JPH089672B2 - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film

Info

Publication number
JPH089672B2
JPH089672B2 JP62255555A JP25555587A JPH089672B2 JP H089672 B2 JPH089672 B2 JP H089672B2 JP 62255555 A JP62255555 A JP 62255555A JP 25555587 A JP25555587 A JP 25555587A JP H089672 B2 JPH089672 B2 JP H089672B2
Authority
JP
Japan
Prior art keywords
film
particles
biaxially oriented
average
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62255555A
Other languages
Japanese (ja)
Other versions
JPH0198634A (en
Inventor
巌 岡崎
晃一 阿部
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP62255555A priority Critical patent/JPH089672B2/en
Priority to US07/254,320 priority patent/US4952449A/en
Priority to DE19883850839 priority patent/DE3850839T2/en
Priority to EP19880309379 priority patent/EP0311426B1/en
Priority to KR1019880013131A priority patent/KR960005445B1/en
Publication of JPH0198634A publication Critical patent/JPH0198634A/en
Publication of JPH089672B2 publication Critical patent/JPH089672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸配向ポリエステルフィルムに関するも
のである。
TECHNICAL FIELD The present invention relates to a biaxially oriented polyester film.

[従来の技術] 二軸配向ポリエステルフィルムとしては、ポリエステ
ルに粒子を含有してなるフィルムが知られている(例え
ば、特開昭59−68325号公報等)。
[Prior Art] As a biaxially oriented polyester film, a film containing particles in polyester is known (for example, JP-A-59-68325).

[発明が解決しようとする問題点] しかしながら、上記従来のフィルムでは、フィルムの
加工工程、例えば包装用途における印刷工程、磁気媒体
用途における磁性層塗布・カレンダー工程等の工程速度
の増大に伴い、接触するロール等でフィルムの表面が削
られることにより、加工工程上、製品性能上のトラブル
となるという欠点が生じ、また、耐削れ性を満足しよう
として表面の突起高さを低くすると滑り性が満足されな
いという問題があった。本発明はかかる問題点を解決
し、耐削れ性、走行性が優れた二軸配向ポリエステルフ
ィルムを提供することを目的とする。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional film, the contact speed is increased due to an increase in the process speed of the film processing step, for example, the printing step in packaging applications, the magnetic layer coating / calendering step in magnetic media applications, etc. When the surface of the film is scraped with a roll, etc., it causes a trouble in product performance in the processing process, and if the projection height of the surface is lowered to satisfy the scraping resistance, the slipperiness is satisfied. There was a problem that was not done. It is an object of the present invention to solve the above problems and provide a biaxially oriented polyester film having excellent abrasion resistance and running properties.

[問題点を解決するための手段] 本発明は、表面に微細な突起を有する二軸配向ポリエ
ステルフィルムであって、高さが0.08μm未満の突起の
平均間隔が10μm以下、かつ、高さが0.08〜0.5μmの
突起の平均間隔が15〜150μm、かつ、突起径1μm未
満の突起と突起径1〜8μmの突起の高さ平均値の差が
0.02〜0.42μmであることを特徴とする二軸配向ポリエ
ステルフィルムである。
[Means for Solving Problems] The present invention is a biaxially oriented polyester film having fine protrusions on the surface, wherein the protrusions having a height of less than 0.08 μm have an average spacing of 10 μm or less and a height of The average distance between the projections with a diameter of 0.08 to 0.5 μm is 15 to 150 μm, and the difference in the average height between the projections with a diameter of less than 1 μm and the projections with a diameter of 1 to 8 μm is
The biaxially oriented polyester film has a thickness of 0.02 to 0.42 μm.

本発明におけるポリエステルとは、エチレンテレフタ
レート、エチレンα,β−ビス(2−クロロフェノキ
シ)エタン−4,4′−ジカルボキシレート、エチレン−
2,6−ナフタレート単位から選ばれた、少なくとも一種
の構造単位を主要構成成分とする。但し、本発明を阻害
しない範囲内、好ましくは15モル%以内であれば他成分
が共重合されていてもよい。また、エチレンテレフタレ
ートを主要構成成分とするポリエステルの場合に、耐削
れ性がより一層良好となるので特に望ましい。
The polyester in the present invention means ethylene terephthalate, ethylene α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylate, ethylene-
The main constituent is at least one structural unit selected from 2,6-naphthalate units. However, other components may be copolymerized within a range that does not impair the present invention, preferably within 15 mol%. Further, in the case of a polyester containing ethylene terephthalate as a main component, it is particularly desirable because the abrasion resistance is further improved.

