JPH024059B2 - - Google Patents

Info

Publication number
JPH024059B2
JPH024059B2 JP57033800A JP3380082A JPH024059B2 JP H024059 B2 JPH024059 B2 JP H024059B2 JP 57033800 A JP57033800 A JP 57033800A JP 3380082 A JP3380082 A JP 3380082A JP H024059 B2 JPH024059 B2 JP H024059B2
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetic recording
value
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57033800A
Other languages
Japanese (ja)
Other versions
JPS58153231A (en
Inventor
Tomoyuki Minami
Kazuhiro Tanaka
Takeshi Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57033800A priority Critical patent/JPS58153231A/en
Publication of JPS58153231A publication Critical patent/JPS58153231A/en
Publication of JPH024059B2 publication Critical patent/JPH024059B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、縦方向の強度の高い二軸配向ポリエ
チレンテレフタレートフイルムをベースとした磁
気記録テープに関するものである。 従来、磁気記録テープは、フイルムの表面に磁
性粒子を結着剤とともに塗布するとか、磁性金属
を真空蒸着、スパツクリング、メツキなどの方法
によつて固着し、磁性の薄層を形成させることに
よつて製造されているが、かかる磁性材料のベー
スとなるフイルムは瞬間的に相当大きい引張力が
加わつても記録に歪が生じないように、弾性率が
大きいこと及び高温での寸法安定性が優れている
ことが要求される。しかも最近は磁気材料を薄く
して記録時間を延長(長時間化)し、且つ磁気材
料のパツケージを小型化しようとする要求が強
く、従来の磁気材料よりも薄く且つ十分な機能を
有する製品の出現が待たれている。また、ベース
フイルム上に真空蒸着、スパツタリング、イオン
プレーテング法等で磁性金属層を固着する磁気記
録テープでは、加工時の高温に対する寸法安定性
も要求されている。 しかし、従来の高強度のベースフイルムを用い
たものは、高温での寸法安定性がないため、磁性
層形成の段階における歪が残り、カール等による
巻き乱れを生じ、また、高温での寸法安定性のあ
るベースフイルムは、強度が充分高くないなどの
欠点があつた。 本発明の目的は、かかる従来の欠点を解消せし
め、磁気記録の長時間化が可能で、かつカール等
による巻き乱れのない磁気記録テープを提供せん
とするものである。 本発明は上記目的を達成するため次の構成、す
なわち、複屈折が0.06〜0.2、非晶配向係数が0.6
以上1.0未満、縦方向のF―5値が2500Kg/cm2
上、縦方向の熱収縮率が2.5%以下である二軸配
向ポリエチレンテレフタレートフイルムと、該フ
イルムの少なくとも片面に形成された磁性層から
なる磁気記録テープを特徴とするものである。 本発明においていうポリエチレンテレフタレー
トとは、ポリエチレンテレフタレート及び20%以
下の第3成分を含むポリエチレンテレフタレート
である。一般にポリエチレンテレフタレートはテ
レフタル酸またはその機能的誘導体及びエチレン
グリコールまたはその機能的誘導体とを触媒の存
在下で適当な反応条件の下に結合せしめることに
よつて合成される。このポリエチレンテレフタレ
ートの重合完結前あるいは後に適当な一種または
二種以上の第三成分を添加し、共重合または混合
ポリエステルとなしたものでもよい。共重合の適
当な第三成分としてはエステル形成官能基を有す
る化合物を挙げることが出来る。また、該ポリエ
ステル中にリン酸、亜リン酸及びそれらのエステ
ルなどの安定剤、酸化チタン、微粒子シリカ、炭
酸カルシウムなどの滑剤等が含まれていてもよ
い。好ましい固有粘度は0.4〜1.0であり、更に好
ましくは0.55〜0.8である。 本発明の二軸配向ポリエチレンテレフタレート
フイルムとは、上記ポリエチレンテレフタレート
を溶融押出しし、これを二軸方向に延伸して配向
せしめたもので、複屈折が0.06〜0.2、非晶配向
係数が0.6以上1.0未満である。この範囲を外れた
ものは、厚さむらがあり磁気記録、再生用のヘツ
ドのタツチが悪くなる。 また、縦方向のF―5値は2500Kg/cm2以上、好
ましくは縦方向のF―5値が2500Kg/cm2以上でか
つ縦、横両方向のF―5値の和が3800Kg/cm2以上
である。F―5値がこの値に満たない場合は、フ
イルムの薄膜化できず磁気記録の長時間化やカセ
ツトテープの小型化が困難となる。 さらに、縦方向の熱収縮率(100℃における値)
は2.5%以下、好ましくは1.5%以下である。この
値を越えるものは、フイルム表面に磁性層を形成
する際の熱に対する寸法安定性が悪く、カールし
たり、テープ使用時に熱歪が顕在化して巻き乱れ
を生ずる。 本発明の磁性層とは、γ―Fe2O3,Coをドープ
したγ―Fe2O3,CrO2あるいは強磁性合金の粉末
磁性材料を有機バインダー中に分散せしめたいわ
ゆる塗布方式によつて形成された周知の磁性層、
または、Fe,Co,Ni,その他強磁性金属あるい
はこれらを含む磁性合金を真空蒸着、スパツタリ
ングイオンプレーテング、電気メツキ等の方法に
より形成された周知の強磁性層のいずれであつて
もよいが、後者の強磁性層が好ましい。 次に、本発明の磁気記録テープの製造方法につ
いて説明する。 本発明のポリエチレンテレフタレートフイルム
は縦―横―縦の逐次延伸法に、おいて特殊条件を
採用することにより製造される。ここで重要な点
