoplastic polymer film and production thereof

Also Published As

Publication number Publication date
JPS63238135A (en) 1988-10-04

Similar Documents

Publication Publication Date Title
EP0261430B1 (en) Biaxially oriented polyester film
JPS63178144A (en) Biaxially oriented polyester film
JPH0512375B2 (en)
JPH0512374B2 (en)
JPH0430974B2 (en)
JPS63108037A (en) Biaxially oriented polyester film
JPH0425857B2 (en)
JPH01123836A (en) Biaxially oriented polyester film
JPH0513977B2 (en)
JPH054415B2 (en)
JPH0513978B2 (en)
JPH055247B2 (en)
JPH0513980B2 (en)
JPH0512376B2 (en)
JPH054412B2 (en)
JPH0513979B2 (en)
JPH0618071B2 (en) Biaxially oriented polyester film for magnetic recording media
JPH0513976B2 (en)
JPS63221132A (en) Biaxially oriented polyester film
JPH0518327B2 (en)
JPS63221134A (en) Biaxially oriented polyester film
JPH0458821B2 (en)
JPH0520461B2 (en)
JP3025646B2 (en) Laminated biaxially oriented film
JPH054414B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees