JPH02177498A - Multilayer printed wiring board - Google Patents

Multilayer printed wiring board

Info

Publication number
JPH02177498A
JPH02177498A JP33190788A JP33190788A JPH02177498A JP H02177498 A JPH02177498 A JP H02177498A JP 33190788 A JP33190788 A JP 33190788A JP 33190788 A JP33190788 A JP 33190788A JP H02177498 A JPH02177498 A JP H02177498A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
circuit
glass
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33190788A
Other languages
Japanese (ja)
Inventor
Akinori Sekimoto
関本 明紀
Kazunori Mitsuhashi
光橋 一紀
Ichirou Suirenya
翠簾屋 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP33190788A priority Critical patent/JPH02177498A/en
Publication of JPH02177498A publication Critical patent/JPH02177498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To improve reliability of soldered part of an electronic component and to prevent voids from remaining in an inner layer circuit by forming a glass nonwoven fabric layer immersed with thermosetting resin between the insulating layer of an inner layer plate and the inner layer plate, and between the inner layer plate and an insulating layer in contact with the circuit on the surface, and forming the insulating layer in contact with the circuit of the surface of a glass woven fabric layer immersed with the thermosetting resin. CONSTITUTION:An inner layer insulating layer 1 is formed of a glass nonwoven fabric layer immersed with thermosetting resin. A surface insulating layer 2 in contact with the circuit of the surface is formed of a glass woven layer immersed with thermosetting resin. An interlayer insulating layer 3 in contact between the inner layer plates and between the inner layer plate and the circuit of the surface is formed of a glass nonwoven fabric layer immersed with thermosetting resin. Since the glass nonwoven fabric is softer than the glass woven fabric, particularly the distortion of the hole position due to the bending of a drilling is prevented. The rigidity of a multilayer printed wiring board is reduced, and the reliability of soldered junction part in a cold cycle is improved. The uneven part of the inner layer circuit face is easily buried with resin in the glass nonwoven fabric to prevent voids from remaining.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内層と表面層の両方に回路を有する多層印刷
配線板に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to multilayer printed wiring boards having circuits in both the inner and surface layers.

従来の技術 近年、パソコン、マイコン等の電子機器に使用する印刷
配線板は、片面、両面印刷配線板にかわって、高密度化
、小形化、高信頼性、電波シールドの観点から多層印刷
配線板を使用する方向に進んでいる。
Conventional technology In recent years, printed wiring boards used in electronic devices such as personal computers and microcontrollers have replaced single-sided and double-sided printed wiring boards with multilayer printed wiring boards from the viewpoints of higher density, smaller size, higher reliability, and radio wave shielding. progress is being made in the direction of using .

従来、多層印刷配線板においては、内層回路の絶縁層を
エポキシ樹脂含浸ガラス織布で構成している。また、外
層回路の絶縁層もエポキシ樹脂含浸ガラス織布で構成す
るのか一般的である。
Conventionally, in multilayer printed wiring boards, the insulating layer of the inner layer circuit is made of epoxy resin-impregnated glass fabric. Further, the insulating layer of the outer layer circuit is also generally made of epoxy resin-impregnated glass fabric.

この多層印刷配線板の製造は、例えば次のように行われ
る。まず、両面銅張りガラス織布基材のエポキシ樹脂積
層板の銅箔をエツチング加工して回路を形成し、内層用
の回路板(内層板)とする。
This multilayer printed wiring board is manufactured, for example, as follows. First, a circuit is formed by etching the copper foil of an epoxy resin laminate with a double-sided copper-clad glass woven base material to form a circuit board for the inner layer (inner layer board).

そして、前記の内層板にエポキシ樹脂含浸ガラス織布プ
リプレグを介して銅箔を重ね、これを加熱加圧成形して
一体化する。表面の銅箔は、エツチング加工により外層
回路となるものである。
Then, a copper foil is layered on the inner layer plate with an epoxy resin-impregnated glass woven prepreg interposed therebetween, and this is heated and press-molded to be integrated. The copper foil on the surface becomes the outer layer circuit by etching.

上記従来の構成の多層印刷配線板は、次のような問題点
を有する。
The conventional multilayer printed wiring board described above has the following problems.

(1)回路板製造工程でのドリル穴あけ(スルホール穴
)は、通常、多層印刷配線板を3〜4枚重ね、NCドリ
ルで行なう。従来は、ガラス織布を何層も使用している
ため、ドリル穴の位置ずれを起こしやすく、ドリル刃の
摩擦も大きい。
(1) Drilling (through-hole holes) in the circuit board manufacturing process is usually performed by stacking three to four multilayer printed wiring boards and using an NC drill. Conventionally, multiple layers of woven glass fabric are used, which makes it easy for the drill hole to become misaligned, and the friction of the drill blade is high.