は、最初の一方向延伸膜の特性、特に複屈折率お
よび非晶配向係数が、続く横および再縦方向の延
伸性および物理特性に大きく左右することであ
る。すなわち、最初の縦延伸を2段に分けて延伸
を実施するもので、最初の1段目は、延伸温度
110〜150℃、好ましくは115〜135℃、延伸倍率
1.3〜3.0倍、好ましくは1.5〜2.5倍、2段目は85
℃〜120℃、好ましくは95℃〜115℃、延伸倍率
2.0〜4.0倍、好ましくは2.0〜3.0倍の限られた条
件をとることが必要である。2段目の延伸倍率が
2.0倍未満ではF―5値が、4.0倍を超えると熱収
縮率が、それぞれ本発明で特定する値とすること
ができない。 次いで横方向に該フイルムの2次転移点(Tg)
から5℃高い温度乃至130℃の温度範囲にて2.5〜
4.5倍の倍率範囲に延伸し、さらに縦方向に該フ
イルムの2次転移点から5℃高い温度乃至170℃
の温度範囲で1.5〜2.5倍の倍率範囲に再縦延伸
し、縦方向の全延伸倍率を6.0〜12倍の範囲内で
延伸する。なお、再縦延伸の延伸段数は1段でよ
いが多段とするのがより好ましい。 前記の条件で縦延伸されたフイルムは次いで温
度150℃乃至240℃にて熱固定する。本発明では、
上記延伸条件の場合にF―5値、非晶配向係数お
よび熱収縮率が本発明で特定する範囲とすること
ができるので特に好ましい。 次に、上記フイルムの少なくとも片面に磁性層
を形成する。磁性層の形成は、γ―Fe2O3,Coを
ドープしたγ―Fe2O3,CrO2あるいは強磁性合金
の粉末磁性材料を有機バインダー中に分散せしめ
て塗布したり、Fe,Co,Niその他の強磁性金属
あるいはこれらを含む磁性合金を真空蒸着、スパ
ツタリング、イオンプレーテイング、電気メツキ
等の方法により磁性層を形成する。以上により、
本発明の磁気記録テープが得られる。 なお、得られた磁気記録テープのフイルムの各
特性、すなわちF―5値、熱収縮率、非晶配向係
数、平均結晶粒径は、磁性層形成前のフイルムの
各特性とほぼ同一である。 以上述べたように、本発明の磁気記録テープ
は、特定の複屈折、非晶配向係数、F―5値、熱
収縮率を有する二軸配向ベースフイルムに磁性層
を設けたもの、ベースフイルムを薄膜化すること
ができ、したがつて磁気記録の長時間化が達成で
き、しかもカール等による巻き乱れのない磁気記
録テープとすることができた。 なお、本発明による磁気記録テープは、ビデオ
テープにも適用できるが、特にオーデオテープあ
るいはコンピユーターテープに適用するのが好ま
しい。 なお、本発明における非晶配向係数、複屈折、
F―5値、熱収縮率は次の測定方法よる。 (1) 非晶配向係数 ポリエステルフイルムを螢光剤(Mikephor
ETN)を含む水浴中に55℃で浸漬、風乾し、こ
のサンプルを日本分光(株)製FOM―1偏光光度計
でフイルム面内における偏光螢光強度を求め、以
下の定義に従つて非晶配向係数(F)を求めたもので
ある。 F=1−B/A F:非晶配向係数 A:縦方向の偏光螢光強度 B:横方向の偏光螢光強度 非晶配向係数が0.6以上1.0未満の範囲からはず
れると、高温での寸法安定性が満足されない。 (2) 複屈折(Δn) 偏光顕微鏡にペレツクコンペンセーターを使用
して、サンプル採取後温度25℃、相対湿度65%で
測定したものである。 (3) F―5値 引張試験機に、幅10mm切断したフイルム(表面
に磁性層を形成したもは、その磁性層を除去した
フイルム)を、チヤツク間長が100mmとなるよう
にセツトし、引張速度20mm/min、温度25℃の条
件で、フイルムの5%伸長に対応する強度を測定
する。 (4) 熱収縮率 まず、試料の長さを測定し、次にその試料を、
100℃に保持された空気恒温槽中無緊張状態で30
分間放置する熱処理を行ない、冷却後の長さを測
定する。そして、その熱処理前後の各長さから熱
収縮率を求める。 以下、実施例について説明する。 実施例 1〜5 溶融された線状ポリエチレンテレフタレートを
ダイスリツトから80℃以下に冷却されたドラム上
に押出して冷却固化せしめ、この実質的に配向さ
れてないフイルムを表1―1の条件で延伸した
後、緊張下にて200℃、6秒間の熱固定を行なつ
た。なお、溶融ポリマの押出量は、熱固定された
フイルムの厚さが各々8ミクロンとなるよう調整
した。 上記の方法で得られた各フイルムの特性は、表
1―2の通りであつた。この各フイルムの表面に
コバルトを主成分とした金属を5×10-5Torrの
雰囲気中で真空蒸着し(フイルムの移動速度は30
m/分)、厚さ0.2ミクロンの強磁性層を形成し、
これを所定の幅にスリツトして磁気記録テープと
した。 このテープの特性を測定し、表1―2に実施例
1〜5として示した。 ここで磁気テープでの5%伸び荷重については
◎は極めて良好、〇はかなり良好、△はあまり良
くないことを示す。本発明において、ベースフイ
ルムのF―5値の高いものは磁気テープとしても
良好であることがわかる。出力変動とはコンパク
トカセツトレコーダで磁気テープの磁気ヘツドへ
の接触状態を示し、◎はテープ再生時の出力信号
が強くてフラツトであつて良好であり、〇は出力
信号が一部歪んであま良くないことを示し、△は
同出力信号自体が弱く、しかも変形して不良な状
態なることを示している。巻き乱れはコンパクト
カセツトレコーダーで100往復録音再生した時の
走行性、巻きの良否に関し、◎は良好、〇は普
通、△は不良を示す。 金属蒸着時の高温加熱工程を経てきているが、
本発明のポリエチレンテレフタレートフイルムは
高強力であるとともに低熱収縮率である特徴のた
め、音質悪化につながるカールやしわが発生しな
く、繰返しの走行性、巻き特性が良好であること
がわかる。また磁気ヘツドタツチ性が向上し、出
力変動を少なくすることができた。 比較例 1〜4 比較のため、延伸条件を表1―1の比較例の通
りとし、他の条件を実施例と同一として磁気記録
テープを得た。磁気記録テープ用のフイルム特性
および磁気記録テープの特性は、表1―2の比較
例1〜4の通りであつた。同表から明らかなよう
に、比較例の各テープとも縦方向強力が劣るこ
と、蒸着時の加熱による変形、しわが残り、磁気
テープとしての出力変動、走行性、巻き特性が劣
ることがわかる。
