JPH02303071A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPH02303071A JPH02303071A JP1121513A JP12151389A JPH02303071A JP H02303071 A JPH02303071 A JP H02303071A JP 1121513 A JP1121513 A JP 1121513A JP 12151389 A JP12151389 A JP 12151389A JP H02303071 A JPH02303071 A JP H02303071A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polycrystalline
- deposited
- silicon nitride
- nitride film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 30
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 35
- 230000005669 field effect Effects 0.000 claims description 10
- 238000005530 etching Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 230000003068 static effect Effects 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 15
- 239000012535 impurity Substances 0.000 abstract description 11
- 239000000758 substrate Substances 0.000 abstract description 9
- 230000006866 deterioration Effects 0.000 abstract description 5
- 229910052681 coesite Inorganic materials 0.000 abstract 5
- 229910052906 cristobalite Inorganic materials 0.000 abstract 5
- 239000000377 silicon dioxide Substances 0.000 abstract 5
- 235000012239 silicon dioxide Nutrition 0.000 abstract 5
- 229910052682 stishovite Inorganic materials 0.000 abstract 5
- 229910052905 tridymite Inorganic materials 0.000 abstract 5
- 229910018125 Al-Si Inorganic materials 0.000 abstract 1
- 229910018520 Al—Si Inorganic materials 0.000 abstract 1
- 150000004767 nitrides Chemical class 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 238000001312 dry etching Methods 0.000 description 14
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 239000010410 layer Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 229910007933 Si-M Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910008318 Si—M Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- KRTSDMXIXPKRQR-AATRIKPKSA-N monocrotophos Chemical compound CNC(=O)\C=C(/C)OP(=O)(OC)OC KRTSDMXIXPKRQR-AATRIKPKSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、多結晶S i M I S型電界効果トラン
ジスタの特性を向上させ、かつ下地デバイスの特性劣化
を抑えた半導体装置およびその製造方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a semiconductor device and its manufacturing method that improves the characteristics of a polycrystalline SiM I S field effect transistor and suppresses deterioration of the characteristics of the underlying device. Regarding.
アイ・イー・イー・イー、エレクトロン デバイス レ
ター イーディーエル−5(1984年)第468頁か
ら第470頁(11:OHHFectron Devi
celett、、ビDL−5,p、468 (1984
))において論じられている様に、従来、多結晶S i
M OS型電界効果トランジスタの水素化には、最終
保護膜としてプラズマCV D ?Aで形成したシリコ
ンナイトライド膜を用い、450℃の熱処理によって水
素原子を拡散させる方法を用いている。IEE, Electron Device Letter EDL-5 (1984) pp. 468-470 (11: OHHFectron Devi
Cellett, BiDL-5, p. 468 (1984
)) Conventionally, polycrystalline Si
For hydrogenation of MOS field effect transistors, plasma CVD is used as the final protective film. Using the silicon nitride film formed in A, a method is used in which hydrogen atoms are diffused by heat treatment at 450°C.
〔発明が解決しようとする?l1lI題〕上記従来技術
は、拡散した水素原子が一ド地デバイスに与える影響に
ついては配慮がされていない。[What does invention try to solve? [111I Problem] The above-mentioned conventional technology does not take into consideration the influence that diffused hydrogen atoms have on the single-layer device.
従って、ト地デバイスが単結晶Si基板内に作られたM
OSトランジスタである様な積層型デバイスの場合、M
OSトランジスタの初期特性が変動したり、ホットキャ
リアによる信頼性の低ドを引き起すといった問題があっ
た。Therefore, if the device is fabricated in a single-crystal Si substrate,
In the case of a stacked device such as an OS transistor, M
There are problems in that the initial characteristics of the OS transistor fluctuate and the reliability is lowered due to hot carriers.
本発明は、Po1yS i −MOS トランジスタの
特性を損わずに下地デバイスの特性劣化を極力抑制する
ことを目的としており、更に、それに必要な構造及び製
造方法を提供することを目的とする。The present invention aims to suppress the deterioration of the characteristics of the underlying device as much as possible without impairing the characteristics of the Po1yS i -MOS transistor, and further aims to provide the structure and manufacturing method necessary therefor.
