JPH0291975A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0291975A
JPH0291975A JP63242281A JP24228188A JPH0291975A JP H0291975 A JPH0291975 A JP H0291975A JP 63242281 A JP63242281 A JP 63242281A JP 24228188 A JP24228188 A JP 24228188A JP H0291975 A JPH0291975 A JP H0291975A
Authority
JP
Japan
Prior art keywords
electrode
voltage
type
threshold voltage
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63242281A
Other languages
Japanese (ja)
Inventor
Tatsuro Sakai
達郎 酒井
Yasuhisa Omura
泰久 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63242281A priority Critical patent/JPH0291975A/en
Publication of JPH0291975A publication Critical patent/JPH0291975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Abstract

PURPOSE:To implement a rectifying element with two terminals characterized by a small forward voltage by making a forward current flow at zero volt by setting of a threshold voltage value. CONSTITUTION:Impurity concentration in a p-type region 3 and the thickness and the like of a gate insulating film 5 are set so that the threshold voltage value of an insulated gate type FET transistor TR becomes about zero V. The relationship of 0<=Vth<VMS<Vb1 is established for a threshold voltage value Vth, a Schottky junction voltage VMS which is generated with an n-type epitaxial semiconductor layer 2 and a gate electrode 6 and a p-n junction diffusing voltage Vb1 generated with the layer 2 and the region 3. When a voltage higher than the threshold voltage with respect to a cathode voltage 8 is applied to an anode electrode 7, a channel current flow from the electrodes 7 to the electrode 8. Thus the threshold voltage value is decreased. When the voltage of the electrode 7 is increased in the positive direction, the current starts to flow at zero V by the synergetic effect of the increase in potential of the electrode 6 and the decrease in threshold voltage value by the bias effect of the region 3. The forward voltage becomes small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電力用の半導体装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a power semiconductor device.

〔従来の技術〕[Conventional technology]

従来、半導体整流装置としてはpnダイオード。 Conventionally, pn diodes have been used as semiconductor rectifiers.

pInダイオードあるいはショットキーダイオード等が
用いられてきた。これらの素子は半導体のホモ接合ある
いは金属−半導体接合によって生じる電位障壁の整流作
用を利用している。第3図に典型的々従来のダイオード
の電流−電圧特性を示す。
A pIn diode, a Schottky diode, etc. have been used. These devices utilize the rectifying effect of a potential barrier created by a semiconductor homojunction or a metal-semiconductor junction. FIG. 3 shows the current-voltage characteristics of a typical conventional diode.

同図のように、これらのダイオードの順方向特性21で
は、電位障壁の拡散電位に対応するオフセット電圧を生
じる。このオフセット電圧は、pnダイオードで0.6
v程度、ショットキーダイオードで0.5v程度である
。したがって、これらの素子を半導体整流素子として用
いた場合、オフセットがない場合に比べて、出力電流と
順方向電圧との積で与えられる順方向損失が大きいとい
う欠点を有している。
As shown in the figure, the forward characteristics 21 of these diodes produce an offset voltage corresponding to the diffusion potential of the potential barrier. This offset voltage is 0.6 with a pn diode.
For a Schottky diode, it is about 0.5V. Therefore, when these elements are used as semiconductor rectifying elements, they have the disadvantage that the forward loss given by the product of the output current and the forward voltage is larger than when there is no offset.

また、従来、順方向電圧の低減を目的として、絶縁ゲー
ト型電界効果トランジスタあるいはバイポーラトランジ
スタを半導体整流素子として用いることが試みられてい
る。これらの素子では、pnダイオードやplnダイオ
ード、ショットキーダイオードとは異な)、第3図の特
性22に示すように電流をOvから流すことが可能であ
シ、順方向電圧を低くでき、順方向損失低減が可能であ
る。
Furthermore, attempts have been made to use insulated gate field effect transistors or bipolar transistors as semiconductor rectifiers for the purpose of reducing forward voltage. In these devices, as shown in characteristic 22 in Figure 3, it is possible to flow current from Ov (unlike pn diodes, pln diodes, and Schottky diodes), and the forward voltage can be lowered. Loss can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の絶縁ゲート型電界効果ト
ランジスタあるいはバイポーラトランジスタなどの素子
は、pnダイオード等とは異なシ3端子素子であるため
、整流素子として動作させる場合、制御端子に適切な制
御信号を加える必要がある。このため、(1)整流回路
が複雑化する、(H)制御信号の適切な設定が困難であ
る、といった欠点を有していた。
However, since the conventional insulated gate field effect transistor or bipolar transistor described above is a three-terminal device unlike a pn diode, etc., when operating it as a rectifier, an appropriate control signal is applied to the control terminal. There is a need. For this reason, it has the following disadvantages: (1) the rectifier circuit becomes complicated; and (H) it is difficult to appropriately set the control signal.