The present invention relates to a magnetic recording tape based on a biaxially oriented polyethylene terephthalate film with high longitudinal strength. Traditionally, magnetic recording tapes have been produced by coating the surface of a film with magnetic particles together with a binder, or by fixing magnetic metal using methods such as vacuum evaporation, spackle, or plating to form a thin magnetic layer. However, the film that serves as the base for such magnetic materials has a high elastic modulus and excellent dimensional stability at high temperatures so that the recording will not be distorted even if a considerable tensile force is instantaneously applied. It is required that the Moreover, recently there has been a strong demand to make magnetic materials thinner to extend recording time (longer), and to miniaturize magnetic material packages. Its appearance is awaited. Further, in magnetic recording tapes in which a magnetic metal layer is fixed on a base film by vacuum deposition, sputtering, ion plating, etc., dimensional stability against high temperatures during processing is also required. However, conventional high-strength base films do not have dimensional stability at high temperatures, so distortion remains during the magnetic layer formation stage, resulting in irregular winding due to curling, etc., and dimensional stability at high temperatures. The base film had drawbacks such as not being strong enough. SUMMARY OF THE INVENTION An object of the present invention is to eliminate such conventional drawbacks, to provide a magnetic recording tape that allows long magnetic recording times and is free from winding disturbances due to curling or the like. In order to achieve the above object, the present invention has the following configuration, that is, birefringence is 0.06 to 0.2, and amorphous orientation coefficient is 0.6.
A biaxially oriented polyethylene terephthalate film having a longitudinal F-5 value of 2500 Kg/cm 2 or more and a longitudinal heat shrinkage rate of 2.5% or less, and a magnetic layer formed on at least one side of the film. This magnetic recording tape is characterized by: Polyethylene terephthalate as used in the present invention is polyethylene terephthalate containing polyethylene terephthalate and a third component of 20% or less. Generally, polyethylene terephthalate is synthesized by combining terephthalic acid or its functional derivative and ethylene glycol or its functional derivative under appropriate reaction conditions in the presence of a catalyst. One or more suitable third components may be added before or after the completion of the polymerization of polyethylene terephthalate to form a copolymerized or mixed polyester. Suitable third components for copolymerization include compounds