JPH02281661A - Vertical type field effect transistor - Google Patents

Vertical type field effect transistor

Info

Publication number
JPH02281661A
JPH02281661A JP10244889A JP10244889A JPH02281661A JP H02281661 A JPH02281661 A JP H02281661A JP 10244889 A JP10244889 A JP 10244889A JP 10244889 A JP10244889 A JP 10244889A JP H02281661 A JPH02281661 A JP H02281661A
Authority
JP
Japan
Prior art keywords
region
field effect
electrode
effect transistor
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10244889A
Other languages
Japanese (ja)
Inventor
Chizuru Kayama
香山 千鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10244889A priority Critical patent/JPH02281661A/en
Publication of JPH02281661A publication Critical patent/JPH02281661A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve a transistor of this design in its withstanding property to an inductance load by a method wherein a source region is formed of metal silicide buried in an opposite conductivity type has base region formed on the surface of a certain conductivity type semiconductor substrate. CONSTITUTION:In a vertical type field effect transistor, an N<+> silicon substrate 1 is made to serve as an N drain region, an N<-> drain region 2 is epitaxially grown thereon, a P base region 3 is formed, an oxide film is deposited on the surface, a window is provided, metal silicide is deposited in the recess formed through etching, the oxide film is removed, and a silicide layer 5 is formed in the recess to serve as a source region. When a voltage is applied to a gate electrode 7, an inversion layer 11 is formed in a channel region, and when a voltage is applied between a source electrode 9 and a drain electrode 10, electrons discharged from the source electrode 9 reach to the drain electrode 10 passing through the silicide layer 5, the P base region 3 just under the gate electrode 7, and the inversion layer 11, and as the N<+> source region 4 has been replaced with the silicide layer 5, an NPN parasitic transistor is not formed. Therefore, a field effect transistor of this design can be made large in withstanding property to an inductance load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型電界効果トランジスタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to vertical field effect transistors.

〔従来の技術〕[Conventional technology]

第3図は従来の縦型電界効果トランジスタの一例の断面
模式図である。
FIG. 3 is a schematic cross-sectional view of an example of a conventional vertical field effect transistor.

N+シリコン基板1の上にN−ドレイン領域2を設け、
この中にPベース領域3を設ける。Pベース領域3内に
N+ソース領域4を設ける。ゲート酸化膜6を介してゲ
ート電IF+7を設ける。酸化膜8を被覆した後、開口
し、ソース電極9を設け、基板裏面にトレイン電極10
を形成する。
An N- drain region 2 is provided on an N+ silicon substrate 1,
A P base region 3 is provided in this. An N+ source region 4 is provided within the P base region 3. A gate electrode IF+7 is provided via the gate oxide film 6. After covering the oxide film 8, an opening is opened, a source electrode 9 is provided, and a train electrode 10 is formed on the back surface of the substrate.
form.

このような縦型電解トランジスタにおいては、Nドレイ
ン領域2をコレクタ、Pベース領域3をベース、N“ソ
ース領域4をエミッタとする寄生NPN)ランジスタが
形成される。
In such a vertical electrolytic transistor, a parasitic NPN transistor is formed in which the N drain region 2 is the collector, the P base region 3 is the base, and the N'' source region 4 is the emitter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の縦型電界効果トランジスタは、寄生トラ
ンジスタを内蔵した構造であるため、この寄生トランジ
スタが導通した場合、電流集中により破壊するこいう問
題がある。寄生トランジスタが導通し難いようにするた
めにベース抵抗を小さくし、直流増幅率hPEを小さく
する方法もあるが、そのようにすると、他の特性に大き
く影響するため、条件出しが難しい等の問題がある。
The above-described conventional vertical field effect transistor has a structure in which a parasitic transistor is built in, and therefore, when this parasitic transistor becomes conductive, there is a problem that the transistor is destroyed due to current concentration. In order to make it difficult for the parasitic transistor to conduct, there is a method of reducing the base resistance and reducing the DC amplification factor hPE, but doing so has problems such as difficulty in determining conditions because it greatly affects other characteristics. There is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の縦型電界効果トランジスタは、ドレイン領域と
なる一導電型半導体基板と、該半導体基板の表面に形成
された逆導電型ベース領域と、前記ベース領域内に埋込
まれた金属珪化物で形成されるソース領域と、前記ソー
ス領域の表面端部から前記ベース領域の表面の端部まで
の上方に絶縁膜を介して設けられたゲート電極と、前記
半導体基板の裏面に設けらてたドレイン電極とを含んで
構成される。
The vertical field effect transistor of the present invention includes a semiconductor substrate of one conductivity type serving as a drain region, a base region of opposite conductivity type formed on the surface of the semiconductor substrate, and a metal silicide embedded in the base region. a source region to be formed, a gate electrode provided above from an edge of the surface of the source region to an edge of the surface of the base region via an insulating film, and a drain provided on the back surface of the semiconductor substrate. and an electrode.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図模式図である。FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention.

