JPH0240228B2 - - Google Patents

Info

Publication number
JPH0240228B2
JPH0240228B2 JP59162366A JP16236684A JPH0240228B2 JP H0240228 B2 JPH0240228 B2 JP H0240228B2 JP 59162366 A JP59162366 A JP 59162366A JP 16236684 A JP16236684 A JP 16236684A JP H0240228 B2 JPH0240228 B2 JP H0240228B2
Authority
JP
Japan
Prior art keywords
epoxy resin
nonwoven fabric
parts
weight
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162366A
Other languages
Japanese (ja)
Other versions
JPS6140094A (en
Inventor
Masayuki Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP16236684A priority Critical patent/JPS6140094A/en
Publication of JPS6140094A publication Critical patent/JPS6140094A/en
Publication of JPH0240228B2 publication Critical patent/JPH0240228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、安価で打抜き加工性が良好な多層積
層板の製造法に関する。 従来の技術 近年、電子機器の小型化に伴ないプリント配線
板の高密度化が進んできた。そのため、両面プリ
ント配線板が使用されていた準産業分野において
もプリント配線を4層程度有する多層積層板が使
用され始めている。 発明が解決しようとする問題点 しかし、プリント配線の基板および層間の絶縁
に用いられている基材はガラス布(ガラス織布)
が一般的であり、多層になるに従つて打抜き加工
がしずらくなり、複雑な外形加工はできず、コス
トの点でも高いものになつていた。 本発明は、上記の点に鑑み、打抜き加工性が良
好で、安価な多層積層板を提供することを目的と
するものである。 問題点を解決するための手段 上記目的を達成するために本発明は、ガラス布
基材エポキシ樹脂プリント配線板1を内層に使用
し、この両面に接してエポキシ樹脂含浸ガラス不
織布〔〕2を配し、更にその外側にエポキシ樹
脂含浸ガラス不織布〔〕3、最外層の基材には
エポキシ樹脂含浸ガラス布4を使用して加熱加圧
成形するものであつて、ガラス不織布〔〕3に
はエポキシ樹脂100重量部に対して40〜130重量部
の無機充填剤を含有させたことを特徴とするもの
である。5は両面に一体に貼りつけられた金属箔
である。 この場合において、ガラス不織布〔〕2に、
エポキシ樹脂100重量部に対して40重量部未満の
無機充填剤を含有させるか、またはさせない。 作 用 本発明では、内層にガラス布基材エポキシ樹脂
プリント配線板1を使用しているので、スルホー
ル信頼性、寸法安定性がよく、ランドの穴ずれを
生じない。また、ガラス不織布〔〕2は無機充
填剤を含まないが含んでも少なくプリント配線板
1との層間密着性を良好にし、ガラス不織布
〔〕3に無機充填剤を多く含有させることによ
りスルホール信頼性、寸法安定性の向上を図つて
いる。ガラス不織布〔〕3に含有される無機充
填剤の量が、エポキシ樹脂100重量部に対して40
重量部未満であると、スルホール信頼性、寸法安
定性が悪くなる。一方、無機充填剤の含有量が
120重量部を越えると最外層のガラス布4との密
着性が悪くなる。 尚、ガラス不織布〔〕2に含有される無機充
填剤の量が40重量部以上であるとプリント配線板
1との層間密着性が低下すると共にボイドが発生
し易くなるので好ましくない。 実施例 本発明に用いるガラス不織布〔〕,〔〕は、
2〜80mmの長さのガラス繊維をエポキシ樹脂、合
成繊維、セルロース繊維等のバインダによつて結
合したものであり、ガラス布は従来積層板の基材
として用いられているものである。無機充填剤
は、シリカ粉末、焼成クレー、ガラスビーズなど
で特に限定しないが、積層板に透明性を与えるも
のが望ましい。金属箔は、銅箔、アルミニウム
箔、ニツケル箔などである。 次に、本発明の実施例を説明する。 実施例 1 エピコート1001(油化シエル製エポキシ樹脂、
mp.70℃)100重量部(以下単に「部」という)、
フエノールノボラツク(フリーフエノール1%以
下、軟化点90℃)20部、ジメチルベンジルアミン
0.3部を配合したエポキシ樹脂組成物を、平織ガ
ラス布(旭シエーベル製GC7628)に樹脂量42%
になるよう含浸乾燥し、ガラス布プリプレグを得
た。 上記エポキシ樹脂組成物100部に対しシリカ粉
末(平均粒径8μ)20部を混合し、これをガラス
不織布(日本バイリーン製、重さ20g/m2)に樹
脂量93%になるよう含浸乾燥し、ガラス不織布
〔〕プリプレグを得た。また、上記エポキシ樹
脂組成物100部に対し、同様のシリカ粉末100部を
混合し、これをガラス不織布(重さ35g/m2)に
樹脂量93%になるよう含浸乾燥してガラス不織布
〔〕プリプレグを得た。 予め銅箔に黒化処理を施したガラス布基材エポ
キシ樹脂両面プリント配線板(銅箔厚み70μ、板
厚0.3mm)を内層に使用し、この両面に接してガ
ラス不織布〔〕プレプリグを各1枚配し、更に
その外側にエポキシ樹脂含浸ガラス不織布〔〕
を各1枚配し、最外層にはガラスプリプレグを各
1枚配し、両面に銅箔を載置して、温度170℃、
初めの5分間は圧力5Kg/cm2、その後は25Kg/cm2
で2時間成形し1.6mm厚の多層積層板を得た。 実施例2、3および比較例1〜4 第1表に示すように、シリカ粉末の配合量を変
えて実施例1と同様な方法で多層積層板を得た。 比較例 5 ガラス不織布を用いず、全てガラス布を用いて
実施例1と同様の方法で多層積層板を得た。 比較例 6 内層の両面プリン配線板としてガラス不織布基
材のものを用い、他は実施例1と同様にして多層
積層板を得た。 以上で得た各多層積層板の特性を第1表に合せ