ドリル刃が摩擦すると、形成した穴の壁面が粗くなり、
スルホールの導通信頼性が低下する問題がある。
When the drill bit rubs, the walls of the hole formed become rough.
There is a problem that the conduction reliability of the through holes is reduced.

また、ドリル穴の位置ずれを避けるためには、多層印刷
配線板の重ね枚数を減らさざるを得ないが、コスト高を
招く。
Furthermore, in order to avoid misalignment of the drill holes, it is necessary to reduce the number of stacked multilayer printed wiring boards, but this increases costs.

(2)エポキシ樹脂含浸ガラス織布材料のみで構成して
いるため、配線板の剛性が大きい。このため、実装した
電子部品(ラジアル・アキシアル部品)の半田接合部に
、冷熱サイクルをかけたときの応力が集中しやすく、半
田クラックの早期出現の欠点がある。
(2) Since it is composed only of epoxy resin-impregnated glass woven material, the wiring board has high rigidity. For this reason, stress tends to concentrate on the solder joints of mounted electronic components (radial and axial components) when thermal cycles are applied, resulting in the early appearance of solder cracks.

また、量産工程ではワークサイズを多数個取りとするこ
とが必要であり、加工終了後に、予め形成した■溝に沿
って折り曲げ、個々の大きさに切り離すことが行なわれ
る。しかし、前述のように剛性が大きいために、この切
り離し性に難点がある。
In addition, in the mass production process, it is necessary to cut out a large number of workpieces, and after the processing is completed, the workpieces are bent along pre-formed grooves and cut into individual sizes. However, as mentioned above, since the rigidity is large, there is a problem in this separation ability.

(3)ガラス織布にエポキシ樹脂を含浸させる場合、樹
脂付着量を50重全形を越える量にすることはかなり困
難であり、一般には35〜50重量%の範囲である。内
層に何層も回路があり、内層板どうしをエポキシ樹脂含
浸ガラス織布を介して加熱加圧一体化する場合には、内
層板間にボイドが残留する。これは、内層板間に、相対
する回路の厚さによって複雑な凹凸が形成されているた
めで、ガラス織布に含浸されている少ない樹脂では、こ
の凹凸を充分に埋められないからである。
(3) When impregnating a glass woven fabric with an epoxy resin, it is quite difficult to increase the amount of resin deposited to more than 50% by weight, and the amount is generally in the range of 35 to 50% by weight. When there are multiple layers of circuits in the inner layer and the inner layer plates are integrated under heat and pressure via an epoxy resin-impregnated glass fabric, voids remain between the inner layer plates. This is because complicated unevenness is formed between the inner layers due to the thickness of the opposing circuits, and the small amount of resin impregnated into the glass woven fabric cannot sufficiently fill in these unevenness.

ボイドが残留しないように凹凸を埋めるためには、特別
の工程、例えば真空成形等の手法を必要とする。
In order to fill in the irregularities so that no voids remain, a special process such as vacuum forming is required.

発明が解決しようとする課題 上記の点に鑑み、本発明は、ドリル加工性に優れ、実装
した電子部品の半田接合部の信頼性の向上も図れる多層
印刷配線板を提供することを目的とする。更に、内層回
路にボイドの残留しない多層印刷配線板を提供すること
を目的とする。
Problems to be Solved by the Invention In view of the above points, an object of the present invention is to provide a multilayer printed wiring board that has excellent drilling workability and can also improve the reliability of solder joints of mounted electronic components. . A further object of the present invention is to provide a multilayer printed wiring board in which no voids remain in the inner layer circuit.

課題を解決するための手段 上記目的を達成するための本発明に係る多層印刷配線板
は、次の(イ)〜(ハ)の構成を備えた点に特徴を有す
る(第1図参照)。
Means for Solving the Problems A multilayer printed wiring board according to the present invention for achieving the above object is characterized by having the following configurations (a) to (c) (see FIG. 1).

(イ)内層板の絶縁層(内層絶縁層1)を、熱硬化ト 性樹脂を含浸したガラス虐布層とする。(a) The insulation layer of the inner layer board (inner layer insulation layer 1) is coated with thermosetting resin. The glass layer is impregnated with a synthetic resin.

(ロ)表面の回路に接する絶縁層(表面絶縁層2)を、
熱硬化性樹脂を含浸したガラス織布層とする。
(b) The insulating layer (surface insulating layer 2) in contact with the circuit on the surface,
A glass woven fabric layer impregnated with a thermosetting resin.

