JPH02311364A - Silicon nitride sintered compact and its production - Google Patents
Silicon nitride sintered compact and its productionInfo
- Publication number
- JPH02311364A JPH02311364A JP1134251A JP13425189A JPH02311364A JP H02311364 A JPH02311364 A JP H02311364A JP 1134251 A JP1134251 A JP 1134251A JP 13425189 A JP13425189 A JP 13425189A JP H02311364 A JPH02311364 A JP H02311364A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- excess oxygen
- mol
- firing
- sintered compact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 21
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- 239000007789 gas Substances 0.000 claims abstract description 9
- 229910052691 Erbium Inorganic materials 0.000 claims abstract description 7
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 5
- 229910052765 Lutetium Inorganic materials 0.000 claims abstract description 4
- 229910052775 Thulium Inorganic materials 0.000 claims abstract description 4
- 238000010304 firing Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 abstract description 14
- 238000007254 oxidation reaction Methods 0.000 abstract description 14
- 239000000843 powder Substances 0.000 abstract description 10
- 229910001404 rare earth metal oxide Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 9
- 230000000737 periodic effect Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高温での抗折強度および耐酸化性に優れた窒
化珪素質焼結体およびその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a silicon nitride sintered body having excellent flexural strength and oxidation resistance at high temperatures, and a method for producing the same.
(従来技術)
窒化珪素を主体として成る焼結体は、強度、硬度、熱的
化学的安定性に優れることから特に熱機関用としてガス
タービン等への応用が進められている。(Prior Art) Sintered bodies mainly composed of silicon nitride have excellent strength, hardness, and thermal and chemical stability, and are therefore being increasingly applied to gas turbines and the like, especially for heat engines.
一般に、窒化珪素はそれ自体が難焼結性であることから
従来から周期律表第ma族酸酸化物主体とする焼結助剤
を添加し、これを成型後ホットプレス焼成や窒素含有雰
囲気で、場合によりその雰囲気を加圧しながら焼成する
方法が採用されており、焼結体を緻密化させるためには
上記第ma族酸化物は全量中少なくとも1モル%以上添
加することが必要である。In general, since silicon nitride itself is difficult to sinter, a sintering aid mainly composed of acid oxides from group MA of the periodic table is added, and after molding, it is heated in hot press firing or in a nitrogen-containing atmosphere. In some cases, a method of firing while pressurizing the atmosphere is adopted, and in order to make the sintered body dense, it is necessary to add at least 1 mol % or more of the Group Ma oxide to the total amount.
一方、周期律表第ma族酸酸化物しては従来よりY2O
,が最も用いられているが、Y2O,は焼結助剤として
の焼結挙動において焼結体中に偏析が生じやすいため特
性にバラツキが大きいという問題から、比較的イオン半
径の小さいEr、 Yb、 Sm、、Tb、Dy、 l
+oから選ばれる1種以」二の元素酸化物を1乃至5モ
ル%の割合で添加することも提案されている。(特願昭
62−124663号)
(発明が解決しようとする問題点)
上記のような従来の焼結体によれば、いずれも第■a族
酸化物が1モル%以上の割合で添加されているために、
この酸化物が粒界相に多量の第■a族酸窒化物もしくは
第nla族ケイ素酸窒化物として残存する。On the other hand, as for acid oxides of group ma of the periodic table, Y2O has traditionally been used.
, is the most used, but Y2O, as a sintering aid, tends to segregate in the sintered body during sintering behavior, resulting in large variations in properties, so Er and Yb, which have relatively small ionic radii, , Sm, , Tb, Dy, l
It has also been proposed to add one or more element oxides selected from +o and o in a proportion of 1 to 5 mol%. (Patent Application No. 124663/1982) (Problems to be Solved by the Invention) According to the conventional sintered bodies as described above, the Group ■a oxide is added in a proportion of 1 mol% or more. In order to
This oxide remains in the grain boundary phase as a large amount of Group IA oxynitride or Group NLA silicon oxynitride.