て示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a multilayer laminate that is inexpensive and has good punching workability. BACKGROUND ART In recent years, printed wiring boards have become denser as electronic devices become smaller. Therefore, even in the semi-industrial field where double-sided printed wiring boards were used, multilayer laminates having about four layers of printed wiring are beginning to be used. Problems to be solved by the invention However, the base material used for printed wiring boards and interlayer insulation is glass cloth (glass woven cloth).
is common, and as the number of layers increases, punching becomes difficult, complex external shapes cannot be processed, and costs are high. In view of the above points, it is an object of the present invention to provide an inexpensive multilayer laminate with good punching workability. Means for Solving the Problems In order to achieve the above object, the present invention uses a glass cloth-based epoxy resin printed wiring board 1 as an inner layer, and arranges an epoxy resin-impregnated glass nonwoven fabric [ ] 2 in contact with both sides of the board. Further, an epoxy resin-impregnated glass nonwoven fabric [] 3 is used on the outside, and an epoxy resin-impregnated glass fabric 4 is used as the outermost layer base material, and the glass nonwoven fabric [] 3 is heated and press-molded. It is characterized by containing 40 to 130 parts by weight of an inorganic filler per 100 parts by weight of the resin. 5 is a metal foil that is integrally pasted on both sides. In this case, in the glass nonwoven fabric [] 2,
It contains less than 40 parts by weight of inorganic filler per 100 parts by weight of epoxy resin, or it does not contain it. Function In the present invention, since the glass cloth base epoxy resin printed wiring board 1 is used for the inner layer, the through-hole reliability and dimensional stability are good, and no displacement of the land holes occurs. In addition, the glass nonwoven fabric [] 2 does not contain an inorganic filler, but it contains only a small amount to improve interlayer adhesion with the printed wiring board 1, and by making the glass nonwoven fabric [] 3 contain a large amount of inorganic filler, through-hole reliability is improved. Efforts are being made to improve dimensional stability. The amount of inorganic filler contained in the glass nonwoven fabric [] 3 is 40 parts by weight per 100 parts by weight of epoxy resin.
If the amount is less than parts by weight, through-hole reliability and dimensional stability will deteriorate. On the other hand, the content of inorganic filler
If it exceeds 120 parts by weight, the adhesion to the outermost glass cloth 4 will deteriorate. It is not preferable that the amount of the inorganic filler contained in the glass nonwoven fabric [2] is 40 parts by weight or more, since interlayer adhesion with the printed wiring board 1 decreases and voids are likely to occur. Examples The glass nonwoven fabrics [], [] used in the present invention are