本発明におけるフィルムの表面突起は、ポリエステル
中に含有される微粒子に起因する。微粒子としては、ポ
リエステルに対し不活性なものであれば、その種類は特
に限定されないが、コロイダルシリカに起因する実質的
に球形のシリカ、合成炭酸カルシウム、α−アルミナ、
ルチル型の二酸化チタン、サーマルタイプのカーボンブ
ラックが望ましい。また、その表面は表面改質がなされ
ていてもよい。さらに、微粒子を添加する方法だけでな
く、微粒子添加と併用してポリエステルの合成時に、重
合系内でカルシウム、リチウム、あるいはリンを含む微
粒子を析出せしめる内部析出粒子によって、表面突起を
形成する方法も用いることができる。
The surface protrusions of the film in the present invention are caused by the fine particles contained in the polyester. As the fine particles, if inert to polyester, the type is not particularly limited, substantially spherical silica due to colloidal silica, synthetic calcium carbonate, α-alumina,
Rutile type titanium dioxide and thermal type carbon black are preferable. Moreover, the surface may be surface-modified. Furthermore, not only a method of adding fine particles, but also a method of forming surface protrusions by internally depositing particles that precipitate fine particles containing calcium, lithium, or phosphorus in the polymerization system during the synthesis of polyester in combination with the addition of fine particles Can be used.

微粒子の平均粒径は特に限定されないが、小径粒子と
大径粒子を組み合わせるのが耐削れ性、走行性がより一
層良好となるので望ましい。小径粒子としては、平均粒
径0.15〜0.45μmのシリカ、カーボンブラック、0.2〜
0.65μmの炭酸カルシウム、酸化チタンの場合に耐削れ
性、走行性がより一層良好となるので望ましい。また、
大径粒子としては、平均粒径0.5〜0.8μmのシリカ、0.
7〜1.2μmの炭酸カルシウム、酸化チタンの場合に耐削
れ性、走行性がより一層良好となるので望ましい。本発
明の微粒子の含有量は0.3〜1.5重量%、特に0.4〜1.0重
量%の場合に本発明の平均突起間隔を得るのに有効であ
る。また、平均粒径の異なる粒子を組み合わせる場合
は、小径粒子の含有量が0.3〜0.8重量%、大径粒子の含
有量が0.01〜0.07重量%、特に0.02〜0.05重量%の場合
に本発明の平均突起間隔を得るのに有効である。
The average particle size of the fine particles is not particularly limited, but it is desirable to combine the small particle size and the large particle size in order to further improve the abrasion resistance and the running property. As the small particles, silica having an average particle diameter of 0.15 to 0.45 μm, carbon black, 0.2 to
In the case of 0.65 μm calcium carbonate and titanium oxide, abrasion resistance and running property are further improved, which is desirable. Also,
As large particles, silica having an average particle size of 0.5 to 0.8 μm, 0.
In the case of 7 to 1.2 μm calcium carbonate and titanium oxide, the abrasion resistance and the running property are further improved, which is desirable. When the content of the fine particles of the present invention is 0.3 to 1.5% by weight, particularly 0.4 to 1.0% by weight, it is effective to obtain the average protrusion interval of the present invention. Further, when combining particles having different average particle diameters, the content of the small diameter particles is 0.3 to 0.8% by weight, the content of the large diameter particles is 0.01 to 0.07% by weight, and particularly 0.02 to 0.05% by weight. It is effective in obtaining the average protrusion interval.

本発明フィルムは、上記組成物を主要成分とするが、
本発明の目的を阻害しない範囲内で、他種ポリマをブレ
ンドしてもよいし、また酸化防止剤、熱安定剤、滑剤、
紫外線吸収剤、核生成剤などの無機または有機添加剤
が、通常添加される程度添加されていてもよい。本発明
は上記組成物を二軸配向せしめたフィルムであって、そ
の配向の程度を示す厚さ方向の屈折率比は特に限定され
ないが、0.935〜0.970の範囲である場合に、耐削れ性、
走行性がより一層良好となるので特に望ましい。
The film of the present invention contains the above composition as a main component,
Other types of polymers may be blended within a range that does not impair the object of the present invention, and an antioxidant, a heat stabilizer, a lubricant,
Inorganic or organic additives such as UV absorbers and nucleating agents may be added to the extent that they are usually added. The present invention is a film in which the composition is biaxially oriented, the refractive index ratio in the thickness direction indicating the degree of orientation is not particularly limited, when the range of 0.935 to 0.970, abrasion resistance,
It is particularly desirable because the running property is further improved.

本発明の二軸配向ポリエステルフィルムは、その表面
に微細な突起を有している。該表面突起は、高さが0.08
μm未満の突起の平均間隔が10μm以下、より好ましく
は8μm以下であることが必要である。高さが0.08μm
未満の突起の平均間隔が10μmを超えると走行性を満足
できない。突起の平均間隔の下限値は特に限定されない
が、1〜2μm程度が製造上の限界である。また、高さ
が0.08〜0.5μmの突起の平均間隔は15〜150μm、より
好ましくはその平均間隔が20〜100μmであることが必
要である。高さが0.08〜0.5μmの突起の平均間隔が15
μm未満であると耐削れ性を満足できない。また高さが
0.08〜0.5μmの突起の平均間隔が150μmを超えると走
行性を満足できない。
The biaxially oriented polyester film of the present invention has fine protrusions on its surface. The surface protrusion has a height of 0.08
It is necessary that the average spacing of the protrusions having a size of less than 10 μm is 10 μm or less, more preferably 8 μm or less. Height is 0.08 μm
If the average distance between the protrusions is less than 10 μm, the running property cannot be satisfied. The lower limit of the average spacing of the protrusions is not particularly limited, but about 1 to 2 μm is a manufacturing limit. Further, it is necessary that the average interval between the protrusions having a height of 0.08 to 0.5 μm is 15 to 150 μm, and more preferably the average interval is 20 to 100 μm. The average distance between protrusions with a height of 0.08 to 0.5 μm is 15
If it is less than μm, the abrasion resistance cannot be satisfied. Also the height
If the average distance between the protrusions of 0.08 to 0.5 μm exceeds 150 μm, the running performance cannot be satisfied.