このように、粒界に第ma族酸化物を含む化合物が多量
に残存すると高温における耐酸化性や高温クリープ特性
が劣化する傾向にある。よってこのような特性の劣化を
防止するためには第ma族酸化物の添加量を1モル%未
満に抑えることが望まれるが、従来法では殆ど焼結が進
行せず、緻密な焼結体が得られないという問題がある。As described above, when a large amount of compounds containing Group Ma oxides remain in grain boundaries, oxidation resistance and high temperature creep characteristics at high temperatures tend to deteriorate. Therefore, in order to prevent such deterioration of properties, it is desirable to suppress the amount of Group Ma oxide added to less than 1 mol%, but in the conventional method, sintering hardly progresses and a dense sintered body is not obtained. The problem is that it cannot be obtained.
前述した特願昭62−124663号においても」二記
と同様なことが言え、この提案によって耐酸化性がある
程度改善されるものの、1400℃の酸化重量増の測定
において0.10mg/cm2以上のレヘルであり、特
性としては未だ不十分である。The same thing can be said in the above-mentioned Japanese Patent Application No. 124663/1983, and although this proposal improves the oxidation resistance to some extent, the measurement of oxidation weight gain at 1400°C shows that the weight gain due to oxidation is 0.10 mg/cm2 or more. The characteristics are still insufficient.
(問題を解決するための手段)
本発明者等は上記問題点に関し検討を重ねた結果、特定
の第111a族酸化物の添加量が1モル%未満であって
も、窒化珪素粉末中の不純物酸素あるいは5i02の添
加によって決定される過剰酸素量を多くし、第111a
族酸化物との比率を特定の範囲に設定して焼成すると、
対理論密度比98%以上の高緻密体が得られると同時に
、1400℃の高温における耐酸化性および抗折強度に
優れた焼結体が得られるという知見を得た。(Means for Solving the Problem) As a result of repeated studies regarding the above problems, the present inventors found that even if the amount of a specific Group 111a oxide added is less than 1 mol%, impurities in silicon nitride powder 111a by increasing the amount of excess oxygen determined by the addition of oxygen or 5i02.
When firing with the ratio of group oxides set within a specific range,
It was found that a highly dense body with a theoretical density ratio of 98% or more can be obtained, and at the same time, a sintered body with excellent oxidation resistance and bending strength at a high temperature of 1400°C can be obtained.
即ち、本発明はEr、、Yb、 Lu、 Tm、 Sc
から選ばれる少なくとも1種の酸化物(RE20.)
1モル%未満と過剰酸素(SiOz換算)1乃至10モ
ル%および窒化珪素89乃至99モル%から成り、過剰
酸素/REzOsのモル比が2乃至10の範囲にある成
形体をSiO□を含有する窒素ガス雰囲気で1800乃
至2000℃の温度で焼成することにより、焼成時の5
i02の揮散を防止し、十分に焼成を進行させることが
でき、最終的に対理論密度比98%以上の高緻密体を得
ることができる。That is, the present invention provides Er, Yb, Lu, Tm, Sc
At least one oxide selected from (RE20.)
A molded body containing less than 1 mol %, excess oxygen (SiOz equivalent) 1 to 10 mol %, and silicon nitride 89 to 99 mol %, and in which the molar ratio of excess oxygen/REzOs is in the range of 2 to 10. By firing at a temperature of 1800 to 2000°C in a nitrogen gas atmosphere, the
It is possible to prevent volatilization of i02, to allow sufficient firing to proceed, and finally to obtain a highly dense body with a theoretical density ratio of 98% or more.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明における1つの特徴は、窒化珪素の焼結に必須と
言われる周期律表第1na族酸化物(以下単にRE、0
3と略す場合もある)が焼結体中で窒化珪素などと反応
して高温特性、特に耐酸化性を低下させるためにRE2
O3を1モル%未満、特に0.6乃至0.95モル%の
非常に少ない範囲に設定するとともに、RE2O3とし
てEr、、Yb、 Tm、 Lu、 Scから選ばれる
少な(とも1種の酸化物を選択する。これ、は従来から
用いられているY(イツトリウム)酸化物は、添加量の
少ない範囲では焼成の安定性が望めないのに対し、本発
明における上記元素はYに比較してイオン半径が小さい
ことから添加量の少ない系であっても十分な焼成の安定
性を有するものである。なお、上記酸化物の中でも特に
Er、Ybが特性上好ましい。One feature of the present invention is that oxides of group 1NA of the periodic table (hereinafter simply referred to as RE, 0
RE2 (sometimes abbreviated as 3) reacts with silicon nitride etc. in the sintered body and deteriorates high temperature properties, especially oxidation resistance.