N+シリコン基板1をNドレイン領域とし、この上にN
−ドレイン領域2をエピタキシャル成長させ、Pベース
領域3を形成する。
The N+ silicon substrate 1 is used as an N drain region, and an N
- epitaxially grow the drain region 2 to form the P base region 3;

表面に酸化膜を設け、ソース領域を形成する部分に窓を
あけ、Pベース領域3をエツチングして凹部を形成する
。CVD法を用いて珪化モリブデン、珪化チタン等の金
属珪化物を凹部を埋める厚さに堆積する。酸化膜を除去
することにより珪化物層5が凹部にのみ形成される。こ
れをソース領域とする。
An oxide film is provided on the surface, a window is opened in the portion where the source region will be formed, and the P base region 3 is etched to form a recess. A metal silicide such as molybdenum silicide or titanium silicide is deposited to a thickness that fills the recessed portion using the CVD method. By removing the oxide film, silicide layer 5 is formed only in the recesses. Let this be the source area.

次に、ゲート酸化膜6を設け、その上に多結晶シリコン
でゲート電極7を形成する。ゲート電極7の端部と珪化
物M5の端部とは位W整合するように形成する。CVD
法を用いて酸化11i8を堆積し、珪化物層5の上部に
穴あけし、AJI等の金属でソース電極9を形成し、シ
リコン基板1の裏面にドレイン電極10を形成する。
Next, a gate oxide film 6 is provided, and a gate electrode 7 made of polycrystalline silicon is formed thereon. The end of the gate electrode 7 and the end of the silicide M5 are formed to match in position W. CVD
A hole is formed in the upper part of the silicide layer 5, a source electrode 9 is formed of a metal such as AJI, and a drain electrode 10 is formed on the back surface of the silicon substrate 1.

第2図は第1図に示す実施例の動作を説明するための断
面図模式図である。
FIG. 2 is a schematic cross-sectional view for explaining the operation of the embodiment shown in FIG. 1.

ゲート電極7に電圧を印加することによりチャネル領域
に反転層11が形成される。ソース電極9とドレイン電
極との間に電圧を印加すると、ソース電極9から出た電
子は、珪化物層5からゲート電極7の直下のPベース領
域3、反転層11を通過し、ドレイン電極lOに至る。
By applying a voltage to the gate electrode 7, an inversion layer 11 is formed in the channel region. When a voltage is applied between the source electrode 9 and the drain electrode, electrons emitted from the source electrode 9 pass from the silicide layer 5 to the P base region 3 directly under the gate electrode 7 and the inversion layer 11, and then pass through the drain electrode lO leading to.

本発明では、寄生トランジスタのエミッタになる部分(
第3図のN+ソース領域4)を珪化物層5で置き換えた
ので、NPNの寄生トランジスタが形成されない。この
ため、希望しない電流が流れることもなく、電流集中に
よりトランジスタが破壊されることもない。
In the present invention, the part that becomes the emitter of the parasitic transistor (
Since the N+ source region 4) in FIG. 3 has been replaced by the silicide layer 5, no NPN parasitic transistor is formed. Therefore, no undesired current will flow, and the transistor will not be destroyed due to current concentration.

また、寄生トランジスタの導通を抑制するためのPベー
ス領域3の不純物濃度の制限を受けなくてすむ、従って
Pベース領域3の不純物濃度は、インタ〉タンス負荷耐
量その他の特性が最適となるように選定することができ
る。
In addition, there is no need to limit the impurity concentration of the P base region 3 to suppress conduction of parasitic transistors. can be selected.