さらに、突起径1μm未満の突起と突起径1〜8μm
の突起の高さの平均値の差が0.02〜0.42μm、さらに好
ましくは高さ平均値の差が0.05〜0.30μmであることが
必要である。高さ平均値の差が上記の範囲未満では走行
性が満足できない。また高さ平均値の差が上記の範囲を
超えると耐削れ性を満足できない。
Furthermore, a protrusion having a protrusion diameter of less than 1 μm and a protrusion diameter of 1 to 8 μm
It is necessary that the difference in average height of the protrusions is 0.02 to 0.42 μm, and more preferably the difference in average height is 0.05 to 0.30 μm. If the difference in height average value is less than the above range, the running performance cannot be satisfied. If the difference in average height exceeds the above range, the abrasion resistance cannot be satisfied.

本発明の二軸配向ポリエステルフィルムは、フィルム
の表面空間体積(φ)が2×103〜1×105、好ましくは
1×104〜1×105、また、フィルム幅方向の屈折率nTD
が1.655〜1.700、好ましくは1.675〜1.700の範囲の場合
に耐削れ性、走行性がより良好となるので望ましい。さ
らに、フィルム表面の全反射ラマン結晶化指数が13cm-1
以上、好ましくは17cm-1以上の場合に耐削れ性、走行性
がより一層良好となるので特に望ましい。
The biaxially oriented polyester film of the present invention has a surface space volume (φ) of 2 × 10 3 to 1 × 10 5 , preferably 1 × 10 4 to 1 × 10 5 , and a refractive index n in the film width direction. TD
Is in the range of 1.655 to 1.700, preferably 1.675 to 1.700, because the abrasion resistance and the running property are better. Furthermore, the total reflection Raman crystallization index of the film surface is 13 cm -1
Above, preferably at least 17 cm −1 , the abrasion resistance and running property are further improved, which is particularly desirable.

次に、本発明の二軸配向ポリエステルフィルムの製造
方法について述べる。本発明の二軸配向ポリエステルフ
ィルムを構成するポリエステルは、直接エステル化を経
る重縮合を行なって、あるいはエステル交換反応を経る
重縮合を行なって得られる。微粒子をポリマに添加する
方法としては、重合時に添加する方法や押出し前にポリ
マペレットに混合する方法を採用できるが、粒子の含有
量を調節する方法として、高濃度のマスタペレット、好
ましくは1〜5重量%の粒子濃度のマスタペレットを製
膜時に、実質的に粒子を含有しないポリエステルで稀釈
するマスタペレット法が好ましい。さらに、高濃度、好
ましくは1〜5重量%のマスターペレットの固有粘度、
共重合成分を調整して、小径粒子を含有するマスタペレ
ットのTcc(冷結晶化温度)とTg(ガラス転移温度)の
差△Tcgが50〜90℃、大径粒子を含有するマスタペレッ
トの△Tcgが60〜100℃の範囲にあり、かつ前者が後者よ
り小さい値の場合に本発明範囲の突起間隔を満たすのに
極めて有効である。さらに、小径粒子を含有するマスタ
ペレットの結晶化促進係数が、大径粒子を含有するマス
タペレットの結晶化促進係数より大きい場合に本発明範
囲の突起間隔及び高さの平均値の差を満たすのに極めて
有効である。
Next, a method for producing the biaxially oriented polyester film of the present invention will be described. The polyester constituting the biaxially oriented polyester film of the present invention can be obtained by directly performing polycondensation via esterification or performing polycondensation via a transesterification reaction. As a method of adding fine particles to the polymer, a method of adding at the time of polymerization or a method of mixing with polymer pellets before extrusion can be adopted, but as a method of adjusting the content of particles, high-concentration master pellets, preferably 1 to A master pellet method in which a master pellet having a particle concentration of 5% by weight is diluted with a substantially particle-free polyester during film formation is preferred. Furthermore, a high concentration, preferably 1 to 5% by weight of the intrinsic viscosity of the master pellet,
Adjusting the copolymerization component, the difference between Tcc (cold crystallization temperature) and Tg (glass transition temperature) of the master pellet containing small particles △ Tcg is 50 to 90 ℃, △ of the master pellet containing large particles When Tcg is in the range of 60 to 100 ° C. and the former is smaller than the latter, it is extremely effective for satisfying the projection interval in the range of the present invention. Furthermore, when the crystallization acceleration coefficient of the master pellet containing the small-sized particles is larger than the crystallization acceleration coefficient of the master pellet containing the large-sized particles, the difference between the average value of the protrusion interval and the height in the range of the present invention is satisfied. Is extremely effective for

上記方法で得られた粒子含有ポリエステルのペレット
を十分乾燥した後、溶融押出機に供給し、ペレットが溶
融する温度以上、ポリマが分解する温度以下で、スリッ
ト状のダイからシート状に溶融押出し、冷却固化せしめ
て未延伸フィルムを作る。
After sufficiently drying the pellets of the particle-containing polyester obtained by the above method, the pellets are supplied to a melt extruder, and the pellets are melted or higher, at a temperature at which the polymer is decomposed or lower, and melt-extruded into a sheet from a slit die, An unstretched film is prepared by cooling and solidifying.