having ester-forming functional groups. Further, the polyester may contain stabilizers such as phosphoric acid, phosphorous acid, and their esters, and lubricants such as titanium oxide, particulate silica, and calcium carbonate. The preferred intrinsic viscosity is 0.4 to 1.0, more preferably 0.55 to 0.8. The biaxially oriented polyethylene terephthalate film of the present invention is obtained by melt-extruding the above polyethylene terephthalate and stretching it in biaxial directions to orient it, and has a birefringence of 0.06 to 0.2 and an amorphous orientation coefficient of 0.6 to 1.0. less than If the thickness is outside this range, the thickness will be uneven and the head for magnetic recording and reproducing will have poor contact. Also, the F-5 value in the vertical direction is 2500 Kg/cm 2 or more, preferably the F-5 value in the vertical direction is 2500 Kg/cm 2 or more, and the sum of the F-5 values in both the vertical and horizontal directions is 3800 Kg/cm 2 or more. It is. If the F-5 value is less than this value, it will not be possible to make the film thinner, making it difficult to extend the magnetic recording time and make the cassette tape smaller. Furthermore, the longitudinal heat shrinkage rate (value at 100℃)
is 2.5% or less, preferably 1.5% or less. If the value exceeds this value, the dimensional stability against heat during the formation of a magnetic layer on the film surface is poor, and the tape may curl or thermal strain becomes apparent when the tape is used, resulting in irregular winding. The magnetic layer of the present invention is formed by a so-called coating method in which a powder magnetic material of γ-Fe 2 O 3 , Co-doped γ-Fe 2 O 3 , CrO 2 , or a ferromagnetic alloy is dispersed in an organic binder. A well-known magnetic layer formed,
Alternatively, it may be any of the well-known ferromagnetic layers formed by vacuum deposition, sputtering ion plating, electroplating, etc. of Fe, Co, Ni, other ferromagnetic metals, or magnetic alloys containing these. However, the latter ferromagnetic layer is preferred. Next, a method for manufacturing a magnetic recording tape according to the present invention will be explained. The polyethylene terephthalate film of the present invention is produced by employing special conditions in a longitudinal-transverse-longitudinal sequential stretching method. The important point here is that the properties of the initial unidirectionally stretched film, particularly the birefringence and the amorphous orientation coefficient, greatly influence the subsequent stretchability and physical properties in the transverse and longitudinal directions. In other words, the initial longitudinal stretching is carried out in two stages.