〔課題を解決するための手段J
上記目的を達成するために1本発明においては水AJ)
K/−の拡散源となるシリコンナイトライド膜を、多結
晶S iM I S型電界効果トランジスタのチャネル
領域の上部のみに設けた。[Means for solving the problem J In order to achieve the above object, water AJ in the present invention]
A silicon nitride film serving as a K/− diffusion source was provided only above the channel region of the polycrystalline SiM I S field effect transistor.
また、水素化を有効に行う為に、上記シリコンナイトラ
イド膜は金属配線膜よりも下側に設けた。Further, in order to effectively perform hydrogenation, the silicon nitride film was provided below the metal wiring film.
また、多結晶S i M I S型電界効果トランジス
タのチャネル領域を含む多結晶Si膜と層間絶縁膜との
界面特性を良くするために、多結晶Si膜とシリコンナ
イトライド膜との間に5iOz膜を設けた。In addition, in order to improve the interface characteristics between the polycrystalline Si film including the channel region of the polycrystalline SiM I S type field effect transistor and the interlayer insulating film, 5iOz was added between the polycrystalline Si film and the silicon nitride film. A membrane was provided.
また、SRAMにおいて多結晶S i M I S型電
界効果トランジスタの特性を向上させ、かつ弔結晶Si
基板内のMO8)−ランジスタの特性劣化を防ぐために
上記シリコンナイトライド膜を用いた。In addition, we have improved the characteristics of polycrystalline SiM I S type field effect transistors in SRAM, and
The above silicon nitride film was used to prevent the characteristics of the MO8) transistor in the substrate from deteriorating.
また、上記シリコンナイトライド膜のエツチングのため
にホトエツチング回数を増し製造コストを上げることの
ないように、エツチングは多結晶Siのエツチングと同
一マスクで同時に行った。Further, in order to avoid increasing the number of photo-etching steps for etching the silicon nitride film and increasing manufacturing costs, etching was performed simultaneously with polycrystalline Si etching using the same mask.
(作用〕
多結晶S i M I S型電界効果トランジスタのチ
ャネル部の上側のみにシリコンナイトライド膜を設ける
ことは、多結晶S i M I S型電界効果トランジ
スタの特性を向上させ、かつ下地デバイスに余分な水素
原子が拡散するのを極力抑制するように作用する。従っ
て、ド地デバイスの特性劣化を防ぐことができる。(Function) Providing a silicon nitride film only on the upper side of the channel portion of the polycrystalline S i M I S type field effect transistor improves the characteristics of the polycrystalline S i M I S type field effect transistor, and also improves the performance of the underlying device. This acts to suppress the diffusion of excess hydrogen atoms as much as possible.Therefore, deterioration of the characteristics of the ground device can be prevented.
以ド、図面を参照しながら本発明を詳述する。 The present invention will now be described in detail with reference to the drawings.
実施例1
p型Si基扱101を用意し、熱酸化し5ins膜10
2を形成する。その上に低圧化学気相蒸着法(以1’L
)’CVI)法とw8 xt )により、多結晶S i
wAI Q 3を堆積シ、コノ上ニL P CV D
法によりS i Ox膜104を堆積し、多結晶Si膜
103中にBFa◆のイオン打込みを行う(第1 Iy
4A)。Example 1 A p-type Si-based film 101 is prepared and thermally oxidized to form a 5-ins film 10.
form 2. On top of that, a low pressure chemical vapor deposition method (hereinafter referred to as 1'L) is applied.
)'CVI) method and w8xt), polycrystalline Si
Deposit wAI Q 3 on top of the container L P CV D
A SiOx film 104 is deposited by a method, and BFa◆ ions are implanted into the polycrystalline Si film 103 (first Iy
4A).
次に不純物の活性化を行った後、HF系水溶液中でウェ
ットエツチングし、S i Ox膜104を除去する6
次にホトレジストパターンをマスクとしたドライエツチ
ング法で多結晶S i 嘆103を加工し、ゲート電極
103 ’ を形成する1次にL P CV L)法で
5ift膜105を25nm堆積し、N2ガス雰囲気中
で900℃、10分間熱処理を行いゲート酸化膜とする
。その上に5iHaガスを反応ガスに用い、温度520
’CでLPCVD法に: ヨ)J S i IJ 10
6を40nm堆積する。ホトレジストパターンをマスク
としたドライエツチング法で所定形状に加工する。Next, after activating the impurities, wet etching is performed in an HF-based aqueous solution to remove the SiOx film 1046.
