JPS6170760A - Vertical type mosfet - Google Patents

Vertical type mosfet

Info

Publication number
JPS6170760A
JPS6170760A JP59192888A JP19288884A JPS6170760A JP S6170760 A JPS6170760 A JP S6170760A JP 59192888 A JP59192888 A JP 59192888A JP 19288884 A JP19288884 A JP 19288884A JP S6170760 A JPS6170760 A JP S6170760A
Authority
JP
Japan
Prior art keywords
source
vertical
breakdown
region
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59192888A
Other languages
Japanese (ja)
Other versions
JPH067597B2 (en
Inventor
Daisuke Ueda
大助 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59192888A priority Critical patent/JPH067597B2/en
Publication of JPS6170760A publication Critical patent/JPS6170760A/en
Publication of JPH067597B2 publication Critical patent/JPH067597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To erase the effect of a parasitic bipolar transistor, and to obtain a vertical type MOSFET difficult to be broken down by joining a section be tween a source and a back gate in a Schottky junction. CONSTITUTION:Source-Schottky electrodes 24 form Schottky junctions with back gate regions 25. source regions are replaced with the Schottky electrodes 24, thus erasing the presence of a parasitic bipolar transistor, then solving the problem of breakdown by breakdown currents. Accordingly, there is no parasitic bipolar transistor even when breakdown currents are flowed, thus resulting in the difficulty of the generation of the breakdown of an element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電力用の縦型MO3FETに関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vertical MO3FET for power use.

従来例の構成とその問題点 近年、電力用縦型MO3FETは、電源回路等の分野で
多く利用されるようになってきた。
Structure of conventional example and its problems In recent years, vertical power MO3FETs have come to be widely used in fields such as power supply circuits.

以下、図面を参照しながら、上述したような従来の電力
用縦型MO5FETについて説明を行う。
Hereinafter, the conventional power vertical MO5FET as described above will be explained with reference to the drawings.

第1図は、従来の縦型MO8FETの構造断面図を示す
。第1図において、1はソース電極、2は眉間絶縁のた
めの5i02膜、3はゲート電極、4はソース領域、5
はパックゲート領域、6はパックゲート領域6との接合
部の耐圧を向上させるために設けられたドレインバッフ
ァ領域、7はドレイン領域である。
FIG. 1 shows a structural cross-sectional view of a conventional vertical MO8FET. In FIG. 1, 1 is a source electrode, 2 is a 5i02 film for insulation between the eyebrows, 3 is a gate electrode, 4 is a source region, and 5
6 is a pack gate region, 6 is a drain buffer region provided to improve the breakdown voltage at the junction with the pack gate region 6, and 7 is a drain region.

以上のように構成された縦型MO8FETについて、以
下その動作について説明する。まず、構成を具体的に述
べるためKpチャネル型MOSFETの動作について説
明する。尚、この場合は4は?領域、5はn領域、6は
p−領域、7はp+領領域なる。ソース4に対してドレ
イン7をマイナス電位とするとし、ゲート3をソース電
位を等しくすると、ゲート3とパックゲート5とのオー
バーラツプ部にチャネルは形成されず、ソース4とドレ
イン7に電流は流れない。ゲート3にソース4よりも負
の電圧を印加してゆくと、チャネルがオーバーラツプ領
域に形成され、電流が流れる。
The operation of the vertical MO8FET configured as above will be described below. First, in order to specifically describe the configuration, the operation of the Kp channel type MOSFET will be explained. In this case, what about 4? 5 is an n region, 6 is a p- region, and 7 is a p+ region. Assuming that the drain 7 has a negative potential with respect to the source 4, and the gate 3 has the same source potential, no channel will be formed in the overlap between the gate 3 and the pack gate 5, and no current will flow between the source 4 and the drain 7. . When a voltage more negative than that of the source 4 is applied to the gate 3, a channel is formed in the overlap region and current flows.