Glass fibers having a length of 2 to 80 mm are bonded together with a binder such as epoxy resin, synthetic fiber, or cellulose fiber, and glass cloth is conventionally used as a base material for laminated boards. The inorganic filler may be silica powder, calcined clay, glass beads, or the like, but is not particularly limited, but it is desirable that it imparts transparency to the laminate. Metal foils include copper foil, aluminum foil, nickel foil, and the like. Next, examples of the present invention will be described. Example 1 Epicote 1001 (epoxy resin manufactured by Yuka Shell,
mp.70℃) 100 parts by weight (hereinafter simply referred to as "parts"),
20 parts of phenol novolac (free phenol 1% or less, softening point 90°C), dimethylbenzylamine
An epoxy resin composition containing 0.3 parts was applied to a plain-woven glass cloth (GC7628 manufactured by Asahi Siebel) with a resin content of 42%.
It was impregnated and dried to obtain a glass cloth prepreg. 20 parts of silica powder (average particle size 8μ) was mixed with 100 parts of the above epoxy resin composition, and this was impregnated into a glass nonwoven fabric (manufactured by Nippon Vilene, weight 20g/m 2 ) to a resin content of 93% and dried. , a glass nonwoven fabric [] prepreg was obtained. In addition, 100 parts of the same silica powder was mixed with 100 parts of the above epoxy resin composition, and this was impregnated into a glass nonwoven fabric (weighing 35 g/m 2 ) to a resin content of 93% and dried to obtain a glass nonwoven fabric [] Got prepreg. A glass cloth base epoxy resin double-sided printed wiring board (copper foil thickness 70μ, board thickness 0.3mm) with blackening treatment applied to the copper foil in advance is used as the inner layer, and one glass nonwoven fabric [] prepreg is attached to each side of the board in contact with both sides. A non-woven glass fabric impregnated with epoxy resin is placed on the outside.
One sheet of each was placed, one sheet of glass prepreg was placed on the outermost layer, copper foil was placed on both sides, and the temperature was set at 170°C.
Pressure 5Kg/cm 2 for the first 5 minutes, then 25Kg/cm 2
After molding for 2 hours, a multilayer laminate with a thickness of 1.6 mm was obtained. Examples 2 and 3 and Comparative Examples 1 to 4 As shown in Table 1, multilayer laminates were obtained in the same manner as in Example 1, but with different amounts of silica powder. Comparative Example 5 A multilayer laminate was obtained in the same manner as in Example 1 except that glass cloth was used instead of glass nonwoven fabric. Comparative Example 6 A multilayer laminate was obtained in the same manner as in Example 1, except that a glass nonwoven fabric base material was used as the inner layer double-sided printed wiring board. The characteristics of each multilayer laminate obtained above are shown in Table 1.