(ハ)内層板間および内層板と表面の回路に接する絶縁
層(層間絶縁層3)を、熱硬化性樹脂を含浸したガラス
不織布層とする。
(c) The insulating layer (interlayer insulating layer 3) between the inner plates and in contact with the inner plate and the circuit on the surface is a glass nonwoven fabric layer impregnated with a thermosetting resin.

尚、4は内層回路であり、内層板は、内層絶縁層1に内
層回路4を一体化したものである。5は表面の回路とな
る金属箔である。
In addition, 4 is an inner layer circuit, and the inner layer board is made by integrating the inner layer circuit 4 into the inner layer insulating layer 1. 5 is a metal foil serving as a circuit on the surface.

作用 本発明は、内層の絶縁層を熱硬化性樹脂含浸ガラス不織
布主体としたことにより、ドリル加工性を向上させるこ
とができる。これは、ガラス不織布がガラス織布に比べ
て軟かいためであり、特に穴あけに際してドリル曲がり
による穴位置ずれを防ぐことができる。
Function The present invention can improve drilling workability by making the inner insulating layer mainly composed of a glass nonwoven fabric impregnated with a thermosetting resin. This is because the glass nonwoven fabric is softer than the glass woven fabric, and can prevent hole position shift due to drill bending, especially when drilling holes.

また、内層の絶縁層にガラス不織布を使用したことによ
り、多層印刷配線板の剛性が下がり(4,7〜5 X 
101Gdyne/cm−+ 3〜4.5 X I Q
”dyne /ctA)、冷熱サイクルにおける半田接
合部の信頼性が向上する。
In addition, by using a glass nonwoven fabric for the inner insulating layer, the rigidity of the multilayer printed wiring board is reduced (4.7 to 5
101Gdyne/cm-+ 3~4.5 X I Q
dyne/ctA), the reliability of solder joints during thermal cycles is improved.

さらに、ガラス不織布は、樹脂付着量を60〜90重量
%と多くすることができる。従って、内層回路面の凹凸
は、ガラス不織布中の樹脂で埋めることが容易となり、
ボイドの残留を防ぐことができる。
Furthermore, the amount of resin attached to the glass nonwoven fabric can be increased to 60 to 90% by weight. Therefore, unevenness on the inner layer circuit surface can be easily filled with the resin in the glass nonwoven fabric.
It is possible to prevent voids from remaining.

実施例 本発明を実施するに当り、ガラス不織布の密度は、0.
08〜0.15g/mの範囲が好ましい。密度が小さい
と、ガラス繊維の体積含有率が小さくなるため、製造工
程でガラス不織布に樹脂を含浸してプリプレグを作製し
たとき、プリプレグの表面かケバ立つという不都合があ
る。また、密度が大きいと、樹脂の含浸性が低下し、プ
リプレグを作製したとき表面への樹脂の付着度合が多く
なり(上づき)、成形時にガラス不織布の切れを起こし
やすい。また電気絶縁性の劣化が早い傾向がある。
Example In carrying out the present invention, the density of the glass nonwoven fabric was 0.
A range of 0.08 to 0.15 g/m is preferred. If the density is low, the volume content of the glass fibers will be low, so when a prepreg is produced by impregnating a glass nonwoven fabric with a resin in the manufacturing process, there is an inconvenience that the surface of the prepreg will become fluffy. In addition, if the density is high, the impregnating property of the resin will decrease, and when the prepreg is produced, the degree of resin adhesion to the surface will increase (superposition), and the glass nonwoven fabric will easily break during molding. In addition, electrical insulation properties tend to deteriorate quickly.

本発明に係る多層印刷配線板では、ガラス不織布を使用
するが、寸法変化が多少大きくなる(特に、加熱後)。
Although a glass nonwoven fabric is used in the multilayer printed wiring board according to the present invention, dimensional changes are somewhat large (especially after heating).

寸法変化を特別に抑える必要があるときは、内層板の絶
縁層を構成するガラス不織布を併用するとよい。この場
合、内層板に使用したガラス織布の縦横方向と、表面の
回路に接する絶縁層におけるガラス織布の縦横方向を直
交させることにより、多層印刷配線板の寸法変化の縦横
差を小さくすることができる。
When it is necessary to particularly suppress dimensional changes, it is advisable to use a glass nonwoven fabric constituting the insulating layer of the inner layer plate. In this case, by making the vertical and horizontal directions of the glass woven fabric used for the inner layer board orthogonal to the vertical and horizontal directions of the glass woven fabric in the insulating layer in contact with the surface circuit, the vertical and horizontal differences in dimensional changes of the multilayer printed wiring board can be reduced. Can be done.