次に、従来例のもつ欠点を第2図を用いて説明する。第
2図は、従来の縦型MO8FETの等価回路を示すもの
である。11は、ドレイン電極端子、12はゲート電極
端子、13はソース電極端子、14はパックゲート領域
6とドレインバッファ領域6との間に形成されるダイオ
ード、15は寄生PNP)ランジスタ、16はパックゲ
ート領域5の内部抵抗を表わしている。ドレイン電極を
負側に電圧印加してゆくと、終には寄生ダイオード14
がブレークダウンし、その際に生じるブレークダウン電
流の一部は、寄生バイポーラトランジスタ15をONに
する働きをする。その結果、ブレークダウン電流は急激
に増大し、素子の破壊に至らせる場合がある。このため
ブレークダウン時に電流を流しても破壊されにくい縦型
MO3FETの開発が望まれていた。
Next, the drawbacks of the conventional example will be explained using FIG. 2. FIG. 2 shows an equivalent circuit of a conventional vertical MO8FET. 11 is a drain electrode terminal, 12 is a gate electrode terminal, 13 is a source electrode terminal, 14 is a diode formed between the pack gate region 6 and the drain buffer region 6, 15 is a parasitic PNP) transistor, and 16 is a pack gate It represents the internal resistance of region 5. When voltage is applied to the drain electrode on the negative side, eventually the parasitic diode 14
breaks down, and a portion of the breakdown current generated at that time serves to turn on the parasitic bipolar transistor 15. As a result, the breakdown current increases rapidly, which may lead to destruction of the device. For this reason, it has been desired to develop a vertical MO3FET that is less likely to be destroyed even when current is applied during breakdown.

発明の目的 本発明は、上記欠点に鑑み、ブレークダウン電流で破壊
を生じないような新しい構造の縦型MO3FETを提供
するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a vertical MO3FET with a new structure that does not cause destruction due to breakdown current.

発明の構成 この目的を達成するために、本発明の縦型MO3FET
は、ソースとパックゲート間がショットキー接合で形成
されている。この構成によってブレークダウン電流を流
しても寄生バイポーラトランジスタが存在しないために
、素子の破壊は生じにくくなる。
Structure of the Invention To achieve this objective, the vertical MO3FET of the present invention
A Schottky junction is formed between the source and the pack gate. With this configuration, even if a breakdown current is applied, there is no parasitic bipolar transistor, so the device is less likely to be destroyed.

実施例の説明 以下、本発明の一実施例について図面を参照しながら説
明する。第3図は本発明の一実施例における縦型MO3
FETの構造断面図を示すものである。第3図において
、21はソース電極、22はゲート・ソース間の眉間絶
縁のためのSiO2膜、23はゲート電極、24はパッ
クゲート領域25とショットキー接合を形成するソース
・ショットキー電極、26はパックゲート領域、26は
ドレインバッファ層、27はドレイン領域を示すもので
ある。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 shows a vertical MO3 in an embodiment of the present invention.
1 shows a cross-sectional view of the structure of an FET. In FIG. 3, 21 is a source electrode, 22 is a SiO2 film for glabellar insulation between the gate and source, 23 is a gate electrode, 24 is a source-Schottky electrode that forms a Schottky junction with the pack gate region 25, and 26 26 is a pack gate region, 26 is a drain buffer layer, and 27 is a drain region.

以上のように構成された縦型MO3FETについて以下
その動作を説明する。縦型MO3FETとしての動作は
従来例と同じである。等価回路を第4図に示す。同図に
おいて、31はドレイン電極端子、32はゲート電極端
子、33はソース電極端子、34はパックゲートとドレ
インバッファ層間の接合ダイオード、35はソース・シ
ョットキー電極とパックゲート間のシ苔ットキーダイオ
ード、3Bはパックゲート領域の内部抵抗である。
The operation of the vertical MO3FET configured as above will be described below. The operation as a vertical MO3FET is the same as the conventional example. The equivalent circuit is shown in FIG. In the figure, 31 is a drain electrode terminal, 32 is a gate electrode terminal, 33 is a source electrode terminal, 34 is a junction diode between the pack gate and the drain buffer layer, and 35 is a Schottky between the source/Schottky electrode and the pack gate. Diode 3B is the internal resistance of the pack gate region.

寄生のバイポーラトランジスタは存在しない。There are no parasitic bipolar transistors.

以上のように、本実施例によれば、ソース領域がショッ
トキー接合で置き換えられるととKよって、寄生バイポ
ーラトランジスタの存在を抹消し、ブレークダウン電流
による破壊の問題を解消することができる。
As described above, according to this embodiment, when the source region is replaced with a Schottky junction, the existence of the parasitic bipolar transistor can be eliminated and the problem of destruction caused by breakdown current can be solved.

なお・本実施例は、pチャネル縦型MO9FX。Note that this example is a p-channel vertical MO9FX.