Next, the polycrystalline Si film 103 is processed by a dry etching method using the photoresist pattern as a mask, and a 5ift film 105 is deposited to a thickness of 25 nm by a primary LPCV L) method to form a gate electrode 103', and then etched in a N2 gas atmosphere. A heat treatment is performed at 900° C. for 10 minutes to form a gate oxide film. On top of that, 5iHa gas was used as the reaction gas, and the temperature was 520°C.
'C to LPCVD method: YO) J S i IJ 10
6 is deposited to a thickness of 40 nm. It is processed into a predetermined shape by dry etching using a photoresist pattern as a mask.
次ニL 13 CV D法によりS i Ox fla
t O7を堆積し、ホトレジストパターンをマスクとし
てBF’z÷をイオン打込みし、不純物の活性化を行い
ソース・ドレインのp型高濃度不純物領域を形成する。Next, S i Ox fla was obtained by the L 13 CV D method.
tO7 is deposited, and BF'z÷ is ion-implanted using the photoresist pattern as a mask to activate the impurity and form p-type high concentration impurity regions of the source and drain.
次): CV L)法によりS i Ox膜108を1
100n形成し、その上に反応ガスに5iHaおよびN
Haを用い基板温度3oo℃でプラズマCVLJ法によ
りシリコンナイトライド膜109を20nu+堆積する
。続いてホトレジストパターンをマスクとしたドライエ
ツチング法でシリコンナイトライド膜109を所定形状
に加工する(第1図BおよびC)。Next): The SiOx film 108 is deposited by the CV L) method.
100n, and on top of that, 5iHa and N are added to the reaction gas.
A silicon nitride film 109 of 20 nu+ is deposited by the plasma CVLJ method using Ha at a substrate temperature of 30° C. Subsequently, the silicon nitride film 109 is processed into a predetermined shape by dry etching using the photoresist pattern as a mask (FIGS. 1B and C).
次にホトレジストパターンをマスクにドライエツチング
法でコンタクト穴を形成し、AQ−8i11Q 110
を堆積し、ホトレジストパターンをマスクにドライエツ
チング法で配線のパターンを形成する。最後に反応温度
400℃で常圧Cvv法によりp s G11!J (
リンを含む5iOz膜)111を1μ「n堆積し最終保
虎膜とする(第1図D)。Next, contact holes were formed by dry etching using the photoresist pattern as a mask, and AQ-8i11Q 110
A wiring pattern is formed by dry etching using a photoresist pattern as a mask. Finally, p s G11! was obtained using the normal pressure Cvv method at a reaction temperature of 400°C. J (
A 5iOz film containing phosphorus) 111 was deposited to a thickness of 1μ to form the final protective film (Fig. 1D).
本実施例により製造した多結晶5i−pチャネルMO8
型電界効果トランジスタにおいて、ソース電極を接地し
、ドレイン及びゲート電極に電圧を印加し、ドレイン電
界を?11g定した。その結果、本実施例ではシリコン
ナイトライド膜を設けない構造に比べてオフ電流は1/
10に減少し、逆にオン電流は10倍に増加した。これ
より、本実施例の構造で十分に水素化が行われることが
わかった。Polycrystalline 5i-p channel MO8 manufactured according to this example
In a type field effect transistor, the source electrode is grounded, voltage is applied to the drain and gate electrodes, and the drain electric field is 11g was determined. As a result, in this example, the off-state current is 1/1 compared to the structure without the silicon nitride film.
On the contrary, the on-current increased by 10 times. From this, it was found that hydrogenation was sufficiently performed with the structure of this example.
実施例2
実施例1はシリコンナイトライド膜のエツチングのため
にホト回数をl l+;j余分に必要とする。これに対
して第2図に示す本実施例ではホトエツチングの回数を
増やさずに実施例1と同等の効果を得た。Embodiment 2 In Embodiment 1, an extra number of photo cycles is required for etching the silicon nitride film. On the other hand, in the present example shown in FIG. 2, the same effect as in Example 1 was obtained without increasing the number of photo-etching operations.
p型Si基板201を用意し、実施例1とlidじ方法
により熱酸化11偽202.多結晶Si電極20:(’
、ゲート酸化膜205.Si膜206を形成する(第2
図へ)。A p-type Si substrate 201 is prepared, and thermally oxidized 11 false 202. by the same method as in Example 1. Polycrystalline Si electrode 20: ('
, gate oxide film 205. Form a Si film 206 (second
(to figure).