110-150℃, preferably 115-135℃, stretching ratio
1.3 to 3.0 times, preferably 1.5 to 2.5 times, second stage is 85
℃~120℃, preferably 95℃~115℃, stretching ratio
It is necessary to take a limited condition of 2.0 to 4.0 times, preferably 2.0 to 3.0 times. The second stage stretch ratio is
If it is less than 2.0 times, the F-5 value cannot be set to the value specified in the present invention, and if it exceeds 4.0 times, the heat shrinkage rate cannot be set to the value specified in the present invention. Next, the secondary transition point (Tg) of the film in the lateral direction
2.5 to 130℃ from 5℃ higher than
Stretched to a magnification range of 4.5 times, and further stretched in the longitudinal direction at a temperature ranging from 5°C higher than the secondary transition point of the film to 170°C.
The film is longitudinally stretched again at a temperature range of 1.5 to 2.5 times, and the total stretching ratio in the longitudinal direction is stretched within a range of 6.0 to 12 times. Note that the number of stretching stages in longitudinal re-stretching may be one, but it is more preferable to use multiple stages. The film longitudinally stretched under the above conditions is then heat set at a temperature of 150°C to 240°C. In the present invention,
The above stretching conditions are particularly preferred because the F-5 value, amorphous orientation coefficient, and heat shrinkage rate can be within the ranges specified in the present invention. Next, a magnetic layer is formed on at least one side of the film. The magnetic layer can be formed by dispersing and coating a powder magnetic material such as γ-Fe 2 O 3 , CrO 2 doped with γ-Fe 2 O 3 , Co, or a ferromagnetic alloy in an organic binder; A magnetic layer is formed using Ni or other ferromagnetic metals or magnetic alloys containing these metals by vacuum deposition, sputtering, ion plating, electroplating, or other methods. Due to the above,
A magnetic recording tape of the present invention is obtained. The properties of the obtained magnetic recording tape film, ie, F-5 value, thermal shrinkage rate, amorphous orientation coefficient, and average crystal grain size, are almost the same as those of the film before the magnetic layer is formed. As described above, the magnetic recording tape of the present invention includes a biaxially oriented base film having a specific birefringence, an amorphous orientation coefficient, an F-5 value, and a heat shrinkage rate, and a magnetic layer provided thereon. It was possible to make the film thinner, thereby achieving longer magnetic recording times, and to provide a magnetic recording tape that is free from winding disturbances due to curling or the like. Although the magnetic recording tape according to the present invention can be applied to video tapes, it is particularly preferable to apply it to audio tapes or computer tapes. In addition, the amorphous orientation coefficient, birefringence,
The F-5 value and heat shrinkage rate are determined by the following measurement method. (1) Amorphous orientation coefficient A polyester film is coated with a fluorescent agent (Mikephor).
