JPH0238319B2 - - Google Patents

Info

Publication number
JPH0238319B2
JPH0238319B2 JP56151417A JP15141781A JPH0238319B2 JP H0238319 B2 JPH0238319 B2 JP H0238319B2 JP 56151417 A JP56151417 A JP 56151417A JP 15141781 A JP15141781 A JP 15141781A JP H0238319 B2 JPH0238319 B2 JP H0238319B2
Authority
JP
Japan
Prior art keywords
welding
insert material
steel
filler wire
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56151417A
Other languages
English (en)
Other versions
JPS5853390A (ja
Inventor
Naomichi Mori
Hiroyuki Pponma
Masakuni Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56151417A priority Critical patent/JPS5853390A/ja
Publication of JPS5853390A publication Critical patent/JPS5853390A/ja
Publication of JPH0238319B2 publication Critical patent/JPH0238319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Description

【発明の詳細な説明】
本発明は極低炭素鋼の集中熱源を利用する溶接
法に関するものである。 従来原子または分子の2つのエネルギー準位間
の誘導放出によつて生じた可干渉性の光を集光
し、Ar、He等のシールドガス中で溶接するレー
ザ溶接が知られている。又真空中で加速収束した
電子線を、真空中又は部分真空中で継手部に衝突
させ、その発熱により溶接する電子ビーム溶接が
公知である。両者はエネルギー密度が高いために
歪や熱影響の少ない深溶込み溶接が可能である。
本明細書においては以下両者を綜合して集中熱源
を利用する溶接法という。 これらの集中熱源を用いる溶接法においてはフ
イラーワイヤあるいはインサート材を用いないの
が通常であるが、開先精度が悪い場合あるいは溶
接欠陥対策上、フイラーワイヤもしくはインサー
ト材を用いることもある。この場合のフイラーワ
イヤもしくはインサート材のC含有量は、鋼材の
それと同等か、より低く設定するのが通常であ
る。 ところで、近年鋼材は制御圧延の進歩と同時に
溶接性の向上あるいはコスト低減を計るためライ
ンパイプ材を含め低C化の傾向にある。これら低
C鋼溶接金属の高温割れ感受性は従来一般に低い
と考えられてきた。 即ち、溶接金属の高温割れおよび低温割れ感受
性と靭性の向上のため、溶接金属のC量は母材と
同程度もしくは低い値に設定することが従来の定
説であり、例えば構造用高張力鋼、低温用鋼が、
0.08%C0.18%のとき、溶接金属は0.07C
0.15%を目標値とされるのが通常である。 元来前記集中熱源を利用する溶接法において
は、アーク溶接に比べ溶込み深さが大きく、溶融
巾が小さいためにビード中央に梨型の高温割れが
発生し易いことが知られているが、本発明者らの
検討によると極低C鋼を、従来常用されるフイラ
ーワイヤあるいはインサート材を用いて集中熱源
を利用して溶接した溶接金属の高温割れ感受性
は、むしろ高まることを知つた。 即ち極低C域ではデンドライト衝合部がδ凝固
するためと考えられ、割れ低減にはγ安定化元素
であるC量の増加が必要であることを確認した。 而して本発明は極低C鋼の溶接金属の高温割れ
に対し、適正な溶接金属C含有量があることを見
出し、この適正範囲を得るための極低C鋼の集中
熱源を利用した溶接法を提供するものである。 即ち本発明は炭素含有量が0.005%〜0.05%の
極低炭素鋼を集中熱源を用いて溶接するに当り、
前記鋼の1.5倍以上の炭素を含有し、かつ下式を
満足するフイラーワイヤ又はインサート材の一方
またはその両方を用いて溶接するものである。 0.05(1−α)Cp+αCf0.15 ただし Cp:鋼板の炭素含有量(%) Cf:フイラーワイヤ又はインサート材の炭素含
有量(%) α:フイラーワイヤ、インサート材の寄与率 ここで寄与率αとは、第4図に模式的に示すご