上記実施例は、Nチャネル型で説明したが、Pチャネル
型の場合も全く同様に本発明を適用できることはもちろ
んである。
Although the above embodiment has been explained using an N-channel type, it goes without saying that the present invention can be applied to a P-channel type in the same manner.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、縦型電界効果トランジ
スタのソース領域を金属珪化物で形成して寄生トランジ
スタの存在をなくしたので、インダクタンス負荷耐量を
大きくすることができるという効果がある。
As described above, the present invention eliminates the presence of parasitic transistors by forming the source region of the vertical field effect transistor with metal silicide, and therefore has the effect of increasing the inductance load capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面模式図、第2図は第1
図に示す実施例の動作を説明するための断面模式図、第
3図は従来の縦型電界効果トランジスタの一例の断面模
式図である。 1・・・N+シリコン基板、2・・・Nドレイン領域、
3・・・Pベース領域、4・・・N+ソース領域、5・
・・珪化物層、6・・・ゲート酸化膜、7・・・ゲート
電極、8・・・酸化膜、9・・・ソース電極、10・・
−トレイン電極、11・・・反転層、12・・・空乏層
FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention, and FIG.
FIG. 3 is a schematic cross-sectional view of an example of a conventional vertical field effect transistor. 1...N+ silicon substrate, 2...N drain region,
3...P base region, 4...N+ source region, 5.
... Silicide layer, 6... Gate oxide film, 7... Gate electrode, 8... Oxide film, 9... Source electrode, 10...
- train electrode, 11... inversion layer, 12... depletion layer.

Claims (1)

【特許請求の範囲】[Claims] ドレイン領域となる一導電型半導体基板と、該半導体基
板の表面に形成された逆導電型ベース領域と、前記ベー
ス領域内に埋込まれた金属珪化物で形成されるソース領
域と、前記ソース領域の表面端部から前記ベース領域の
表面の端部までの上方に絶縁膜を介して設けられたゲー
ト電極と、前記半導体基板の裏面に設けらてたドレイン
電極とを含むことを特徴とする縦型電界効果トランジス
タ。
a semiconductor substrate of one conductivity type serving as a drain region; a base region of opposite conductivity type formed on the surface of the semiconductor substrate; a source region formed of metal silicide embedded in the base region; and the source region. A vertical semiconductor substrate comprising: a gate electrode provided above from an end of the surface of the semiconductor substrate to an end of the surface of the base region via an insulating film; and a drain electrode provided on the back surface of the semiconductor substrate. type field effect transistor.
JP10244889A 1989-04-21 1989-04-21 Vertical type field effect transistor Pending JPH02281661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10244889A JPH02281661A (en) 1989-04-21 1989-04-21 Vertical type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10244889A JPH02281661A (en) 1989-04-21 1989-04-21 Vertical type field effect transistor

Publications (1)

Publication Number Publication Date
JPH02281661A true JPH02281661A (en) 1990-11-19

Family

ID=14327753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10244889A Pending JPH02281661A (en) 1989-04-21 1989-04-21 Vertical type field effect transistor

Country Status (1)

Country Link
JP (1) JPH02281661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254842A (en) * 2012-06-07 2013-12-19 Hitachi Ltd Semiconductor device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068656A (en) * 1983-09-26 1985-04-19 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6170760A (en) * 1984-09-14 1986-04-11 Matsushita Electronics Corp Vertical type mosfet
JPH01152671A (en) * 1987-12-09 1989-06-15 Fujitsu Ltd Vertical type insulating gate transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068656A (en) * 1983-09-26 1985-04-19 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6170760A (en) * 1984-09-14 1986-04-11 Matsushita Electronics Corp Vertical type mosfet
JPH01152671A (en) * 1987-12-09 1989-06-15 Fujitsu Ltd Vertical type insulating gate transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254842A (en) * 2012-06-07 2013-12-19 Hitachi Ltd Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5153683A (en) Field effect transistor
JPH1093087A (en) Transverse gate longitudinal drift region transistor
JPS6359545B2 (en)
JPH0621468A (en) Insulated gate semiconductor device
JPH0582783A (en) Lateral insulated-gate field-effect semiconductor device
JPS634683A (en) Field-effect transistor
JPS63141375A (en) Insulated gate field effect transistor
JP4620368B2 (en) Manufacturing method of semiconductor device
US7268378B1 (en) Structure for reduced gate capacitance in a JFET
KR100518506B1 (en) Trench gate power mos device and fabricating method therefor
JPH02281661A (en) Vertical type field effect transistor
JPH0465549B2 (en)
JP2001094099A (en) Silicon carbide semiconductor device and fabrication method thereof
JP2963750B2 (en) Semiconductor device
EP0481965B1 (en) Method of manufacturing step-cut insulated gate static induction transistors
JP2009170598A (en) Semiconductor device and method for producing the same
JP2002094061A (en) Semiconductor device and manufacturing method therefor
JPH04280474A (en) Soi structure mosfet
JPS60107866A (en) Semiconductor device
JP3048261B2 (en) Method for manufacturing semiconductor device
JPH0513758A (en) Mosfet and manufacture thereof
JP2540754B2 (en) High voltage transistor
JPH0715018A (en) Field-effect transistor
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
US20020137322A1 (en) Reduced mask count process for manufacture of mosgated device