次に、この未延伸フィルムを二軸延伸し配向させる。
延伸方法としては、逐次二軸延伸法、または同時二軸延
伸法を用いることができるが、特に好ましいのは逐次二
軸延伸法である。この場合の延伸条件としては、最初に
長手方向、次に幅方向の延伸を行ない、長手方向の延伸
を3段階以上に分けて、長手方向の総延伸倍率を3〜5
倍で行なう方法が本発明範囲の突起間隔を得るのに有効
である。幅方向の延伸倍率は3〜4倍が一般的である。
延伸速度は103〜104%/minの比較的遅い範囲で行うの
が、上記諸条件を満足するのにより好ましい。また、延
伸温度は、Tg〜Tg+20℃の範囲が本発明範囲の突起間隔
を得るのに有効である。次に、延伸フィルム熱処理する
が、その時の熱処理条件としては、温度180〜230℃、好
ましくは190〜220℃の範囲で、0.5〜60秒間熱処理する
方法が一般的である。以上のようにして、本発明の二軸
配向ポリエステルフィルムを得ることができるが、特に
本方法に限定されるものではない。
Next, the unstretched film is biaxially stretched and oriented.
As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used, and the sequential biaxial stretching method is particularly preferable. As the stretching conditions in this case, stretching in the longitudinal direction and then in the width direction is performed first, and the stretching in the longitudinal direction is divided into three or more steps so that the total stretching ratio in the longitudinal direction is 3 to 5.
The method of doubling is effective for obtaining the protrusion spacing within the scope of the present invention. The stretching ratio in the width direction is generally 3 to 4 times.
The stretching speed is preferably set within a relatively slow range of 10 3 to 10 4 % / min in order to satisfy the above conditions. Further, the stretching temperature is effectively within the range of the present invention in the range of Tg to Tg + 20 ° C. Next, the stretched film is heat-treated, and the heat treatment condition at that time is generally a temperature of 180 to 230 ° C., preferably 190 to 220 ° C. for 0.5 to 60 seconds. The biaxially oriented polyester film of the present invention can be obtained as described above, but is not particularly limited to this method.

[特性の測定方法並びに効果の評価方法] 本発明の特性値の測定方法、並びに効果の評価方法は
次のとおりである。
[Method for Measuring Characteristics and Method for Evaluating Effect] The method for measuring characteristic values and the method for evaluating effect according to the present invention are as follows.

(1) 粒子の平均粒径 微粒子をエチレングリコール中または水スラリーとし
て分散させ、遠心沈降式粒度分布測定装置(堀場製作所
CAPA500)を用いて、体積平均径(μm)を測定した。
(1) Average particle size of particles Fine particles are dispersed in ethylene glycol or as a water slurry, and a centrifugal sedimentation type particle size distribution measuring device (Horiba Seisakusho) is used.
The volume average diameter (μm) was measured using CAPA500).

(2) 粒子の含有量 ポリエステル100gにo−クロロフェノール1.0を加
え120℃で3時間加熱した後、日立工機(株)製超遠心
機55P−72を用い、30,000rpmで40分間遠心分離を行な
い、得られた粒子を100℃で真空乾燥する。微粒子を走
査型差動熱量計にて測定した時、ポリマに相当する溶解
ピークが認められる場合には微粒子にo−クロロフェノ
ールを加え、加熱冷却後再び遠心分離操作を行なう。溶
解ピークが認められなくなった時、微粒子を析出粒子と
する。通常遠心分離操作は2回で足りる。かくして分離
された粒子の全重量に対する比率(重量%)をもって含
有量とする。
(2) Content of particles After adding o-chlorophenol 1.0 to 100 g of polyester and heating at 120 ° C. for 3 hours, centrifugal separation was performed at 30,000 rpm for 40 minutes using an ultracentrifuge 55P-72 manufactured by Hitachi Koki Co., Ltd. The obtained particles are vacuum dried at 100 ° C. When a fine particle corresponding to a polymer is observed when the fine particles are measured with a scanning differential calorimeter, o-chlorophenol is added to the fine particles, and after heating and cooling, centrifugation is performed again. When the dissolution peak is no longer observed, the fine particles are designated as precipitated particles. Normally, two centrifugation operations are sufficient. The content is defined as the ratio (% by weight) to the total weight of the particles thus separated.

(3) 極限粘度 ASTM D1601に従って、o−クロロフェノール中で測
定したもので、dl/gで表わす。
(3) Intrinsic viscosity Measured in o-chlorophenol according to ASTM D1601, expressed in dl / g.