実施例1 ビスフェノール型エポキシ樹脂を4197−のガラス不
織布(密度0.1g/i)に含浸乾燥し、樹脂付着量8
5重量%のエポキシ−ガラス不織布のプリプレグ(A)
を準備した。別途、前記のエポキシ樹脂を2052/−
のガラス織布に含浸乾燥し、樹脂付着量40重量%のエ
ポキシ−ガラス織布のプリプレグ(B)を準備した。
Example 1 A 4197-glass nonwoven fabric (density 0.1 g/i) was impregnated with bisphenol type epoxy resin and dried, and the resin adhesion amount was 8.
5% by weight epoxy-glass nonwoven prepreg (A)
prepared. Separately, add the above epoxy resin to 2052/-
An epoxy glass woven fabric prepreg (B) having a resin adhesion of 40% by weight was prepared by impregnating and drying the epoxy-glass woven fabric.

プリプレグ(A)4プライを重ね、その両側に70μ厚
の銅箔を配置して加熱加圧成形し、0.8m1m厚の両
面銅張積層板を得た。
Four plies of prepreg (A) were stacked one on top of the other, copper foil with a thickness of 70 μm was placed on both sides, and hot and pressure molded to obtain a double-sided copper-clad laminate with a thickness of 0.8 m and 1 m.

前記両面銅張積層板の銅箔を常法によりエツチングして
所定の回路を形成し、回路表面に黒化処理を施して内層
板とした。
The copper foil of the double-sided copper-clad laminate was etched by a conventional method to form a predetermined circuit, and the surface of the circuit was subjected to a blackening treatment to obtain an inner layer board.

前記内層板の両側にプリプレグ(A)を各1プラス、更
にプリプレグ(Blを1枚配置し、その両側に35μ厚
銅箔を重ねて、これを加熱加圧成形して内層回路をもつ
1.5m/m厚の両面銅張板を製造した。
1. Placing one prepreg (A) and one prepreg (Bl) on both sides of the inner layer board, overlapping 35μ thick copper foil on both sides, and molding them under heat and pressure to form an inner layer circuit. A double-sided copper clad board with a thickness of 5 m/m was manufactured.

前記両面銅張板に所定パターンに合わせてドリル穴あけ
を行い、穴壁に常法により、内層回路と次に形成する表
面回路とを導↓するスルホールめっきを行った。次いで
、表面の銅箔に所定パターンのエツチングを常法により
施して回路を形成し、1.5m/m 厚の4層の多層印
刷配線板を得た。
Drill holes were drilled in the double-sided copper clad plate according to a predetermined pattern, and through-hole plating was performed on the hole walls by a conventional method to conduct the inner layer circuit and the surface circuit to be formed next. Next, a circuit was formed by etching a predetermined pattern on the copper foil on the surface using a conventional method to obtain a four-layer multilayer printed wiring board with a thickness of 1.5 m/m.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

実施例2 実施例1で作製したプリプレグ(A)を3プライを重ね
、1フライ目と2プライ目の間にプリプレグFB+を1
プライ挿入し、その両側に70μ厚の銅箔を配置して加
熱加圧成形し、0.8m1m厚の両面銅張積層板を得た
Example 2 3 plies of the prepreg (A) produced in Example 1 were stacked, and 1 prepreg FB+ was placed between the 1st fly and the 2nd ply.
A ply was inserted, copper foils with a thickness of 70 μm were placed on both sides, and molded under heat and pressure to obtain a double-sided copper-clad laminate with a thickness of 0.8 m and 1 m.

前記両面銅張積層板を実施例1と同様に加工し、内層板
とした(第2図に内層板の構成を示す。内層絶縁層1は
ガラス織布6とガラス不織布7の組合せとなっている)
。更に実施例1と同様の工程で1.5m/m厚の4層の
多層印刷配線板を得た。
The double-sided copper-clad laminate was processed in the same manner as in Example 1 to form an inner layer (the structure of the inner layer is shown in FIG. 2. The inner insulating layer 1 was a combination of a glass woven fabric 6 and a glass nonwoven fabric 7). )
. Furthermore, a four-layer multilayer printed wiring board having a thickness of 1.5 m/m was obtained using the same process as in Example 1.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

実施例3 実施例1で作製したプリプレグ(A)2プライの両側に
プリプレグ(Blを1プライ配置し、更にその両側に7
0μ厚の銅箔を配置して加熱加圧成形し、08 m/m
厚の両面銅張積層板を得た。
Example 3 One ply of prepreg (Bl) was placed on both sides of the two plies of prepreg (A) produced in Example 1, and 7 plies of prepreg (Bl) were placed on both sides.
Copper foil with a thickness of 0μ is arranged and molded under heat and pressure to form a sheet of 08 m/m.
A thick double-sided copper-clad laminate was obtained.