とく、電子ビームおよびレーザービーム等の集中
熱源を用いて溶接した場合の全溶接金属WBに対
するフイラーワイヤ量あるいはインサート材量の
割合Iであり、α=I/WBで表わすことができ
る。 本発明の対象鋼はC0.05重量%以下で、鋼とし
ての強度を有するとみられるC0.005%以上を含む
一般構造用鋼、低温用低合金鋼等の極低C鋼とす
るが、Ni等のγフオーマ元素を含む例えばステ
ンレス鋼等は除外される。 前記集中熱源を利用した溶接法によるフイラー
ワイヤ又はインサート材の寄与率は、開先ギヤツ
プ等の溶接条件を考慮する必要があるが、実験に
よるとα=0.1〜0.4の範囲である。そこで高温割
れに対して安定な溶接金属をうるためには、母材
の1.5倍以上の炭素を含有し、かつ次の式を満足
するフイラーワイヤ又はインサート材を用いると
よい。 0.05(1−α)Cp+αCf0.15 ただし Cp:鋼板の炭素含有量(%) Cf:フイラーワイヤあるいはインサート材の炭
素含有量(%) α:フイラーワイヤ、インサート材の寄与率 フイラーワイヤ及びインサート材はそれぞれ単
独に用いてもよいし、併合することも差し支えな
いが、0.05%未満では炭素量添加の効率が悪いの
で、デンドライド衝合部がδ凝固して高温割れを
生ずる。一方0.15%超では従来から知られる溶接
金属の高温割れ域になり、溶接欠陥を生ずる。 従つて本発明におけるフイラーワイヤ及びイン
サート材は上記条件を満足することが必要であ
る。 以下本発明を実施例により説明する。 実施例 1 出力:6KW、速度:42cm/min、He:15/
minのレーザー溶接を行つた。 フイラーワイヤ径:1.6mmφ、供給速度210cm/
min、供給量約33g/min 母材:12mmt、C−Mn鋼 母材希釈率0.75、フイラーワイヤ寄与率(α)
0.25であつた。この時の溶接部の全溶融量は約
130g/minであつた。 この結果を第1表に示す。
【表】 ×割れあり ○割れなし
( )内Pの値(P=(1−α)Cp+αCf)
実施例 2 板厚60mmt、C−Mn鋼、150KV×160mA×
12cm/min、Gap1mmで電子ビーム溶接を行つた。
ビームオツシレーシヨン3mmφ円、母材稀釈0.65
〜0.85、フイラー寄与率(α)0.15、0.25、0.35
フイラー径1.6mmφ、フイラー供給速度420700980
cm/min(フイラー供給量はそれぞれ約67111156
g/min、また溶接部の全溶融量はいずれも約
445g/min)の溶接結果を第2表に示す。
【表】 ×割れあり、○割れなし
( )内Pの値
実施例 3 板12mmt、C−Mn鋼を出力6KW速度42cm/
min、He15/minでレーザー溶接を行つた。 インサート材の寄与率(α):0.2 第1図に示す位置にインサート材f(1mmt)
を用いた。この場合のインサート材溶融量は約39
g/minで、溶接部の全溶融量は約200g/min
であつた。溶接結果を第3表に示す。
【表】 ×割れあり ○割れなし
( )内Pの値
実施例 4 板厚60t、C−Mn鋼を150KV×160mA×12
cm/minの電子ビーム溶接を行つた。 α:0.2、0.4、ビームオツシレーシヨン3mmφ
円、Gap1mm、第2図に示すインサート材fはt1
=0.5mm、t2=1.0mmを用い、ギヤツプは1mmとし
た。α=0.2の場合はビームオツシレーシヨンは
3mmφでビード幅は約7.5mm、α=0.4の場合はビ
ームオツシレーシヨン無しでビード幅は約3.8mm、
このときのインサート材溶融量はいずれも約84
g/minで、溶接部の全溶融量はそれぞれ約
420210g/minであつた。 結果を第4表に示す。
【表】 ×割れあり ○割れなし
( )内Pの値
実施例 5 板厚5mmt、C−Mn鋼を出力5KW、速度2
m/min、He10/min、 α:0.25としてレーザー溶接を行つた。 第3図中fはフイラーワイヤで、1.6mmφのも
の16g/mを開先上に置いて溶接を行つた。この
場合の溶接部溶融量は約64g/mであつた。 結果を第5表に示す。
【表】 ×割れあり ○割れなし
( )内Pの値
以上の実施例に示す通り本発明の範囲内にある
フイラーワイヤあるいはインサート材を用いると
きは耐高温割れ性に優れた溶接金属をうることが
できる。
【図面の簡単な説明】
第1図〜第3図は開先形状の説明図、第4図は
溶接金属とインサート材およびフイラーワイヤと
の関係を示す説明図である。 f,t,t1,t2……インサート材またはフイラ
ーワイヤ、I……インサート材またはフイラーワ
イヤに相当する部分、WB……溶接金属(全溶
融)部。