The sample was immersed in a water bath containing ETN at 55℃ and air-dried, and the polarized fluorescence intensity in the film plane was determined using a FOM-1 polarization photometer manufactured by JASCO Corporation. The orientation coefficient (F) is calculated. F=1-B/A F: Amorphous orientation coefficient A: Vertical polarized fluorescence intensity B: Lateral polarized fluorescence intensity If the amorphous orientation coefficient deviates from the range of 0.6 or more and less than 1.0, the dimensions at high temperatures will change. Stability is not satisfied. (2) Birefringence (Δn) This is measured using a polarizing microscope with a Pelleck compensator at a temperature of 25°C and a relative humidity of 65% after collecting the sample. (3) F-5 value Set a film cut 10 mm wide (if a magnetic layer is formed on the surface is a film with the magnetic layer removed) into a tensile tester so that the length between the chucks is 100 mm. The strength corresponding to 5% elongation of the film is measured at a tensile speed of 20 mm/min and a temperature of 25°C. (4) Heat shrinkage rate First, measure the length of the sample, and then
30 minutes without tension in an air temperature chamber maintained at 100℃
Heat treatment is performed by leaving it for a minute, and the length is measured after cooling. Then, the heat shrinkage rate is determined from each length before and after the heat treatment. Examples will be described below. Examples 1 to 5 Melted linear polyethylene terephthalate was extruded from a die slit onto a drum cooled to 80°C or less, cooled and solidified, and this substantially unoriented film was stretched under the conditions shown in Table 1-1. Thereafter, heat fixation was performed at 200°C for 6 seconds under tension. The amount of extrusion of the molten polymer was adjusted so that the thickness of each heat-set film was 8 microns. The properties of each film obtained by the above method are shown in Tables 1-2. A metal mainly composed of cobalt was vacuum-deposited on the surface of each film in an atmosphere of 5 × 10 -5 Torr (the film was moved at a speed of 30
m/min) to form a 0.2 micron thick ferromagnetic layer,
This was slit into a predetermined width to make a magnetic recording tape. The properties of this tape were measured and shown as Examples 1 to 5 in Table 1-2. Regarding the 5% elongation load on the magnetic tape, ◎ indicates extremely good, ◯ indicates fairly good, and △ indicates not very good. In the present invention, it can be seen that a base film with a high F-5 value is good as a magnetic tape. Output fluctuation refers to the state of contact between the magnetic tape and the magnetic head on a compact cassette recorder. ◎ indicates that the output signal during tape playback is strong and flat, which is good, and ○ indicates that the output signal is partially distorted and is not good. △ indicates that the output signal itself is weak and deformed, resulting in a defective state. The irregular winding is related to the running performance and quality of winding when recording and playing back 100 times with a compact cassette recorder. ◎ indicates good, 〇 indicates normal, and △ indicates poor. Although it has undergone a high temperature heating process during metal deposition,
It can be seen that the polyethylene terephthalate film of the present invention is characterized by high strength and low heat shrinkage, so it does not generate curls or wrinkles that would deteriorate the sound quality, and has good repeatability and winding characteristics. In addition, the magnetic head touchability was improved and output fluctuations were reduced. Comparative Examples 1 to 4 For comparison, magnetic recording tapes were obtained with the stretching conditions as shown in the Comparative Examples shown in Table 1-1, and with the other conditions being the same as in the Examples. The film properties for the magnetic recording tape and the properties of the magnetic recording tape were as shown in Comparative Examples 1 to 4 in Table 1-2. As is clear from the table, each tape of the comparative examples has poor longitudinal strength, remains deformed and wrinkled due to heating during vapor deposition, and has poor output fluctuations, runnability, and winding characteristics as a magnetic tape.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 複屈折が0.06〜0.2、非晶配向係数が0.6以上
1.0未満、縦方向のF―5値が2500Kg/m2以上、
縦方向の熱収縮率が2.5%以下である二軸配向ポ
リエチレンテレフタレートフイルムと、該フイル
ムの少なくとも片面に形成された磁性層からなる
磁気記録テープ。
1 Birefringence is 0.06-0.2, amorphous orientation coefficient is 0.6 or more
Less than 1.0, longitudinal F-5 value of 2500Kg/m2 or more ,
A magnetic recording tape comprising a biaxially oriented polyethylene terephthalate film having a longitudinal heat shrinkage rate of 2.5% or less, and a magnetic layer formed on at least one side of the film.