(4) ガラス転移点Tg、冷結晶化温度Tcc パーキンエルマー社製のDSC(示差走査熱量計)II型
を用いて測定した。DSCの測定条件は次のとおりであ
る。すなわち、試料10mgをDSC装置にセットし、300℃の
温度で5分間溶融した後、液体窒素中に急冷する。この
急冷試料を10℃/minで昇温し、ガラス転移点Tgを検知す
る。さらに昇温を続け、ガラス状態からの結晶化発熱ピ
ーク温度をもって冷結晶化温度Tccとした。ここでTccと
Tgの差(Tcc−Tg)を△Tcgと定義する。
(4) Glass transition point Tg, cold crystallization temperature Tcc It was measured using a Perkin Elmer DSC (differential scanning calorimeter) type II. The DSC measurement conditions are as follows. That is, 10 mg of a sample is set in a DSC apparatus, melted at a temperature of 300 ° C. for 5 minutes, and then rapidly cooled in liquid nitrogen. The temperature of this quenched sample is raised at 10 ° C./min, and the glass transition point Tg is detected. The temperature was further raised, and the crystallization exothermic peak temperature from the glass state was set as the cold crystallization temperature Tcc. Where Tcc
The difference between Tg (Tcc-Tg) is defined as ΔTcg.

(5) 結晶化促進係数(単位は℃) 上記方法で不活性粒子を1重量%含有するポリエステ
ルの△Tcg(I)、およびこれから不活性粒子を除去し
た同粘度のポリエステルの△Tcg(II)を測定し、△Tcg
(II)と△Tcg(I)の差[△Tcg(II)−△Tcg
(I)]をもって、結晶化促進係数とした。
(5) Crystallization acceleration coefficient (unit: ° C) ΔTcg (I) of polyester containing 1% by weight of inactive particles by the above method, and ΔTcg (II) of polyester of the same viscosity obtained by removing inactive particles therefrom. Is measured and △ Tcg
Difference between (II) and △ Tcg (I) [△ Tcg (II)-△ Tcg
(I)] was used as the crystallization acceleration coefficient.

(6) 表面突起高さ 2検定器方式の走査型電子顕微鏡(エリオニクス
(株)製ESM−3200)と断面測定装置(エリオニクス
(株)製PMS−1)で、フィルム表面の平滑面の高さを
0として走査した時の高さ測定値を、256階調のグレー
値として画像処理装置(カールツァイス(株)製IBAS20
00)に送り、このグレー値をもとに画像処理装置上にフ
ィルム表面突起画像を再構築する。次にこの表面突起画
像で2値化された突起部分のグレー値の最高値を突起高
さ(μm)に換算して求めた。この測定を該フィルム1m
m2について行なった。
(6) Surface projection height 2 The height of the smooth surface of the film was measured with a scanning electron microscope (ESM-3200 manufactured by Elionix Co., Ltd.) and a cross-section measurement device (PMS-1 manufactured by Erionix Co., Ltd.). The height measurement value when scanning with 0 as the gray value of 256 gradations is used as an image processing device (IBAS20 manufactured by Carl Zeiss Co., Ltd.).
00) and reconstruct the film surface projection image on the image processing device based on this gray value. Next, the maximum gray value of the projection portion binarized in this surface projection image was obtained by converting it to the projection height (μm). This measurement 1m of the film
Performed for m 2 .

(7) 突起間隔 (6)項と同様にして、表面突起画像で2値化された
突起部分のグレー値の突起高さについて、突起高さの範
囲内にある突起個数を求め、その突起個数から突起間隔
を算出した。この測定を該フィルム1mm2について行なっ
た。
(7) Protrusion spacing Similar to the item (6), regarding the protrusion height of the gray value of the protrusion portion binarized in the surface protrusion image, find the number of protrusions within the protrusion height range, and then calculate the number of protrusions. The protrusion interval was calculated from This measurement was performed on 1 mm 2 of the film.

(8) 突起径 (6)項と同様にして、表面突起画像で2値化された
突起部分について突起径を求めた。
(8) Projection diameter In the same manner as in item (6), the projection diameter was determined for the binarized projection portion in the surface projection image.

(9) 表面空間体積(Φ) 小坂研究所高精度薄膜段差測定機ET−10を用い、触針
先端半径0.5μm、カットオフ0.08mm、測定長1.0mm、縦
倍率20万倍、横倍率2000倍で、フィルムの表面粗さ曲線
を測定する。この粗さ曲線の平均線(中心線)の上側で
平行に0.005μmごとにピークカウントレベルを設け、
平均線を曲線が交叉する2点間において、上記のピーク
カウントレベルを1回以上交叉する点が存在するとき、
これを1ピークとし、このピーク数を測定長さ間におい
て求める。各ピークカクントレベルについて、このピー
ク数を求め平均線からn番目のピークカウントレベルに
ついて求めたピーク数をPC(n)と定義する。測定長さ
間でピーク数が始めて0になるピークカウントレベルが
平均線からm番目としたとき、有効空間体積Φは、 で表わされ、場所を変えて50回測定した平均値を用い
る。
(9) Surface space volume (Φ) Using a high precision thin film step measuring instrument ET-10 of Kosaka Laboratory, stylus tip radius 0.5 μm, cutoff 0.08 mm, measurement length 1.0 mm, longitudinal magnification 200,000 times, lateral magnification 2000 The surface roughness curve of the film is measured in fold. A peak count level is set every 0.005 μm in parallel above the average line (center line) of this roughness curve.
When there is a point that intersects the above peak count level one or more times between two points where the curve intersects the average line,
This is defined as one peak, and the number of peaks is obtained during the measurement length. For each peak count level, the number of peaks is determined and the number of peaks determined for the nth peak count level from the average line is defined as PC (n). When the peak count level at which the number of peaks starts to become 0 between measurement lengths is mth from the average line, the effective space volume Φ is The average value of 50 measurements taken at different locations is used.