次にL P CV l)法により5ift膜207を堆
積し、ホトレジストパターンをマスクとして8ト°2十
をイオン打込みした後、不純物の活性化を行い、ソース
・ドレインのp型低濃度不純物領域を形成する0次いで
H?’系氷水溶液中5iOz膜207を除去する0次に
LPCvL)法によりS i Ox膜208を1100
n、プラズマCVIJ法によるシリコンナイトライド膜
209を200nm堆積する(第2図B)。Next, a 5-ift film 207 is deposited by the L P CV l) method, and 8×20 ions are implanted using the photoresist pattern as a mask. Then, the impurities are activated to form the p-type low concentration impurity regions of the source and drain. Forming 0 then H? 'The SiOx film 208 was removed by the
n. A silicon nitride film 209 of 200 nm is deposited by plasma CVIJ method (FIG. 2B).
次にホトレジストパターンをマスクとしたドライエツチ
ング法で、シリコンナイトライドIHzo++。Next, silicon nitride IHzo++ was removed using a dry etching method using the photoresist pattern as a mask.
5iOa膜208および207.多結晶Si膜206を
同時に所定形状に加工する0次にCVI)法によりS
i Oz 111210を堆積し、ホトレジストパター
ンをマスクとしたドライエツチング法でコンタクト穴を
形成し、A Q −S i膜211を堆積し、ホトレジ
ストパターンをマスクとしたドライエツチング法で配線
のパターンを形成する0反応温度40(J℃で常7ヒC
vlJ法によりp SG II情212を堆積し最終保
護膜とする(第2図C)。5iOa films 208 and 207. The S
iOz 111210 is deposited, a contact hole is formed by dry etching using the photoresist pattern as a mask, an AQ-S i film 211 is deposited, and a wiring pattern is formed by dry etching using the photoresist pattern as a mask. 0 reaction temperature 40 (always 7 hC at J℃)
A pSG II film 212 is deposited by the vlJ method to form the final protective film (FIG. 2C).
本実施例でも実施例1と同等のトランジスタ特性が得ら
れた。In this example, transistor characteristics equivalent to those in Example 1 were obtained.
実施例3
本発明を完全CMO3型のSRAMのメモリセルに応用
した実施例を第3図を用いて説明する。Embodiment 3 An embodiment in which the present invention is applied to a memory cell of a complete CMO3 type SRAM will be described with reference to FIG.
まず、n型Si基板301を用意し、pウェル302形
成後、選択酸化法(LOCO8法)により索子分離領域
30:3を形成する。熱酸化によりゲート酸化膜304
を形成後、nチャネルMOSトランジスタのしきい電圧
を調節するためにBFz+をイオン打込みする。First, an n-type Si substrate 301 is prepared, and after forming a p-well 302, a strand isolation region 30:3 is formed by a selective oxidation method (LOCO8 method). Gate oxide film 304 is formed by thermal oxidation.
After forming, BFz+ is ion-implanted to adjust the threshold voltage of the n-channel MOS transistor.
駆動MOSトランジスタめゲニト電極と転送MOSトラ
ンジスタの拡散層との直接接続のための接続孔を形成し
、LPCVIJ法により多結晶5i305を堆積しリン
拡散を′行った後、LPCVLI法で5iOz膜306
を堆積し、ドライエツチング法でゲート電極を形成する
。次にLl)l)構造相のn−型低濃度不純物領域のた
めにp+イオンを打込む0次にL P CV I)法に
より5iOz膜を堆積し、異方性ドライ正ツチングによ
りゲート車極305の側壁にサイドウオール307を形
成し、As◆をイオン打込みし、ソース・ドレインとな
るn◆型高濃度不純物領域を形成する。After forming a connection hole for direct connection between the driving MOS transistor metal electrode and the diffusion layer of the transfer MOS transistor, depositing polycrystalline 5i 305 by the LPCVIJ method and performing phosphorus diffusion, a 5iOz film 306 is deposited by the LPCVLI method.
is deposited and a gate electrode is formed by dry etching. Next, a 5iOz film is deposited by the 0-order L P CV I) method in which p+ ions are implanted for the n-type low concentration impurity region of the structural phase, and the gate electrode is formed by anisotropic dry etching. A sidewall 307 is formed on the side wall of the semiconductor device 305, and As◆ is ion-implanted to form n◆ type high concentration impurity regions that will become the source and drain.