O3 is set to a very small range of less than 1 mol%, especially 0.6 to 0.95 mol%, and RE2O3 is set to a small amount selected from Er, Yb, Tm, Lu, and Sc (both of which are one type of oxide). This is because Y (yttrium) oxide, which has been used conventionally, cannot be expected to have firing stability in a small addition amount range. Since the radius is small, even a system with a small addition amount has sufficient firing stability.Among the above oxides, Er and Yb are particularly preferable in terms of their characteristics.
このような前述の酸化物を微量にしか含まない系では焼
結が不十分となるが、この系に対し過剰酸素を加えるこ
とによってその焼結を進行させることができる。この過
剰酸素とは系中に希土類元素酸化物として混入する酸素
以外に系中に存在する酸素のことであり、具体的には窒
化珪素粉末中の不純物酸素やSiO□としての添加によ
るもので、本発明ではこれら過剰酸素は5iOz換算量
で表す。Although sintering is insufficient in a system containing only a trace amount of the above-mentioned oxide, sintering can be promoted by adding excess oxygen to the system. This excess oxygen refers to oxygen present in the system other than oxygen mixed in as rare earth element oxides, and specifically, it is due to impurity oxygen in silicon nitride powder or addition as SiO□. In the present invention, the excess oxygen is expressed in terms of 5 iOz.
本発明では、この過剰酸素を1乃至10モル%、特に1
.5乃至5モル%の範囲に設定するとともに前述した希
土類との比、即ち過剰酸素/ RE2O3で表されるモ
ル比を2乃至10、特に2.3乃至5の割合になるよう
に組成を調整する。この過剰酸素の量を上記の範囲に設
定したのは過剰酸素が1モル%未満あるいは上記モル比
が2より小さいと焼結が困難で緻密体が得られず、また
10モル%を越えるかあるいは上記モル比が10を越え
ても焼結性が低下し、さらに粒界相が増加するとともに
低融点ガラス相が生成され高温強度が大きく低下する。In the present invention, this excess oxygen is reduced to 1 to 10 mol%, particularly 1 to 10 mol%.
.. The composition is set in the range of 5 to 5 mol%, and the ratio with the rare earth mentioned above, that is, the molar ratio expressed as excess oxygen/RE2O3, is 2 to 10, particularly 2.3 to 5. . The reason for setting the amount of excess oxygen in the above range is that if the excess oxygen is less than 1 mol% or the above molar ratio is less than 2, sintering will be difficult and a dense body will not be obtained, and if it exceeds 10 mol% or Even if the above molar ratio exceeds 10, the sinterability decreases, the grain boundary phase increases, and a low melting point glass phase is generated, resulting in a significant decrease in high-temperature strength.
上記のように過剰酸素を多量に含む系では、過剰酸素で
ある5if2が低融点物質であることから非常に揮散し
易いため焼成時に組成変動が生し、焼結が進行しなくな
る場合がある。In a system containing a large amount of excess oxygen as described above, 5if2, which is excess oxygen, is a low melting point substance and therefore volatilizes very easily, resulting in compositional fluctuations during firing, which may prevent sintering from proceeding.