前記両面銅張積層板を実施例1と同様に加工し、内層板
とした(第3図に内層板の構成を示す)。
The double-sided copper-clad laminate was processed in the same manner as in Example 1 to form an inner layer board (the structure of the inner layer board is shown in FIG. 3).

更に実施例1と同様の工程で、但し、内層絶縁層ののガ
ラス織布の縦横方向と表面絶縁層のガラス織布の縦横方
向を同じにする構成で、1.5m/m厚の4層の多層印
刷配線板を得た。
Furthermore, in the same process as in Example 1, four layers of 1.5 m/m thick were prepared, except that the longitudinal and lateral directions of the glass woven fabric of the inner insulating layer were the same as the longitudinal and lateral directions of the glass woven fabric of the surface insulating layer. A multilayer printed wiring board was obtained.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

実施例4 実施例3の構成で、但し、内層絶縁層のガラス織布の縦
横方向と表面絶縁層のガラス織布の縦横方向を直交させ
る構成で、1.6 m/m厚の4層の多層印刷配線板を
得た。
Example 4 The structure was as in Example 3, except that the longitudinal and lateral directions of the glass woven fabric of the inner insulating layer were perpendicular to the longitudinal and lateral directions of the glass woven fabric of the surface insulating layer. A multilayer printed wiring board was obtained.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

比較例1 実施例1で作製した内層板の両側にプリプレグ+A)を
各2プライ配置し、更にその両側に35μ厚銅箔を配置
してこれを加熱加圧成形して、内層回路をもつ1.6f
ff/m厚の両面銅張板を製造した。
Comparative Example 1 Two plies of prepreg + A) were placed on each side of the inner layer board produced in Example 1, and 35μ thick copper foil was placed on both sides, and this was heated and pressure-molded to form a 1-layer board with an inner layer circuit. .6f
A double-sided copper clad board with a thickness of ff/m was manufactured.

これに実施例1と同様な加工を施し、1.6 m/Wl
厚の4層の多層印刷配線板を得た。
This was processed in the same manner as in Example 1, and the result was 1.6 m/Wl.
A multilayer printed wiring board with a thickness of 4 layers was obtained.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

比較例2 実施例1で作製した内層板の両側にプリプレグ(H)を
各2プライ配置し、更にその両側に35μ厚銅箔を配置
してこれを加熱加圧成形して、内層回路をもつ1.5 
m / m厚の両面銅張板を製造した。
Comparative Example 2 Two plies of prepreg (H) were placed on each side of the inner layer board produced in Example 1, and 35μ thick copper foil was placed on both sides, and this was heated and press-molded to have an inner layer circuit. 1.5
A double-sided copper clad board with a thickness of m/m was manufactured.

これに実施例1と同様な加工を施し、1.6 m/yn
厚の4層の多層印刷配線板を得た。
This was processed in the same manner as in Example 1, and 1.6 m/yn
A multilayer printed wiring board with a thickness of 4 layers was obtained.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

比較例3 実施例1で作製したプリプレグ(B)を4プライ重ね、
その両側に70μ厚の銅箔を配置して加熱加圧成形し、
Q、3m/m厚の両面銅張積層板を得た。
Comparative Example 3 4 plies of the prepreg (B) produced in Example 1 were stacked,
Place 70μ thick copper foil on both sides and heat and press mold.
Q: A double-sided copper-clad laminate with a thickness of 3 m/m was obtained.

前記両面銅張積層板の銅箔を常法によりエツチングして
所定の回路を形成し、回路表面に黒化処理を施して内層
板とした。
The copper foil of the double-sided copper-clad laminate was etched by a conventional method to form a predetermined circuit, and the surface of the circuit was subjected to a blackening treatment to obtain an inner layer board.

前記内層板の両側にプリプレグ(Blを各2プライ配置
し、更にその両側に35μ厚銅箔をを重ねて、これを加
熱加圧成形して内層回路をもつl、 5 m/m厚の両
面銅張板を製造した。
Two plies of prepreg (Bl) are placed on each side of the inner layer board, and 35μ thick copper foil is further layered on both sides, and this is heated and pressure molded to form a 5 m/m thick double-sided sheet with an inner layer circuit. Manufactured copper clad plates.

前記両面銅張板に所定パターンにあわせてドリル穴あけ
を行い、穴壁に常法により、内層回路と次に形成する表
面回路を導通するスルホールめっきを行った。次いで、
表面の銅箔に所定パターンのエツチングを常法により施
して回路を形成し、1.6m1m厚の4層の多層印刷配
線板を得た。
Drill holes were drilled in the double-sided copper clad plate according to a predetermined pattern, and through-hole plating was performed on the hole walls by a conventional method to conduct the inner layer circuit and the surface circuit to be formed next. Then,
A circuit was formed by etching a predetermined pattern on the copper foil on the surface using a conventional method to obtain a four-layer multilayer printed wiring board with a thickness of 1.6 ml and 1 m.