次に、不純物の活性化を行った後、[、P (m V
IJ法により層間のS i Oz膜ココ308堆積する
。Next, after activating the impurities, [,P (m V
An interlayer SiOz film 308 is deposited by IJ method.
続いて、多結晶5i−pチャネルMOSトランジスタの
ゲート電極とMpml n M OS トランジスタの
ゲート電極とを接続するための接続孔を形成した後、L
P CV IJ法により多結晶Si膜を堆積する0次
にL IJ CV IJ法により5102膜を堆積した
後に)lFz+のイオン打込みを行い、不純物の活性化
を行った後にウェットエツチングにより5ift膜を除
去する。Subsequently, after forming a connection hole for connecting the gate electrode of the polycrystalline 5i-p channel MOS transistor and the gate electrode of the Mpml n MOS transistor, L
P CV IJ method to deposit polycrystalline Si film 0-order L IJ CV IJ method to deposit 5102 film) lFz+ ion implantation to activate impurities, then remove 5ift film by wet etching do.
続いて、ホトレジストパターンをマスクとしてドライエ
ツチング法により多結晶Si膜を所定形状に加工し、多
結晶5i−pチャネルMOSトランジスタのゲート電極
309とする0次に反応ガスにSiH+ガスおよびNz
Oガスを用い、n、ム度800℃でL P に V I
)法に浜りS i Ox 1p525nmを堆積し、N
zガス雰囲気中、900℃、10分間の熱処理を行い、
これをゲート酸化膜310とする1次に、多結晶5i−
pチャネルMOSトランジスタのドレイン部拡散層と、
対向するインバータのゲート電極とを接続する為の接続
孔を形成した後、シラン系ガス(SiHg又は5izH
n又は5i3Ha)を反応ガスに用い、温度520℃で
L )’ CV l)法によりS i l!’J 31
1を40nm堆積する。ドライエツチング法で所定形状
に加工し、LPCVD法により5iOz嘆を堆積し、ホ
トレジストパターンをマスクにBFt+をイオン打込み
し、ソース・ドレイン領域を形成する。Next, using the photoresist pattern as a mask, the polycrystalline Si film is processed into a predetermined shape by dry etching, and the gate electrode 309 of the polycrystalline 5i-p channel MOS transistor is formed using SiH+ gas and Nz as the zero-order reaction gas.
V I to L P using O gas at n, temperature 800°C
) method, deposited 1p525 nm of SiOx, and deposited N
Heat treatment was performed at 900°C for 10 minutes in a Z gas atmosphere,
Polycrystalline 5i-
a drain region diffusion layer of a p-channel MOS transistor;
After forming a connection hole to connect the gate electrode of the opposing inverter, silane gas (SiHg or 5izH
n or 5i3Ha) as the reaction gas and S i l! at a temperature of 520°C by the L)' CV l) method. 'J 31
1 is deposited to a thickness of 40 nm. It is processed into a predetermined shape by a dry etching method, a 5 iOz layer is deposited by an LPCVD method, and BFt+ is ion-implanted using a photoresist pattern as a mask to form source/drain regions.
1100n堆積し、その上にプラズマCvL)法により
シリコンナイトライド膜313を200nm堆積し、ト
ライエツチング法で多結晶Sj−ρMOSトランジスタ
のチャネル領域を覆うような形状に加工する。A silicon nitride film 313 of 200 nm is deposited thereon by a plasma CvL method, and processed by a tri-etching method into a shape that covers the channel region of the polycrystalline Sj-ρMOS transistor.
続いて、転送nチャネルMOSトランジスタのゲート電
極と第1層配線とを接続するための接続孔を形成した後
、’1’iN、Wを蒸着しく314)、ドライエツチン
グ法で所定形状に加工する。続いて配m層間1漠として
リンを含んだ5iOz膜315を堆積し、第2層配線と
の接続孔を形成した後、’1’iN、AQを蒸着しく3
16) ドライエツチング法で所定形状に加工する。Next, after forming a connection hole for connecting the gate electrode of the transfer n-channel MOS transistor and the first layer wiring, '1' iN and W are vapor deposited (314) and processed into a predetermined shape by dry etching. . Subsequently, a 5iOz film 315 containing phosphorus is deposited as a layer between the two layers, and after forming a connection hole with the second layer wiring, '1'iN and AQ are deposited.