(10) 屈折率、屈折率比 ナトリウムD線(波長589nm)を光源として、アッベ
屈折率計を用いて20℃、相対湿度60%にて測定した。な
お、マウント液にはイオウ−ヨウ化メチレンまたはヨウ
化メチレン液を用いた。また、二軸配向フィルムの厚さ
方向の屈折率(Aとする)及び溶融プレス後10℃の水中
へ急冷して作った無配向(アモルファス)フィルムの厚
さ方向の屈折率(Bとする)を測定し、A/Bをもって厚
さ方向の屈折率比とした。
(10) Refractive Index and Refractive Index Ratio The measurement was performed at 20 ° C. and 60% relative humidity using an Abbe refractometer with sodium D line (wavelength 589 nm) as a light source. As the mount solution, sulfur-methylene iodide or methylene iodide solution was used. Also, the refractive index in the thickness direction of the biaxially oriented film (denoted as A) and the refractive index in the thickness direction of the non-oriented (amorphous) film prepared by quenching into water at 10 ° C. after melt pressing (denoted as B) Was measured, and A / B was defined as the refractive index ratio in the thickness direction.

(11) 表面の全反射ラマン結晶化指数 Jobin−Yvon社製 Ramanor U−1000ラマンシステム
により、全反射ラマンスペクトルを測定し、カルボニル
基の伸縮振動である1730cm-1の半価幅をもって表面の全
反射ラマン結晶化指数とした。測定条件は次のとおりで
ある。測定深さは、表面から500〜1000Å。
(11) Total reflection Raman crystallization index of the surface Ramanor U-1000 Raman system manufactured by Jobin-Yvon Co., was used to measure the total reflection Raman spectrum, and the total half-width of the surface was 1730 cm -1 which is the stretching vibration of the carbonyl group. The reflection Raman crystallization index was used. The measurement conditions are as follows. The measurement depth is 500 to 1000Å from the surface.

光源 アルゴンイオンレーザー(5145cm-1) 試料のセッティング レーザー偏光方向(S偏光)とフィルム長手方向が平
行となるように、フィルム表面を全反射プリズムに圧着
させ、レーザーのプリズムへの入射角(フィルム厚さ方
向との角度)は60゜とした。
Light source Argon ion laser (5145cm -1 ) Sample setting Press the film surface to the total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction are parallel, and the incident angle of the laser to the prism (film thickness The angle with the vertical direction) was set to 60 °.

検出器 PM:RCA31034/Photon Counting System (Hamamatsu C1230)(supply 1600V) 測定条件 SLIT 1000μm LASER 100mW GATE TIME 1.0sec SCAN SPEED 12cm-1/min SAMPLING INTERVAL 0.2cm-1 REPEAT TIME 6 (12) 耐削れ性 フィルムを1/2インチ幅のテープ状にスリットしたも
のに角度90゜で片刃を押しあて、0.5mm押し込んで20cm
走行させる(速度:6.7cm/s、張力:500g)。片刃に削り
取られた粉の付着高さを顕微鏡で読み取り、削れ量(μ
m)とした。この削れ量が15μm以下の場合耐削れ性が
良好、それを超える場合耐削れ性が不良である。これは
フィルムの加工工程での耐削れ性と対応している。
Detector PM: RCA31034 / Photon Counting System (Hamamatsu C1230) (supply 1600V) Measuring condition SLIT 1000μm LASER 100mW GATE TIME 1.0sec SCAN SPEED 12cm -1 / min SAMPLING INTERVAL 0.2cm -1 REPEAT TIME 6 (12) Scraping resistant film 20 cm by pushing the one-sided blade at a 90-degree angle into a slit of 1/2 inch width tape and pushing in 0.5 mm
Run (speed: 6.7 cm / s, tension: 500 g). The adhesion height of the powder scraped off by the single blade is read with a microscope and the scraped amount (μ
m). If the abrasion amount is 15 μm or less, the abrasion resistance is good, and if it exceeds it, the abrasion resistance is poor. This corresponds to the abrasion resistance in the film processing process.

(13) 走行性 標準条件として、20℃相対湿度60%の雰囲気下で、外
径6mmφの固定軸(表面粗度0.2S)に1/2インチ幅のテー
プ状フィルムを角度θ=πradで接触させ、3.3cm/sの速
さで走行させる。入口テンションT1を25gとした時の出
口テンションT2を測定し、次式から動摩擦係数(μ
を算出する。
(13) Running property As a standard condition, a 1/2 inch wide tape-shaped film is contacted with a fixed shaft (surface roughness 0.2S) with an outer diameter of 6mmφ at an angle θ = πrad in an atmosphere of 20 ° C and 60% relative humidity. And drive at a speed of 3.3 cm / s. When the inlet tension T 1 is set to 25 g, the outlet tension T 2 is measured, and the dynamic friction coefficient (μ k ) is calculated from the following equation.
To calculate.