本発明は以上の点に鑑みてなされたもので、その目的は
、順方向電圧が小さく、かつ順方向損失が小さい2端子
の半導体整流装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a two-terminal semiconductor rectifier with low forward voltage and low forward loss.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成する丸め、本発明の半導体装置は、第
1の導電型の半導体基板の第1の主面側に形成され次第
2の導電型を有するチャネル形成領域と、前記チャネル
形成領域内に形成された第1の導電型を有するドレイン
領域と、前記ドレイン領域内において前記第1の主面側
から半導体基板に達するように形成された溝と、前記溝
内に形成されたゲート絶縁膜およびゲート電極と、前記
半導体基板の第2の主面側に形成されたソース電極とか
ら構成される構造の絶縁ゲート型電界効果トランジスタ
から成シ、前記溝内に形成された前記ゲート絶縁膜の一
部が除去されて前記ゲート電極と前記半導体基板との間
でショットキー接合部を設け、さらに前記チャネル形成
領域と前記ドレイン領域と前記ゲート電極とを互いに電
気的に接続する電極を設けたものである。
To achieve the above object, the semiconductor device of the present invention includes a channel forming region having a second conductivity type, which is formed on a first main surface side of a semiconductor substrate having a first conductivity type; a drain region having a first conductivity type formed in the drain region, a groove formed in the drain region so as to reach the semiconductor substrate from the first main surface side, and a gate insulating film formed in the groove. and an insulated gate field effect transistor having a structure including a gate electrode and a source electrode formed on the second main surface side of the semiconductor substrate, and the gate insulating film formed in the groove. A part is removed to provide a Schottky junction between the gate electrode and the semiconductor substrate, and an electrode is further provided to electrically connect the channel forming region, the drain region, and the gate electrode to each other. It is.

〔作用〕[Effect]

したがって、本発明においては、Ovから電流が流れ始
める絶縁ゲート型電界効果トランジスタを整流素子とし
て使用する場合において制御端子を独立の端子とせず、
2端子素子として動作させ)さらにショットキーダイオ
ードを絶縁ゲート型電界効果トランジスタと並列に形成
することにより、従来の3端子整流素子の低い順方向電
圧を2端子で実現することができる。
Therefore, in the present invention, when using an insulated gate field effect transistor from which current begins to flow from Ov as a rectifier, the control terminal is not an independent terminal;
Furthermore, by forming a Schottky diode in parallel with an insulated gate field effect transistor (operating as a two-terminal device), the low forward voltage of a conventional three-terminal rectifying device can be realized with two terminals.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on embodiments shown in the drawings.

第1図は本発明による一実施例の半導体装置の構造を示
す断面図である。同図において、1は低抵抗のh型半導
体基板、2はこの基板1上に形成されたnfJlエピタ
キシャル半導体層、3はこの半導体層2上に形成された
p型領域、4はこのp型領域3内に形成された低抵抗の
a型ドレイン領域である。また、5は前記ドレイン領域
4内においてその主面側からエピタキシャル半導体層2
つまシ半導体基板に達するように形成された矩形の溝1
0内に施されたゲート絶縁膜、6は前記溝10内に形成
されたゲート絶縁a5の一部が除去されてその半導体層
2とショットキー接合を形成するべき施されたゲート電
極、Tは前記各p型領域3とドレイン領域4とゲート電
極6とを互いに電気的に接続するためにその主面上に形
成されたアノード電極、8は半導体基板1の他の主面側
に形成されたカソード電極である。
FIG. 1 is a sectional view showing the structure of a semiconductor device according to an embodiment of the present invention. In the figure, 1 is a low resistance h-type semiconductor substrate, 2 is an nfJl epitaxial semiconductor layer formed on this substrate 1, 3 is a p-type region formed on this semiconductor layer 2, and 4 is this p-type region. A low resistance a-type drain region formed within the 3. Further, 5 is an epitaxial semiconductor layer 2 in the drain region 4 from its main surface side.
Rectangular groove 1 formed to reach the semiconductor substrate
0 is a gate insulating film formed in the trench 10, 6 is a gate electrode formed to form a Schottky junction with the semiconductor layer 2 after a part of the gate insulating layer a5 formed in the groove 10 is removed, and T is a gate electrode formed in the groove 10. An anode electrode 8 formed on the main surface of each p-type region 3, drain region 4, and gate electrode 6 to electrically connect them to each other is formed on the other main surface side of the semiconductor substrate 1. It is a cathode electrode.