16) Process into a predetermined shape using a dry etching method.
最後に、Nzガス雰囲気中で400℃、30分間の熱処
理を行った後に、反応温度400℃で常圧cvo法によ
りlJ S G膜;317を堆積し、最終保IsI股と
する。Finally, after performing a heat treatment at 400° C. for 30 minutes in a Nz gas atmosphere, an IJSG film 317 is deposited by the normal pressure CVO method at a reaction temperature of 400° C. to form a final IsI layer.
本実施例で製造したメモリセルの待機時消費電流は従来
技術の1710に減少した。また、動作時のソフトエラ
ー率も大幅に減少した。更に、シリコンナイトライド膜
を設けたことによる。ホットキャリアによる信頼性の低
下は見られなかった。The standby current consumption of the memory cell manufactured in this example was reduced to 1710 compared to the conventional technology. Additionally, the soft error rate during operation was significantly reduced. Furthermore, this is due to the provision of a silicon nitride film. No deterioration in reliability due to hot carriers was observed.
実施例4
実施例;うはメモリセル内の多結晶5i−pチャネルM
OSトランジスタの≠ヤネル部の上部のみにシリコンナ
イトライド膜を設けた。これに対し本実施例ではメモリ
セルマット部全体にシリコンナイトライド膜を設けた(
第4図)。Example 4 Example: Polycrystalline 5i-p channel M in memory cell
A silicon nitride film was provided only on the upper part of the ≠Jannel part of the OS transistor. In contrast, in this example, a silicon nitride film was provided over the entire memory cell mat portion (
Figure 4).
メモリはメモリセル部と同辺回路部とから構成される。The memory is composed of a memory cell section and a circuit section on the same side.
ホットキャリアによる相互フンダクタンス、しきい電圧
の4&動等が特に問題となるのは主に周辺回路のMOS
トランジスタである。従って第4図に示したような構造
も、多結晶Si−ρMOSトランジスタの特性を向上さ
せ、ド地のMOSトランジスタの信頼性の低ドを防ぐと
いう本発明の目的に有効である。Mutual fundductance due to hot carriers, threshold voltage fluctuation, etc. are particularly problematic in MOS peripheral circuits.
It is a transistor. Therefore, the structure shown in FIG. 4 is also effective for the purpose of the present invention, which is to improve the characteristics of a polycrystalline Si-ρ MOS transistor and to prevent low reliability of a grounded MOS transistor.
製造プロセスとしては実施例3と同様であり。The manufacturing process is the same as in Example 3.
シリコンナイトライド膜のエツチングの際にメモリセル
マット部全体を覆うようにエツチングする。When etching the silicon nitride film, it is etched so as to cover the entire memory cell mat portion.
3と同等の結果が得られた。Results equivalent to those of 3 were obtained.
本発明によれば、多結晶S i−M I S トランジ
スタの特性をシリコンナイトライド膜からの水素原子の
拡散によって改善できる。オフ電流は1/10に減少し
、オン電流は10倍に増加する。According to the present invention, the characteristics of a polycrystalline Si-M I S transistor can be improved by diffusion of hydrogen atoms from a silicon nitride film. The off-state current is reduced by a factor of 10, and the on-state current is increased by a factor of 10.
まり多結MSiMISトランジスタを負荷素子に用いた
S RA Mにおいて、待機時消費電流を従来の1/1
0に低減でき、動作時のソフトエラー率も減少した。同
時に下地MOSトランジスタは従来と同じ信頼性が得ら
れた。In SRAM using multi-coupled MSiMIS transistors as load elements, standby current consumption is reduced to 1/1 of that of conventional products.
The soft error rate during operation was also reduced. At the same time, the underlying MOS transistor achieved the same reliability as before.