μ=(1/θ)In(T2/T1) =(1/π)In(T2/25) このμ値が0.25以下の場合走行性が良好、それを超
える場合走行性が不良である。これは磁気媒体とした場
合の走行性と対応している。
μ k = (1 / θ) In (T 2 / T 1) = (1 / π) In (T 2/25) This mu k value is good when the running of 0.25 or less, when the traveling resistance beyond that It is bad. This corresponds to the runnability when using a magnetic medium.

[実施例] 本発明を実施例、比較例に基づいて説明する。[Examples] The present invention will be described based on Examples and Comparative Examples.

実施例1 小径粒子として平均粒径0.3μmのコロイダルシリ
カ、大径粒子として平均粒径0.6μmのコロイダルシリ
カを用い、それぞれ微粒子を含有するエチレングリコー
ルスラリーを調製した。大径粒子を含有するスラリーの
み180℃で2時間ボイル処理した後、常法によりエステ
ル交換反応を行ない、重合して、極限粘度0.70の大径粒
子を1重量%含有するポリエチレンテレフタレートの粒
子マスタペレットと極限粘度0.60の小径粒子を1重量%
含有する粒子マスタペレットを得た。これらの粒子マス
タペレットと、実質的に粒子を含有しないポリエチレン
テレフタレートのペレットを、粒子含有量が小径粒子は
0.5重量%、大径粒子は0.05重量%となるように混合し
たペレットを180℃、8時間真空乾燥した後、押出機に
供給して、280℃で溶融押出し、ギアポンプ、フィルタ
ーを経由してT型口金からシート状に吐出せしめ、この
溶融シートを表面温度40℃の冷却ドラムに巻き付けて、
冷却固化せしめて未延伸シートを作った。
Example 1 An ethylene glycol slurry containing fine particles was prepared by using colloidal silica having an average particle size of 0.3 μm as the small particles and colloidal silica having an average particle size of 0.6 μm as the large particles. Only a slurry containing large particles is boiled at 180 ° C for 2 hours, then transesterified by a conventional method, polymerized, and polyethylene terephthalate particle master pellets containing 1% by weight of large particles having an intrinsic viscosity of 0.70 are polymerized. And 1% by weight of small particles with an intrinsic viscosity of 0.60
A containing particle master pellet was obtained. These particle master pellets and polyethylene terephthalate pellets that do not substantially contain particles are
Pellets mixed so that 0.5% by weight and 0.05% by weight of large particles were vacuum dried at 180 ° C for 8 hours, then fed to an extruder, melt-extruded at 280 ° C, and passed through a gear pump and a filter. Discharge in sheet form from the die and wrap this molten sheet around a cooling drum with a surface temperature of 40 ° C.
An unstretched sheet was prepared by cooling and solidifying.

この未延伸シートを延伸ステンターへ導き、長手方向
に4.0倍、幅方向に3.7倍延伸した。延伸速度は2×103
%/minの比較的遅い範囲で行ない、延伸時の加熱温度は
85℃とした。次いで、このフィルムを冷却することな
く、そのまま熱処理ゾーンへ導き、210℃で3秒間緊張
熱固定し厚さ14μmの二軸配向ポリエステルフィルムを
得た。
The unstretched sheet was introduced into a stretching stenter and stretched 4.0 times in the longitudinal direction and 3.7 times in the width direction. Stretching speed is 2 × 10 3
% / Min, the heating temperature during stretching is relatively slow.
85 ° C. Next, this film was introduced into the heat treatment zone as it was without cooling, and was heat-fixed at 210 ° C. for 3 seconds to obtain a biaxially oriented polyester film having a thickness of 14 μm.

実施例2〜4及び比較例1〜5 実施例1の諸条件の中で、添加する微粒子の種類、平
均粒径、添加量及び、延伸温度、延伸倍率、熱固定温度
及び、熱固定時の弛緩の程度を種々変更することによ
り、特性の異なるサンプルを作った。これらのフィルム
の評価結果をまとめて表1に示した。表1から、フィル
ムの表面突起、間隔が本発明範囲内の場合は、耐削れ
性、走行性を両立するフィルム得られるが、そうでない
場合は耐削れ性、走行性を両立するフィルムが得られな
いことがわかる。
Examples 2 to 4 and Comparative Examples 1 to 5 Among various conditions of Example 1, types of fine particles to be added, average particle size, addition amount, stretching temperature, stretching ratio, heat setting temperature, and heat setting Samples with different properties were made by varying the degree of relaxation. The evaluation results of these films are summarized in Table 1. From Table 1, when the surface protrusion of the film and the interval are within the range of the present invention, a film having both abrasion resistance and running property is obtained, but otherwise, a film having both abrasion resistance and running property is obtained. I know there isn't.