Tについて説明したが、nチャネル縦型MO3FETに
ついても同様のことが言えるのは言うまでもない。
Although the explanation has been made regarding T, it goes without saying that the same can be said about n-channel vertical MO3FET.

発明の効果 以上のように、本発明はソースとパックゲート間をショ
ットキー接合することで、寄生バイポーラトランジスタ
の効果を抹消でき、破壊しにくい縦型MO3FETを得
ることができ、その実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention makes it possible to eliminate the effect of a parasitic bipolar transistor by forming a Schottky junction between the source and the pack gate, and to obtain a vertical MO3FET that is difficult to destroy.The practical effects of the present invention are as follows. There is something big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の縦型MO3FETの構造断面図、第2
図は従来の縦型MO3FETの等価回路図、第3図は本
発明の一実施例における縦型MOSFETの構造断面図
、第4図は本発明の一実施例における縦型MO3FET
の等価回路図である。 21・・・・・・ソース電極、23・・・・ゲート電極
、24・・・・・ショットキー電極、26・・・・・・
パックゲート領域、26・・・・−・ドレインバッファ
層、27・・・・・ドレイン領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 筒3図
Figure 1 is a cross-sectional view of the structure of a conventional vertical MO3FET;
The figure is an equivalent circuit diagram of a conventional vertical MO3FET, Figure 3 is a cross-sectional view of a vertical MOSFET according to an embodiment of the present invention, and Figure 4 is a vertical MOSFET according to an embodiment of the present invention.
FIG. 21... Source electrode, 23... Gate electrode, 24... Schottky electrode, 26...
Pack gate region, 26...- Drain buffer layer, 27... Drain region. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Diagram 3

Claims (1)

【特許請求の範囲】[Claims]  パックゲート領域にソース領域がショットキー接合に
て形成されていることを特徴とする縦型MOSFET。
A vertical MOSFET characterized in that a source region is formed by a Schottky junction in a pack gate region.
JP59192888A 1984-09-14 1984-09-14 Vertical MOSFET Expired - Lifetime JPH067597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59192888A JPH067597B2 (en) 1984-09-14 1984-09-14 Vertical MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192888A JPH067597B2 (en) 1984-09-14 1984-09-14 Vertical MOSFET

Publications (2)

Publication Number Publication Date
JPS6170760A true JPS6170760A (en) 1986-04-11
JPH067597B2 JPH067597B2 (en) 1994-01-26

Family

ID=16298642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192888A Expired - Lifetime JPH067597B2 (en) 1984-09-14 1984-09-14 Vertical MOSFET

Country Status (1)

Country Link
JP (1) JPH067597B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281661A (en) * 1989-04-21 1990-11-19 Nec Corp Vertical type field effect transistor
JP2009105421A (en) * 2001-11-21 2009-05-14 Fuji Electric Device Technology Co Ltd Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223362A (en) * 1982-06-21 1983-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223362A (en) * 1982-06-21 1983-12-24 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281661A (en) * 1989-04-21 1990-11-19 Nec Corp Vertical type field effect transistor
JP2009105421A (en) * 2001-11-21 2009-05-14 Fuji Electric Device Technology Co Ltd Semiconductor device

Also Published As

Publication number Publication date
JPH067597B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
JPH04343476A (en) Metallic-oxide semiconductor field-effect type transistor circuit
JPH04767A (en) Mos semiconductor element
JPH03252166A (en) Mos field-effect transistor
JP3185292B2 (en) Semiconductor device
JPS6180858A (en) Power mosfet
JPS6170760A (en) Vertical type mosfet
JP3249891B2 (en) Semiconductor device and method of using the same
JPH0254969A (en) Mos type semiconductor device
JPH0291975A (en) Semiconductor device
JP3216705B2 (en) Semiconductor device
JPH02206174A (en) P-channel insulated-gate bipolar transistor
JPS6066444A (en) Semiconductor device
JPS6395658A (en) Semiconductor device
JPS62291179A (en) Double diffused mosfet
JPH01265570A (en) Mos field effect transistor
JPS58210676A (en) Semiconductor device
JP2818416B2 (en) MOS field effect transistor
JPH0472670A (en) Insulated-gate bipolar transistor
JPS6158264A (en) Semiconductor device
JP2816985B2 (en) Vertical MOS field-effect transistor
KR930022369A (en) Word line driving circuit
JPS58148457A (en) Semiconductor device
JPH01134974A (en) Vertical mosfet
JPS6355976A (en) Field effect semiconductor device