よって、焼成に際しては過剰酸素の揮散を抑制しながら
行うことが必要である。組成変動を生じさせないための
焼成方法としては成型体をガラス浴中に入れて高温高圧
下で熱間静水圧焼成する方法、いわゆるガラスシールI
IIP法が最も良いが装置の大型化、製造工程等の複雑
化を伴うことがら量産性に優れたガス圧力焼成が最も好
適に採用される。Therefore, it is necessary to perform firing while suppressing volatilization of excess oxygen. As a firing method to prevent compositional fluctuations, the molded body is placed in a glass bath and hot isostatically fired under high temperature and high pressure, so-called Glass Seal I.
Although the IIP method is the best, gas pressure calcination, which is excellent in mass production, is most preferably employed because it involves an increase in the size of the equipment and a complicated manufacturing process.
そこで、このガス圧力焼成を例に具体的に説明する。通
常、ガス圧力焼成は成型体を1,5乃至100気圧の窒
素ガス加圧雰囲気中で1600乃至2000’Cの温度
で焼成を行うが、本発明では前述したように5iOzの
揮散を防止しつつ焼成を行う必栃があるため、炉内にS
i/SiO□粉末や窒化珪素粉末を置くか、あるいはこ
れらの粉末中に成型体を埋めて焼成を行ない、成型体の
まわりにSiOガスを発生させることにより成型体から
の過剰酸素の揮散を防止できる。Therefore, this gas pressure firing will be specifically explained as an example. Normally, in gas pressure firing, the molded body is fired at a temperature of 1600 to 2000'C in a nitrogen gas pressurized atmosphere of 1.5 to 100 atmospheres, but in the present invention, as described above, the molded body is fired while preventing the volatilization of 5iOz. Because there is a necessary firing tool, there is no S in the furnace.
By placing i/SiO□ powder or silicon nitride powder, or by burying the molded body in these powders and firing, SiO gas is generated around the molded body, thereby preventing the volatilization of excess oxygen from the molded body. can.
また、SjOガスを発生させることに加えて、1300
℃から焼成温度までの昇温速度を50’C/hr以上に
することによって昇温時間を短縮することに伴い昇温過
程での揮散量を低減することができる。In addition to generating SjO gas, 1300
By setting the heating rate from °C to the firing temperature to 50'C/hr or more, the heating time can be shortened and the amount of volatilization during the heating process can be reduced.
さらに窒素ガス圧力を10気圧以上の高圧に設定するこ
とによりさらに過剰酸素の揮散を防止することが出来る
。Further, by setting the nitrogen gas pressure to a high pressure of 10 atmospheres or more, it is possible to further prevent excess oxygen from volatilizing.
なお、本発明における焼成方法では系全体として難焼結
性であることから焼成温度を1800乃至2000℃の
高温にて焼成することが必要で、1800℃を下回ると
対理論密度比98%以上の緻密体を得られない。それと
同時に1800乃至2000℃の高温での窒化珪素自体
の分解を抑制するためには10気圧以上の窒素ガス圧力
に設定することが必要である。In addition, in the firing method of the present invention, since the system as a whole is difficult to sinter, it is necessary to perform firing at a high temperature of 1800 to 2000°C, and if it is lower than 1800°C, the theoretical density ratio I can't get a dense body. At the same time, in order to suppress the decomposition of silicon nitride itself at high temperatures of 1800 to 2000°C, it is necessary to set the nitrogen gas pressure to 10 atm or more.
以下、本発明を次の例で説明する。The invention will now be explained with the following examples.
(実施例)
原料粉末として、比表面積14m27g、酸素含有量1
.0重量%の窒化珪素粉末に対し、周期律表第■a族醋
酸化物 RE2O3)および5i02を第1表の組成に
なるように添加し、72時時間式混合した。得られたス
ラリーを乾燥造粒した後、プレス成型し、真空中で脱バ
インダ後に第1表に示す焼成条件で焼成し試料を得た。(Example) As raw material powder, specific surface area 14 m27 g, oxygen content 1
.. To 0% by weight of silicon nitride powder, oxides of group 1a of the periodic table (RE2O3) and 5i02 were added so as to have the composition shown in Table 1, and mixed for 72 hours. After drying and granulating the obtained slurry, it was press-molded, the binder was removed in a vacuum, and then it was fired under the firing conditions shown in Table 1 to obtain a sample.