JP57033800A 1982-03-05 1982-03-05 Magnetic recording tape Granted JPS58153231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57033800A JPS58153231A (en) 1982-03-05 1982-03-05 Magnetic recording tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033800A JPS58153231A (en) 1982-03-05 1982-03-05 Magnetic recording tape

Publications (2)

Publication Number Publication Date
JPS58153231A JPS58153231A (en) 1983-09-12
JPH024059B2 true JPH024059B2 (en) 1990-01-25

Family

ID=12396543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033800A Granted JPS58153231A (en) 1982-03-05 1982-03-05 Magnetic recording tape

Country Status (1)

Country Link
JP (1) JPS58153231A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219317A (en) * 1986-03-20 1987-09-26 Sony Corp Thin metallic film type magnetic recording medium
KR20000067585A (en) * 1999-04-29 2000-11-25 장용균 the Process of Biaxial-oriented Polyester film Manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139872A (en) * 1974-04-26 1975-11-08
JPS51115571A (en) * 1975-04-04 1976-10-12 Asahi Chemical Ind Method of manufacturing polyester film
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film
JPS5522915A (en) * 1978-08-07 1980-02-19 Toray Ind Inc Manufacture of polyester film
JPS5527211A (en) * 1978-08-15 1980-02-27 Toray Ind Inc Producing process of polyester film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139872A (en) * 1974-04-26 1975-11-08
JPS51115571A (en) * 1975-04-04 1976-10-12 Asahi Chemical Ind Method of manufacturing polyester film
JPS548672A (en) * 1977-06-21 1979-01-23 Toray Ind Inc Production of polyester film
JPS5522915A (en) * 1978-08-07 1980-02-19 Toray Ind Inc Manufacture of polyester film
JPS5527211A (en) * 1978-08-15 1980-02-27 Toray Ind Inc Producing process of polyester film

Also Published As

Publication number Publication date
JPS58153231A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
EP0086302A1 (en) Polyethylene terephthalate film, process for the production thereof and magnetic recording medium therefrom
US4645702A (en) Magnetic recording medium
JP2004030809A (en) Substrate for magnetic recording medium and magnetic recording medium
JPS59127730A (en) Biaxially orientated polyethylene-naphthalate film
EP0174376B1 (en) Heat-resistant film or sheet
JPH024059B2 (en)
JPS59203230A (en) Biaxially oriented polyester film
JP2569853B2 (en) Biaxially oriented thermoplastic resin film and film roll
JP2629861B2 (en) Biaxially oriented polyethylene terephthalate film
JP2546225B2 (en) Magnetic recording media
US5645918A (en) Magnetic recording medium having an aromatic polyamide substrate
JPH05212788A (en) Biaxially oriented thermoplastic resin laminated film and manufacture thereof
JPH024060B2 (en)
JPH04232611A (en) High-density magnetic recording medium
JPH05261805A (en) Biaxially oriented polyethylene-2,6-naphthalate film and manufacture thereof
JPH0373409A (en) Metal thin film type magnetic recording medium
JP2555717B2 (en) Biaxially oriented polyester film and method for producing the same
JP3077835B2 (en) Biaxially oriented polyester film
JP2985340B2 (en) Biaxially oriented thermoplastic resin film
JP2698229B2 (en) Magnetic recording tape
JP4045947B2 (en) Biaxially oriented polyester film
JP2870080B2 (en) Video cassette tape
JPH0386916A (en) Metal coating type magnetic recording medium
JPH0157414B2 (en)
JPH0648534B2 (en) Manufacturing method of polyester film for magnetic recording flexible disk.