【表】【table】

【表】 発明の効果 第1表から明らかなように、本発明によれば打
抜き加工性が良好で、寸法安定性、スルホール信
頼性の優れた多層積層板が得られ、ガラス不織布
を一部に用いていることから安価に製造できる
点、その工業的価値は極めて大なるものである。
[Table] Effects of the Invention As is clear from Table 1, according to the present invention, a multilayer laminate with good punching workability, dimensional stability, and through-hole reliability can be obtained, and it is possible to obtain a multilayer laminate with excellent punching workability, dimensional stability, and through-hole reliability. Since it is used in the industry, it can be manufactured at low cost, and its industrial value is extremely great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多層積層板の層構成を示
す説明図である。 1はプリント配線板、2はガラス不織布〔〕、
3はガラス不織布〔〕、4はガラス布、5は金
属箔。
FIG. 1 is an explanatory diagram showing the layer structure of a multilayer laminate according to the present invention. 1 is a printed wiring board, 2 is a glass nonwoven fabric [],
3 is a glass nonwoven fabric [ ], 4 is a glass cloth, and 5 is a metal foil.

Claims (1)

【特許請求の範囲】 1 ガラス布基材エポキシ樹脂プリント配線板を
内層に使用し、この両面に接してエポキシ樹脂含
浸ガラス不織布〔〕を配し更にその外側にエポ
キシ樹脂含浸ガラス不織布〔〕を配し、最外層
の基材にはエポキシ樹脂含浸ガラス布を使用して
表面の金属箔と共に加熱加圧成形するものであつ
て、 ガラス不織布〔〕にはエポキシ樹脂100重量
部に対して40〜130重量部の無機充填剤を含有さ
せ、 ガラス不織布〔〕には無機充填剤を含有させ
ないか、エポキシ樹脂100重量部に対して40重量
部未満の無機充填剤を含有させたことを特徴とす
る多層積層板の製造法。
[Claims] 1. A glass cloth-based epoxy resin printed wiring board is used as the inner layer, an epoxy resin-impregnated glass nonwoven fabric [ ] is arranged in contact with both sides of the board, and an epoxy resin-impregnated glass nonwoven fabric [ ] is arranged on the outside. However, an epoxy resin-impregnated glass cloth is used as the base material of the outermost layer, which is molded under heat and pressure together with the metal foil on the surface. A multi-layered material containing parts by weight of an inorganic filler, and the glass nonwoven fabric [ ] containing no inorganic filler or less than 40 parts by weight of an inorganic filler per 100 parts by weight of the epoxy resin. Method of manufacturing laminates.
JP16236684A 1984-07-31 1984-07-31 Method of producing multilayer circuit board Granted JPS6140094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16236684A JPS6140094A (en) 1984-07-31 1984-07-31 Method of producing multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16236684A JPS6140094A (en) 1984-07-31 1984-07-31 Method of producing multilayer circuit board

Publications (2)

Publication Number Publication Date
JPS6140094A JPS6140094A (en) 1986-02-26
JPH0240228B2 true JPH0240228B2 (en) 1990-09-10

Family

ID=15753195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16236684A Granted JPS6140094A (en) 1984-07-31 1984-07-31 Method of producing multilayer circuit board

Country Status (1)

Country Link
JP (1) JPS6140094A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557325B2 (en) * 1988-01-29 1996-11-27 東芝ケミカル株式会社 Multilayer copper clad laminate
JPH02177498A (en) * 1988-12-28 1990-07-10 Shin Kobe Electric Mach Co Ltd Multilayer printed wiring board
JPH02197190A (en) * 1989-01-26 1990-08-03 Shin Kobe Electric Mach Co Ltd Multilayer printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516479A (en) * 1978-07-21 1980-02-05 Sumitomo Electric Ind Ltd Heterojunction light receiving diode
JPS5516478A (en) * 1978-07-21 1980-02-05 Atsushi Okazaki Internal stop ball sealing structure
JPS563978U (en) * 1979-06-25 1981-01-14
JPS5751998A (en) * 1980-07-08 1982-03-27 Mannesmann Ag Apparatus for regulating axial compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516479A (en) * 1978-07-21 1980-02-05 Sumitomo Electric Ind Ltd Heterojunction light receiving diode
JPS5516478A (en) * 1978-07-21 1980-02-05 Atsushi Okazaki Internal stop ball sealing structure
JPS563978U (en) * 1979-06-25 1981-01-14
JPS5751998A (en) * 1980-07-08 1982-03-27 Mannesmann Ag Apparatus for regulating axial compressor

Also Published As

Publication number Publication date
JPS6140094A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
JPS607796A (en) Copper-lined laminated board for printed circuit and method of producing same
CN113045856A (en) Bonding sheet, preparation method thereof and metal-clad laminate comprising bonding sheet
JPH0240228B2 (en)
JPH11298153A (en) Multilayered printed circuit board
JPS5940106B2 (en) Manufacturing method for copper clad laminates
JP2503601B2 (en) Laminate
JP2612129B2 (en) Laminated board
JPS5942628B2 (en) Manufacturing method for copper clad laminates
JPH0771840B2 (en) Copper clad laminate and manufacturing method thereof
JP2894496B2 (en) Manufacturing method of printed circuit board
JPS6338298A (en) Multilayer printed interconnection board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JPS60203642A (en) Manufacture of composite laminate board
JPH09254331A (en) Laminated sheet
JP2557325B2 (en) Multilayer copper clad laminate
JP2503630B2 (en) Method for manufacturing multilayer printed circuit board
JPH0748460A (en) Laminated sheet
JPS62238680A (en) Printed wiring board
JPH0626875B2 (en) Copper clad laminate
JPS63205229A (en) Manufacture of thermo-setting resin laminated board
JPH0720626B2 (en) Manufacturing method of copper clad laminate
JPH0771839B2 (en) Laminated board manufacturing method
JPH05315716A (en) Electrical laminate plate
JPH06260765A (en) Multilayer wiring board and manufacture thereof
JPH01264813A (en) Manufacture of laminate