[発明の効果] かくして得られた二軸配向ポリエステルフィルムは、
その片面または両面に磁性層を設けることによって各種
の磁気記録媒体、例えばビデオテープ、オーディオテー
プ、フロッピーディスク等に加工されて利用される。磁
性層としては、磁性粉末をバインダーと共に塗布するも
のでもよく、あるいは強磁性材料を真空蒸着、スパッタ
リング、イオンプレーティング、あるいはメッキ等の手
法で薄膜化したものでもよい。なお、本発明の二軸配向
ポリエステルフィルムの用途は磁気記録媒体用の他、例
えばグラフィック、スタンピングフォイル、電気絶縁材
料、コンデンサー用誘電体、包装用等でも平滑性、滑り
性が問題となる用途では、有効に利用され得るものであ
る。
[Effect of the Invention] The biaxially oriented polyester film thus obtained is
By providing a magnetic layer on one side or both sides, it is used by being processed into various magnetic recording media such as video tapes, audio tapes, and floppy disks. The magnetic layer may be formed by coating magnetic powder with a binder, or may be formed by thinning a ferromagnetic material by a method such as vacuum deposition, sputtering, ion plating, or plating. The biaxially oriented polyester film of the present invention is used not only for magnetic recording media, but also for applications such as graphics, stamping foils, electrical insulating materials, dielectrics for capacitors, and packaging where smoothness and slipperiness are problems. , Can be effectively used.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B29L 7:00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】表面に微細な突起を有する二軸配向ポリエ
ステルフィルムであって、高さが0.08μm未満の突起の
平均間隔が10μm以下、かつ、高さが0.08〜0.5μmの
突起の平均間隔が15〜150μm、かつ、突起径1μm未
満の突起と突起径1〜8μmの突起の高さ平均値の差が
0.02〜0.42μmであることを特徴とする二軸配向ポリエ
ステルフィルム。
1. A biaxially oriented polyester film having fine projections on its surface, wherein the average spacing of projections having a height of less than 0.08 μm is 10 μm or less, and the average spacing of projections having a height of 0.08 to 0.5 μm. Is 15 to 150 μm, and the difference in height average value between the projections with a projection diameter of less than 1 μm and the projections with a projection diameter of 1 to 8 μm is
A biaxially oriented polyester film having a thickness of 0.02 to 0.42 μm.
JP62255555A 1987-10-09 1987-10-09 Biaxially oriented polyester film Expired - Lifetime JPH089672B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62255555A JPH089672B2 (en) 1987-10-09 1987-10-09 Biaxially oriented polyester film
US07/254,320 US4952449A (en) 1987-10-09 1988-10-05 Biaxially oriented polyester film
DE19883850839 DE3850839T2 (en) 1987-10-09 1988-10-07 Biaxially oriented polyester film.
EP19880309379 EP0311426B1 (en) 1987-10-09 1988-10-07 Biaxially oriented polyester film
KR1019880013131A KR960005445B1 (en) 1987-10-09 1988-10-08 Biaxially oriented polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62255555A JPH089672B2 (en) 1987-10-09 1987-10-09 Biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPH0198634A JPH0198634A (en) 1989-04-17
JPH089672B2 true JPH089672B2 (en) 1996-01-31

Family

ID=17280350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62255555A Expired - Lifetime JPH089672B2 (en) 1987-10-09 1987-10-09 Biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JPH089672B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492219B1 (en) * 1999-11-17 2005-05-31 에스케이씨 주식회사 the Polyester film for Magnetic Memory Media

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164733A (en) * 1986-01-14 1987-07-21 Teijin Ltd Biaxially oriented polyester film for magnetic recording
JPS6372730A (en) * 1986-09-16 1988-04-02 Teijin Ltd Biaxially orientated polyester film
JPS63238135A (en) * 1987-03-26 1988-10-04 Teijin Ltd Biaxially oriented polyester film

Also Published As

Publication number Publication date
JPH0198634A (en) 1989-04-17

Similar Documents

Publication Publication Date Title
EP0679509B1 (en) Biaxially oriented laminated film
JPH0780282B2 (en) Biaxially oriented thermoplastic resin film
US5401559A (en) Biaxially oriented thermoplastic resin film
JP2621461B2 (en) Biaxially oriented polyester film
JPH089672B2 (en) Biaxially oriented polyester film
JP2530680B2 (en) Biaxially oriented polyester film
JP2671333B2 (en) Biaxially oriented polyester film
JP2525441B2 (en) Biaxially oriented polyester film
JP2538641B2 (en) Biaxially oriented polyester film
JP2525461B2 (en) Biaxially oriented polyester film
JPH0751637B2 (en) Biaxially oriented polyester film
JP2555717B2 (en) Biaxially oriented polyester film and method for producing the same
JP2576215B2 (en) Biaxially oriented polyester film
JP2555700B2 (en) Biaxially oriented polyester film
JP2560328B2 (en) Biaxially oriented polyester film
JP2569941B2 (en) Biaxially oriented polyester film
JP2605808B2 (en) Biaxially oriented polyester film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JP2525446B2 (en) Polyester film for magnetic recording media
JPS63230740A (en) Biaxially oriented polyester film
JP2615651B2 (en) Biaxially oriented polyester film
JP2515782B2 (en) Biaxially oriented polyester film
JP2827880B2 (en) Biaxially oriented thermoplastic resin film
JP2975881B2 (en) Biaxially oriented thermoplastic resin film
JPH089670B2 (en) Polyester film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12