Claims (1)

  1. 【特許請求の範囲】 1 炭素含有量が0.005%〜0.05%の極低炭素鋼
    を集中熱源を用いて溶接するにあたり、前記鋼の
    1.5倍以上の炭素を含有し、かつ下式を満足する
    フイラーワイヤ又はインサート材の一方またはそ
    の両方を用いて溶接することを特徴とする極低炭
    素鋼の集中熱源を利用する溶接法。 0.05(1−α)Cp+αCf0.15 ただし Cp:鋼板の炭素含有量(%) Cf:フイラーワイヤ又はインサート材の炭素含
    有量(%) α:フイラーワイヤ、インサート材の寄与率 2 集中熱源としてレーザーを用いて溶接するこ
    とを特徴とする特許請求の範囲第1項記載の溶接
    法。 3 集中熱源として電子ビームを用いて溶接する
    ことを特徴とする特許請求の範囲第1項記載の溶
    接法。
JP56151417A 1981-09-26 1981-09-26 極低炭素鋼の集中熱源を利用する溶接法 Granted JPS5853390A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151417A JPS5853390A (ja) 1981-09-26 1981-09-26 極低炭素鋼の集中熱源を利用する溶接法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151417A JPS5853390A (ja) 1981-09-26 1981-09-26 極低炭素鋼の集中熱源を利用する溶接法

Publications (2)

Publication Number Publication Date
JPS5853390A JPS5853390A (ja) 1983-03-29
JPH0238319B2 true JPH0238319B2 (ja) 1990-08-29

Family

ID=15518151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151417A Granted JPS5853390A (ja) 1981-09-26 1981-09-26 極低炭素鋼の集中熱源を利用する溶接法

Country Status (1)

Country Link
JP (1) JPS5853390A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279092A (ja) * 1986-05-28 1987-12-03 Toyota Motor Corp ビ−ム溶接方法
JP5456396B2 (ja) 2009-07-13 2014-03-26 中央発條株式会社 皿ばね及びその製造方法
DE102020216163A1 (de) * 2019-12-20 2021-06-24 Sms Group Gmbh Stumpfstoßlasertiefschweißverfahren

Also Published As

Publication number Publication date
JPS5853390A (ja) 1983-03-29

Similar Documents

Publication Publication Date Title
US8253060B2 (en) Hybrid laser arc welding process and apparatus
JP5725723B2 (ja) 高出力レーザビーム溶接及びそのアセンブリ
EP2692476B1 (en) Method for producing laser-welded steel tube
US3860777A (en) Process for welding low-alloy steels containing niobium
CN110238525A (zh) 一种低碳钢与铸铁的异种金属焊接方法
JPS6243800B2 (ja)
JP3529359B2 (ja) 耐ピット及び耐ブローホール性能が優れた亜鉛メッキ鋼板溶接用フラックス入りワイヤ
JP2002144063A (ja) 薄鋼板の重ね溶接方法及び溶接結合薄鋼板
JPH11254152A (ja) 導体の溶接方法
Magee et al. Laser assisted gas metal arc weld characteristics
JPH0238319B2 (ja)
US3466422A (en) Welding material for austenitic ductile iron
JPS61232079A (ja) レ−ザ溶接方法
US6831248B2 (en) Use of helium/nitrogen gas mixtures for the laser welding of stainless steel pipes
JP4505076B2 (ja) 低温靭性に優れた溶接金属が得られる電子ビーム溶接方法
JP3767359B2 (ja) 突合わせ溶接方法及び溶接結合薄鋼板
JP2812772B2 (ja) レーザによる溶接方法
US2281070A (en) Method of welding
JP3735195B2 (ja) 鋼材の熱間レーザー溶接用メタルコアード型フィラワイヤ
JPH03230880A (ja) レーザーによる溶接方法
Šebestová et al. Laser-TIG welding of galvanized steel–numerical and experimental assessment of the effect of arc in various setups
JPH08290292A (ja) 鉄系焼結材などの電子ビーム、レーザ又はtig溶接方法
Gurevitch et al. Metallurgical and technological features of titanium alloy welding when using fluxes
Howse Developments in A-TIG welding
US1973341A (en) Welding process