なお、これらはいずれも1200℃から50℃/hrの
速度で昇温した。Incidentally, in both cases, the temperature was raised from 1200°C at a rate of 50°C/hr.
第1表中、N014を除き、他はすべて窒化珪素粉末中
に埋めて焼成を行った。In Table 1, except for N014, all the others were buried in silicon nitride powder and fired.
得られた試料に対し、各々JISR1601に準し、室
温および1200℃における4点曲げ抗折強度と、大気
中1400”C24時間経過後における酸化重量増によ
る耐酸化性評価と、アルキメデス法により焼結体の対理
論密度比を算出した。また、各試料10本の切断面を観
察し、2本以上色ムラ、じみが認められるものに×、1
本以下のものに対し○を付して評価した。結果は第1表
に示す。The obtained samples were evaluated for 4-point bending strength at room temperature and 1200°C, oxidation resistance evaluation by oxidation weight increase after 24 hours at 1400"C in the air, and sintering by Archimedes method according to JISR1601. The theoretical density ratio of the body was calculated.In addition, the cut surfaces of 10 samples were observed, and those with color unevenness or smudges on two or more were given a ×, 1
Items below this level were marked with ○ for evaluation. The results are shown in Table 1.
(以下余白)
B −
第1表によれば、SiOガスを発生させずに焼成したN
o14の試料は成型体からSiO□の揮散が認められ、
焼成が進行せず、緻密な焼結体が得られなかった。また
過剰酸素の量が10重量%を越えるNo15の試料では
高温強度の低下が著しかった。RE2O3が1モル%以
上のNo16は耐酸化性が悪い。助剤としてY2O,を
用いたNo17は強度は問題ないが耐酸化性が不十分で
且つ色ムラ、シミの発生が認められた。さらに、焼成温
度が1800℃より低いN018は緻密体が得られなか
った。(Left below) B - According to Table 1, N fired without generating SiO gas
In sample o14, volatilization of SiO□ was observed from the molded body,
Firing did not proceed and a dense sintered body could not be obtained. Further, in sample No. 15 in which the amount of excess oxygen exceeded 10% by weight, the high temperature strength decreased significantly. No. 16 containing 1 mol% or more of RE2O3 has poor oxidation resistance. No. 17, which used Y2O as an auxiliary agent, had no problem in strength, but had insufficient oxidation resistance, and the occurrence of color unevenness and stains was observed. Furthermore, with N018 whose firing temperature was lower than 1800° C., a dense body could not be obtained.
これに対し、本発明品はいずれも98%以上の均質な緻
密体で、特性も抗折強度が室温で800MPa以上、1
200℃で600MPa以上、酸化重量増0.1mg/
cm2以下の優れた特性を示した。On the other hand, the products of the present invention are all homogeneous dense bodies of 98% or more, and have a bending strength of 800 MPa or more at room temperature, 1
600MPa or more at 200℃, oxidation weight increase 0.1mg/
It showed excellent characteristics of less than cm2.
(発明の効果)
以上詳述したとおり、本発明によれば、周期律表第ma
族酸酸化物量が少ないにもかかわらず焼結体として高密
度化が達成されることから、粒界相に生成される第11
1a族酸窒化物等の生成による高温特性、特に高温耐酸
化性の劣化を防止し、高温において優れた強度、耐久性
を有する窒化珪素質焼結体が提供される。(Effects of the Invention) As detailed above, according to the present invention,
Because high density is achieved as a sintered body despite the small amount of group acid oxides, the
A silicon nitride sintered body is provided that prevents deterioration of high-temperature properties, particularly high-temperature oxidation resistance, due to the formation of group 1a oxynitrides and the like, and has excellent strength and durability at high temperatures.