本製品の特性を第1表に示した。The characteristics of this product are shown in Table 1.

※1.ドリルは、l、 Q tax p、6000 r
pmx5Qμ/rev0多層印刷配線板を3枚重ね、0
.11厚のA/板と1.6U厚の捨板に挟んで穴あけ加
工する。
*1. Drill: l, Q tax p, 6000 r
3 layers of pmx5Qμ/rev0 multilayer printed wiring boards, 0
.. Sandwich it between a 11-thick A/board and a 1.6U-thick waste board and drill holes.

※2,3枚重ねて穴あけをし、1500ヒツト後の値を
示す。(刃幅方向を測定) ※3.ドリルは0.4 ws p、6000rpmX5
0μ/rev0  測定は、基準穴に対する位置精度(
Xmax −Xmin)、 n = 3 Q。
*Drill holes in 2 or 3 sheets and show the value after 1500 hits. (Measure the blade width direction) *3. The drill is 0.4 ws p, 6000 rpm x 5
0μ/rev0 measurement is based on positional accuracy (
Xmax −Xmin), n = 3 Q.

※4.内層70μ箔回路の横、n=30を顕微鏡測定。*4. Microscopic measurement of n=30 on the side of the inner layer 70μ foil circuit.

※5.コンデンサを半田付は後、−30℃(0,5Hr
)j80℃(0,5Hr)ノ冷熱サイクルを繰返して、
半田接合部に微少クラックが発生するまでの回数。
*5. After soldering the capacitor, heat at -30℃ (0.5Hr).
)j Repeat the cooling and heating cycle at 80℃ (0.5Hr),
Number of times until micro cracks occur in the solder joint.

※6.多層プレス成形後の穴明けを基準と、したレベラ
ー完成後の寸法変化率 尚、ドリル穴壁粗さについてはガラス織布で構成された
部分のみ大きい。ガラス不織布のみで構成した比較例1
では、寸法変化が大きいために半田付信頼性は悪い。
*6. The dimensional change rate after completion of the leveler, based on the hole drilling after multilayer press molding, was found to be large only in the part made of glass woven fabric with regard to the wall roughness of the drill hole. Comparative example 1 composed only of glass nonwoven fabric
In this case, soldering reliability is poor due to large dimensional changes.

ここでは4層板を例にあげたが、内層回路が3層以上と
なる場合(内層板を2枚以上有し、内層板間に熱硬化性
樹脂含浸ガラス不織布の層を配置して構成する)にも内
層回路部のボイド発生防止に対しては実施例と同様の効
果が得られた。また、その他特性についても上記実施例
とほぼ同様の効果が得られた。
Here, we have taken a four-layer board as an example, but if the inner layer circuit has three or more layers (it has two or more inner layers, and a layer of thermosetting resin-impregnated glass nonwoven fabric is arranged between the inner layers) ) also had the same effect as the example in preventing the generation of voids in the inner layer circuit section. In addition, substantially the same effects as those of the above embodiments were obtained regarding other characteristics.

発明の効果 上述したように、本発明は、内層の絶縁層を主にガラス
不織布で構成し、また層間絶縁層をガラス不織布とした
ので、ドリル穴あけ加工に際して、ドリル摩擦が少なく
、また、穴壁粗さが小さいのでスルホールメツキを均一
に付着出来る効果があり、多層印刷配線板の信頼性向上
に役立つ。ドリル穴あけの位置精度が優れており、小径
スルホール対応が容易である利点を有すると共に、ドリ
ル穴あけに際して多層印刷配線板の重ね枚数増加も可能
である。さらに、層間絶縁層、内層絶縁層にガラス不織
布を使用したため、多層印刷配線板の剛性か下かり、冷
熱サイクルにおける半田接合部の信頼性が向上する。
Effects of the Invention As described above, in the present invention, the inner insulating layer is mainly composed of glass non-woven fabric, and the interlayer insulating layer is made of glass non-woven fabric. Because the roughness is small, through-hole plating can be applied uniformly, which helps improve the reliability of multilayer printed wiring boards. It has the advantage of excellent positional accuracy for drilling holes, and is easy to accommodate small-diameter through holes, and it is also possible to increase the number of stacked multilayer printed wiring boards when drilling holes. Furthermore, since a glass nonwoven fabric is used for the interlayer insulation layer and the inner insulation layer, the rigidity of the multilayer printed wiring board is reduced and the reliability of the solder joints during cooling and heating cycles is improved.