第1図は、本発明の実施例1の半導体装ト°”Cの製造
工程の断面図および平面図、第2図は、本発明の実施例
2の半導体装置の製造工程の断面図、第3図は、本発明
の実施例:3の半導体装置の断面図、第4図は、本発明
の実施例4の半導体装置の平面図である。
101・・・p型Si基板、102・・・熱酸化膜、1
03・・・S i Oz膜、105・・・ゲート酸化膜
、106・・パ多結晶Si膜(チャネル、ソース・ドレ
イン領域)108・・・5ift膜、109・−・シリ
コンナイトライド膜、110・・・AQ−8i膜、11
1・・・PSG膜、201・・・p型81基板、202
・・・熱酸化膜、203′・・・ゲート電極、205・
・・ゲート酸化膜。
206・・・多結晶Si膜(チャネル、ソース・ドレイ
ン領域)、208・・・5iOz膜、209・・・シリ
コンナイトライド膜、210・・・5iOz膜、211
−AQ−8i膜、212・PSG膜、301− n型S
i基板、302・・・pウェル、303・・・索子分離
領域、304・・・ゲート酸化膜、:105・・・多結
晶Si膜、306−8iOz 、307−サイドウオー
ル、308・・・5iOz、309・・・ゲート電極。
310・・・ゲート酸化膜、311・・・多結晶Si模
(チャネル・ソース・ドレイン領域)、312・・・5
iOz、313・・・シリコンナイトライド膜、314
・・・第1層配IQ (W/ ’I’ i N) 、
315−8iOa、316−第2層配線(A 14
/’l’ i N) 。
、R17°°”PSG膜・
v l 国
/I+−−−P、S斤臘
藁2図
2θ3′
不 3 図
VJ l 図1 is a sectional view and a plan view of the manufacturing process of a semiconductor device according to a first embodiment of the present invention, and FIG. 2 is a sectional view and a plan view of a manufacturing process of a semiconductor device according to a second embodiment of the present invention. 3 is a cross-sectional view of a semiconductor device according to Example 3 of the present invention, and FIG. 4 is a plan view of a semiconductor device according to Example 4 of the present invention. 101... p-type Si substrate, 102...・Thermal oxide film, 1
03... SiOz film, 105... Gate oxide film, 106... Polycrystalline Si film (channel, source/drain region) 108... 5ift film, 109... Silicon nitride film, 110 ...AQ-8i film, 11
1...PSG film, 201...p-type 81 substrate, 202
...Thermal oxide film, 203'...Gate electrode, 205.
...Gate oxide film. 206... Polycrystalline Si film (channel, source/drain region), 208... 5iOz film, 209... Silicon nitride film, 210... 5iOz film, 211
-AQ-8i film, 212/PSG film, 301- n-type S
i-substrate, 302--p well, 303--socket isolation region, 304--gate oxide film, 105--polycrystalline Si film, 306-8iOz, 307-side wall, 308-- 5iOz, 309...gate electrode. 310... Gate oxide film, 311... Polycrystalline Si model (channel/source/drain region), 312...5
iOz, 313...Silicon nitride film, 314
...1st layer distribution IQ (W/ 'I' i N),
315-8iOa, 316-2nd layer wiring (A 14
/'l' i N). , R17°°"PSG membrane・v l 国/I+---P、S斤臘藁2 2θ3' 3 fig. VJ l fig.
Claims (1)
し、チャネル領域を該多結晶Si膜とする、多結晶Si
MIS型電界効果トランジスタにおいて、チャネル領域
を覆うようにシリコンナイトライド膜を島状に設けたこ
とを特徴とする半導体装置。 2、前記シリコンナイトライド膜をプラズマ化学気相蒸
着法で形成したことを特徴とする請求項1記載の半導体
装置。 3、前記シリコンナイトライド膜を、金属配線層よりも
下側に設けたことを特徴とする請求項1記載の半導体装
置。 4、前記チャネル領域を含む多結晶Si膜とシリコンナ
イトライド膜との間にシリコン配化膜を設けたことを特
徴とする請求項1記載の半導体装置。 5、多結晶SiMIS型電界効果トランジスタを用いた
スタティック型ランダムアクセスメモリ(SRAM)に
おいて、チャネル領域を覆うようにシリコンナイトライ
ド膜を島状に設けたこ、とを特徴とする半導体装置。 6、チャネル部多結晶Si膜を堆積する工程、前記シリ
コンナイトライド膜を堆積する工程、該シリコンナイト
ライド膜及び多結晶Si膜を同一のマスクを用いてエッ
チングする工程を含むことを特徴とする請求項1記載の
半導体装置の製造方法。[Claims] 1. A polycrystalline Si film in which source and drain regions are formed in a polycrystalline Si film and a channel region is formed in the polycrystalline Si film.