Claims (2)
、Tm、Lu、Scから選ばれる少なくとも1種の酸化
物(RE_2O_3)1モル%未満と過剰酸素(SiO
_2換算)1乃至10モル%から成り、過剰酸素/RE
_2O_3のモル比が2乃至10の範囲にあり、且つ対
理論密度比が98%以上であることを特徴とする窒化珪
素質焼結体。(1) Silicon nitride 89 to 98.9 mol%, Er, Yb
, Tm, Lu, Sc and less than 1 mol% of at least one oxide (RE_2O_3) and excess oxygen (SiO
Excess oxygen/RE
A silicon nitride sintered body, characterized in that the molar ratio of _2O_3 is in the range of 2 to 10, and the theoretical density ratio is 98% or more.
、Tm、Lu、Scから選ばれる少なくとも1種の酸化
物(RE_2O_3)1モル%未満と過剰酸素(SiO
_2換算)1乃至10モル%から成り、過剰酸素/RE
_2O_3のモル比が2乃至10の範囲にある成形体を
SiOガスを含む窒素ガス雰囲気下で1800乃至20
00℃の温度で焼成することを特徴とする窒化珪素質焼
結体の製造方法。(2) 89 to 98.9 mol% silicon nitride, Er, Yb
, Tm, Lu, Sc and less than 1 mol% of at least one oxide (RE_2O_3) and excess oxygen (SiO
Excess oxygen/RE
A molded body having a molar ratio of _2O_3 in the range of 2 to 10 is heated to 1800 to 20 in a nitrogen gas atmosphere containing SiO gas.
A method for producing a silicon nitride sintered body, the method comprising firing at a temperature of 00°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1134251A JPH02311364A (en) | 1989-05-26 | 1989-05-26 | Silicon nitride sintered compact and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1134251A JPH02311364A (en) | 1989-05-26 | 1989-05-26 | Silicon nitride sintered compact and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02311364A true JPH02311364A (en) | 1990-12-26 |
Family
ID=15123930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1134251A Pending JPH02311364A (en) | 1989-05-26 | 1989-05-26 | Silicon nitride sintered compact and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02311364A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183660A (en) * | 1989-12-08 | 1991-08-09 | Nissan Motor Co Ltd | Production of silicon nitride sintered body |
-
1989
- 1989-05-26 JP JP1134251A patent/JPH02311364A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03183660A (en) * | 1989-12-08 | 1991-08-09 | Nissan Motor Co Ltd | Production of silicon nitride sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3091085B2 (en) | Rare earth silicate based sintered body and method for producing the same | |
JPH02311364A (en) | Silicon nitride sintered compact and its production | |
JP3231944B2 (en) | Method for manufacturing silicon nitride heat-resistant member | |
JP2737323B2 (en) | Method for producing silicon nitride based sintered body | |
JP2742619B2 (en) | Silicon nitride sintered body | |
JP2687632B2 (en) | Method for producing silicon nitride sintered body | |
JP3007732B2 (en) | Silicon nitride-mixed oxide sintered body and method for producing the same | |
JP2960591B2 (en) | Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same | |
JP2642429B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2694368B2 (en) | Method for producing silicon nitride based sintered body | |
JP2691295B2 (en) | Silicon nitride sintered body | |
JP2946593B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH06321641A (en) | Composite ceramics | |
JP2892186B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JPH10279360A (en) | Silicon nitride structural parts and its production | |
JP2734755B2 (en) | Method for producing high-temperature high-strength silicon nitride sintered body | |
JP3007731B2 (en) | Silicon carbide-mixed oxide sintered body and method for producing the same | |
JPH06345535A (en) | Production of silicon nitride sintered compact | |
JP3176203B2 (en) | Method for producing silicon nitride based sintered body | |
JP3236733B2 (en) | Silicon nitride sintered body | |
JPH05238829A (en) | Sintered silicone nitride ceramic | |
JPH07110788B2 (en) | Silicon nitride sintered body and method for manufacturing the same | |
JP2000247749A (en) | Silicon nitride-silicon carbide-based composite sintered compact and its production | |
JPH05178667A (en) | Production of silicon nitride-silicon carbide composite sintered body | |
JPH07206527A (en) | Silicon nitride-based sintered compact and its production |