力1+えて、層間絶縁層にガラス不織布を使用して樹脂
を多りに付着させているので、厚い銅箔回路の内層用回
路板でも内層回路周囲にボイドを残すことなく多層化成
形出来る効果をもつものである。
In addition, glass non-woven fabric is used for the interlayer insulating layer and a large amount of resin is attached to it, making it possible to mold multi-layered circuit boards without leaving voids around the inner layer circuits, even on inner layer circuit boards with thick copper foil circuits. It is something that we have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る多層印刷配線板の実施例を示す断
面図、第2図、第3図は同実施例において内層板の他の
構成を示す断面図である。 1は内層絶縁層、  2は表面絶縁層 3は層間絶縁層、  4は内層回路、5は金属箔、6は
ガラス織布、 7はガラス不織布 第1図 第2図 第3図
FIG. 1 is a sectional view showing an embodiment of a multilayer printed wiring board according to the present invention, and FIGS. 2 and 3 are sectional views showing other configurations of the inner layer board in the same embodiment. 1 is an inner insulating layer, 2 is a surface insulating layer 3 is an interlayer insulating layer, 4 is an inner layer circuit, 5 is a metal foil, 6 is a glass woven fabric, 7 is a glass nonwoven fabric

Claims (4)

【特許請求の範囲】[Claims] 1.内層および表面に回路を有する多層印刷配線板にお
いて、次の(イ)〜(ハ)の構成を備えた多層印刷配線
板。 (イ)内層板の絶縁層(内層絶縁層)を、熱硬化性樹脂
を含浸したガラス不織布層とする。 (ロ)表面の回路に接する絶縁層(板面絶縁層)を、熱
硬化性樹脂を含浸したガラス織布層とする。 (ハ)内層板間および内層板と表面の回路に接する絶縁
層との間(層間絶縁層)を、熱硬化性樹脂を含浸したガ
ラス不織布層とする。
1. A multilayer printed wiring board having circuits on an inner layer and a surface, the multilayer printed wiring board having the following configurations (a) to (c). (a) The insulating layer of the inner plate (inner insulating layer) is a glass nonwoven fabric layer impregnated with a thermosetting resin. (b) The insulating layer (board surface insulating layer) in contact with the circuit on the surface is a glass woven fabric layer impregnated with a thermosetting resin. (c) A glass nonwoven fabric layer impregnated with a thermosetting resin is used between the inner plates and between the inner plate and the insulating layer in contact with the circuit on the surface (interlayer insulating layer).
2.内層板の絶縁層(内層絶縁層)を、ガラス織布とガ
ラス不織布の組合せとし、その絶縁層の中心層をガラス
織布とした請求項1記載の多層印刷配線板。
2. 2. The multilayer printed wiring board according to claim 1, wherein the insulating layer of the inner board (inner insulating layer) is a combination of a glass woven fabric and a glass nonwoven fabric, and the center layer of the insulating layer is a glass woven fabric.
3.内層板の絶縁層(内層絶縁層)を、ガラス織布とガ
ラス不織布の組合せとし、その絶縁層の表面層をガラス
織布とした請求項1記載の多層印刷配線板。
3. 2. The multilayer printed wiring board according to claim 1, wherein the insulating layer of the inner board (inner insulating layer) is a combination of glass woven fabric and glass nonwoven fabric, and the surface layer of the insulating layer is glass woven fabric.
4.内層板の絶縁層(内層絶縁層)におけるガラス織布
の縦横方向と、表面の回路に接する絶縁層(表面絶縁層
)におけるガラス織布の縦横方向を直交させた請求項2
または3記載の多層印刷配線板。 5 熱硬化性樹脂を含浸前のガラス不織布の密度が0.
08〜0.15g/cmである請求項1〜4のいずれか
1項に記載の多層印刷配線板。
4. Claim 2: The longitudinal and lateral directions of the glass woven fabric in the insulating layer (inner insulating layer) of the inner board are orthogonal to the longitudinal and lateral directions of the glass woven fabric in the insulating layer (surface insulating layer) in contact with the circuit on the surface.
Or the multilayer printed wiring board according to 3. 5 The density of the glass nonwoven fabric before being impregnated with the thermosetting resin is 0.
The multilayer printed wiring board according to any one of claims 1 to 4, wherein the multilayer printed wiring board has a thickness of 0.08 to 0.15 g/cm.
JP33190788A 1988-12-28 1988-12-28 Multilayer printed wiring board Pending JPH02177498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33190788A JPH02177498A (en) 1988-12-28 1988-12-28 Multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33190788A JPH02177498A (en) 1988-12-28 1988-12-28 Multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JPH02177498A true JPH02177498A (en) 1990-07-10