1. A semiconductor device in which a silicon nitride film is provided in an island shape to cover a channel region in a MIS field effect transistor. 2. The semiconductor device according to claim 1, wherein the silicon nitride film is formed by plasma enhanced chemical vapor deposition. 3. The semiconductor device according to claim 1, wherein the silicon nitride film is provided below a metal wiring layer. 4. The semiconductor device according to claim 1, wherein a silicon doped film is provided between the polycrystalline Si film including the channel region and the silicon nitride film. 5. A semiconductor device in a static random access memory (SRAM) using a polycrystalline Si MIS field effect transistor, characterized in that a silicon nitride film is provided in an island shape so as to cover a channel region. 6. The method is characterized by comprising the steps of depositing a polycrystalline Si film in the channel portion, depositing the silicon nitride film, and etching the silicon nitride film and the polycrystalline Si film using the same mask. A method for manufacturing a semiconductor device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1121513A JPH02303071A (en) | 1989-05-17 | 1989-05-17 | Semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1121513A JPH02303071A (en) | 1989-05-17 | 1989-05-17 | Semiconductor device and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02303071A true JPH02303071A (en) | 1990-12-17 |
Family
ID=14813065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1121513A Pending JPH02303071A (en) | 1989-05-17 | 1989-05-17 | Semiconductor device and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02303071A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03265143A (en) * | 1990-03-15 | 1991-11-26 | Matsushita Electron Corp | Manufacture of thin film transistor |
JPH05160371A (en) * | 1991-12-04 | 1993-06-25 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
KR100546540B1 (en) * | 1997-09-30 | 2006-04-21 | 산요덴키가부시키가이샤 | Thin film transistor and method of manufacturing the same |
JP2009231412A (en) * | 2008-03-21 | 2009-10-08 | Mitsubishi Electric Corp | Semiconductor device and its manufacturing method |
-
1989
- 1989-05-17 JP JP1121513A patent/JPH02303071A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03265143A (en) * | 1990-03-15 | 1991-11-26 | Matsushita Electron Corp | Manufacture of thin film transistor |
JPH05160371A (en) * | 1991-12-04 | 1993-06-25 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
US5670390A (en) * | 1991-12-04 | 1997-09-23 | Mitsubishi Denki Kabushiki Kaisha | Method of making semiconductor device having thin film transistor |
KR100546540B1 (en) * | 1997-09-30 | 2006-04-21 | 산요덴키가부시키가이샤 | Thin film transistor and method of manufacturing the same |
JP2009231412A (en) * | 2008-03-21 | 2009-10-08 | Mitsubishi Electric Corp | Semiconductor device and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7776761B2 (en) | Method of fabricating semiconductor device having multiple gate insulating layer | |
US5326989A (en) | Semiconductor device having thin film transistor and method of manufacturing the same | |
JPH02303071A (en) | Semiconductor device and manufacture thereof | |
JPH0712058B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02271674A (en) | Semiconductor device | |
JP2000223699A (en) | Fabrication of semiconductor device | |
JP2001015749A (en) | Manufacture of semiconductor device | |
JPS59231864A (en) | Semiconductor device | |
JP2968548B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3319856B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0964294A (en) | Manufacture of semiconductor device | |
JPH0794721A (en) | Semiconductor device and manufacture thereof | |
JPS6161463A (en) | Semiconductor integrated circuit element and manufacture thereof | |
JPH03102875A (en) | Semiconductor device and manufacture thereof | |
JP2001085531A (en) | Manufacture of semiconductor integrated circuit | |
JPH0221648A (en) | Semiconductor device and manufacture thereof | |
JPH11354650A (en) | Semiconductor device and its manufacture | |
JPH0923007A (en) | Semiconductor device and its manufacture | |
JP2685493B2 (en) | Method for manufacturing semiconductor device | |
JPS62281463A (en) | Manufacture of integrated circuit device | |
JPS5810857A (en) | Complementary type mos semiconductor device | |
JP2001110912A (en) | Manufacturing method of semiconductor device | |
KR970003801A (en) | Manufacturing method of semiconductor device | |
JPH06310730A (en) | Semiconductor integrated circuit device and fabrication thereof | |
JPH01243452A (en) | Semiconductor integrated circuit device |