Family

ID=18248968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33190788A Pending JPH02177498A (en) 1988-12-28 1988-12-28 Multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPH02177498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215497A (en) * 1990-12-14 1992-08-06 Matsushita Electric Works Ltd Manufacture of multilayer circuit board
JPH04121782U (en) * 1991-04-17 1992-10-30 新神戸電機株式会社 multilayer printed wiring board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476977A (en) * 1977-12-02 1979-06-20 Tokyo Shibaura Electric Co Method of producing printed wiring board
JPS5539313A (en) * 1978-09-11 1980-03-19 Matsushita Electric Works Ltd Preparation of phenol resin laminated plate
JPS56165397A (en) * 1980-05-24 1981-12-18 Mitsubishi Gas Chemical Co Method of producing multilayer printed board
JPS6131245A (en) * 1984-07-24 1986-02-13 新神戸電機株式会社 Manufacture of composite laminated board
JPS6140094A (en) * 1984-07-31 1986-02-26 新神戸電機株式会社 Method of producing multilayer circuit board
JPS61174796A (en) * 1985-01-30 1986-08-06 新神戸電機株式会社 Manufacture of multilayer circuit board
JPS62169495A (en) * 1986-01-22 1987-07-25 三菱瓦斯化学株式会社 Manufacture of multilayer printed board
JPS6338298A (en) * 1986-08-04 1988-02-18 松下電工株式会社 Multilayer printed interconnection board
JPS63280629A (en) * 1987-05-13 1988-11-17 Nippon Sheet Glass Co Ltd Manufacture of printed-wiring board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476977A (en) * 1977-12-02 1979-06-20 Tokyo Shibaura Electric Co Method of producing printed wiring board
JPS5539313A (en) * 1978-09-11 1980-03-19 Matsushita Electric Works Ltd Preparation of phenol resin laminated plate
JPS56165397A (en) * 1980-05-24 1981-12-18 Mitsubishi Gas Chemical Co Method of producing multilayer printed board
JPS6131245A (en) * 1984-07-24 1986-02-13 新神戸電機株式会社 Manufacture of composite laminated board
JPS6140094A (en) * 1984-07-31 1986-02-26 新神戸電機株式会社 Method of producing multilayer circuit board
JPS61174796A (en) * 1985-01-30 1986-08-06 新神戸電機株式会社 Manufacture of multilayer circuit board
JPS62169495A (en) * 1986-01-22 1987-07-25 三菱瓦斯化学株式会社 Manufacture of multilayer printed board
JPS6338298A (en) * 1986-08-04 1988-02-18 松下電工株式会社 Multilayer printed interconnection board
JPS63280629A (en) * 1987-05-13 1988-11-17 Nippon Sheet Glass Co Ltd Manufacture of printed-wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215497A (en) * 1990-12-14 1992-08-06 Matsushita Electric Works Ltd Manufacture of multilayer circuit board
JPH04121782U (en) * 1991-04-17 1992-10-30 新神戸電機株式会社 multilayer printed wiring board

Similar Documents

Publication Publication Date Title
TWI373992B (en) Circuitized substrate with split conductive layer, method of making same, electrical assembly utilizing same, and information handling system utilizing same
JPH04171890A (en) Manufacture of multilayer printed circuit board
JPH05198946A (en) Manufacture of multilayer printed circuit board
KR100925189B1 (en) Heat spreading PCB and manufacturing method thereof
JPH0221672B2 (en)
TWM590837U (en) Printed circuit board
JPH02177498A (en) Multilayer printed wiring board
CN101594751A (en) The structural improvement of double-sided multi-layer metal base circuit board
JP4961180B2 (en) Printed wiring board
JPH0212990A (en) Multilayer printed circuit board
JPH08330735A (en) Manufacture of multilayered printed-wiring board
JPS5824958B2 (en) Method for manufacturing multilayer printed wiring board with multiple through holes
JPS6338878B2 (en)
CN219938592U (en) High multilayer mechanical blind buried hole circuit board
JPS624877B2 (en)
JPH01140698A (en) Manufacture of multi-layered printed circuit board
JP2005183798A (en) Multilayer print-circuit board and its manufacturing method
JPH0210596B2 (en)
JPH05251868A (en) Multilayer printed wiring board with blind via holes
JPS63224295A (en) Manufacture of laminated printed circuit board
JPH0563036B2 (en)
JPH03229488A (en) Manufacture of printed wiring board
JPH021391B2 (en)
JPH0133959B2 (en)
JPH04361590A (en) Multilayer wiring board and manufacture thereof