すなわち、この実施例の半導体装置は、低抵抗のn型半
導体基板1上にn型エピタキシャル半導体層2を形成し
、その主面側にp型領域3をチャネル形成領域として形
成するとともに、このp型領域3内に低抵抗のn型ドレ
イン領域4を形成する。そして、該ドレイン領域4内に
おいてその主面側からエピタキシャル半導体層2に達す
る溝10を形成して、この溝10内にゲート絶縁膜5.
ゲート電極6を順次形成して成る構造の溝型二重拡散絶
縁ゲート型電界効果トランジスタから構成し、前記溝1
0内に形成されたゲート絶縁膜5の一部を除去してその
ゲート電極6と半導体層2との間でショットキー接合部
を設ける。さらに、前記p型領域3とドレイン領域4と
ゲート電極6とを接続して7ノード電極7とし、半導体
基板1の他の主面側に形成したソース電極をカソード電
極8としたものである。
That is, in the semiconductor device of this embodiment, an n-type epitaxial semiconductor layer 2 is formed on a low-resistance n-type semiconductor substrate 1, and a p-type region 3 is formed as a channel formation region on the main surface side of the layer. A low resistance n-type drain region 4 is formed within the type region 3. A trench 10 reaching the epitaxial semiconductor layer 2 from the main surface side of the drain region 4 is formed in the drain region 4, and a gate insulating film 5.
The trench type double diffused insulated gate field effect transistor has a structure in which gate electrodes 6 are successively formed.
A portion of the gate insulating film 5 formed within the gate electrode 6 is removed to provide a Schottky junction between the gate electrode 6 and the semiconductor layer 2. Furthermore, the p-type region 3, drain region 4, and gate electrode 6 are connected to form a seven-node electrode 7, and the source electrode formed on the other main surface side of the semiconductor substrate 1 is used as a cathode electrode 8.

次に動作を説明すゐ。上記実施例の構造において、まず
絶縁ゲート型電界効果トランジスタのしきい値電圧がO
v程度となるように% p型領域3の不純物濃度、ゲー
ト絶縁膜5の膜厚等を設定し、しきい値電圧vth、n
型エピタキシャル半導体層2とゲート電極6で形成され
るショットキー接合の接合電圧vM、n型エピタキシャ
ル半導体層2とp型領域3で形成されるpn接合の拡散
電圧vblとの間KN O≦vth < v、、 < 
Vbiという関係が成シ立つようKする。
Next, I will explain the operation. In the structure of the above embodiment, first, the threshold voltage of the insulated gate field effect transistor is O
The impurity concentration of the p-type region 3, the film thickness of the gate insulating film 5, etc. are set so that the threshold voltage vth, n
KN O≦vth< v,, <
K so that the relationship Vbi is established.

このとき、カソード電極8に対してしきい値電圧以上の
電圧をアノード電極7に印加すると、p型領域3のゲー
ト絶縁膜5の下の表面にn型チャネル9が形成され、ア
ノード電極7→n型ドレイン領域4→n型チヤネル9→
nfiエピタキシヤル半導体層2→n型半導体基板1→
カソード電極8という電流経路が形成され、チャネル電
流が流れる。この際、p型領域3はアノード電位と等し
くカソード電極8に対して正の電位であυ、これは絶縁
ゲート型電界効果トランジスタの基板を正にバイアスす
ることに相当するので絶縁ゲート型電界効果トランジス
タのしきい値電圧は低下する。
At this time, when a voltage higher than the threshold voltage of the cathode electrode 8 is applied to the anode electrode 7, an n-type channel 9 is formed on the surface of the p-type region 3 under the gate insulating film 5, and the anode electrode 7→ n-type drain region 4→n-type channel 9→
nfi epitaxial semiconductor layer 2 → n-type semiconductor substrate 1 →
A current path called cathode electrode 8 is formed, and a channel current flows. At this time, the p-type region 3 is at a positive potential υ with respect to the cathode electrode 8, which is equal to the anode potential, and this corresponds to positively biasing the substrate of the insulated gate field effect transistor, so the insulated gate field effect transistor The threshold voltage of the transistor decreases.

したがって、アノード電極7に印加される電圧を正方向
に大きくしていくと、ゲート電極6の電位増加とp型領
域3のバイアス効果によるしきい値電圧の低下の相乗効
果によって電流は大幅に増加する。すなわち、電流は電
圧Ovから流れ始め、しかも大幅な増加を示すので、頭
方向電圧は小さくなる。
Therefore, when the voltage applied to the anode electrode 7 is increased in the positive direction, the current increases significantly due to the synergistic effect of the increase in the potential of the gate electrode 6 and the decrease in the threshold voltage due to the bias effect of the p-type region 3. do. That is, the current starts flowing from the voltage Ov and shows a significant increase, so the head voltage becomes small.

つぎに、カソード電極8に対してn型エピタキシャル半
導体層2とゲート電極6によって形成されるショットキ
ー接合の接合電圧以上の電圧をアノード電極71C印加
すると、p型領域のゲート絶縁膜5の下の表面Kn型チ
ャネル9が形成され、7ノ一ド電極7→n型ドレイン領
域4→n型チヤネル9→n型エピタキシヤル半導体層2
→n型半導体基板1→カソード電極8という電流経路が
形成され、チャネル電流が流れるとともに、アノード電
極1→ケート電極6→n型エピタキシヤル半導体層2→
n型半導体基板1→カソード電極8という経路でショッ
トキーダイオード電流が流れる。
Next, when a voltage higher than the junction voltage of the Schottky junction formed by the n-type epitaxial semiconductor layer 2 and the gate electrode 6 is applied to the anode electrode 71C to the cathode electrode 8, the voltage below the gate insulating film 5 in the p-type region is A surface Kn-type channel 9 is formed, and 7 node electrode 7 → n-type drain region 4 → n-type channel 9 → n-type epitaxial semiconductor layer 2
A current path is formed → n-type semiconductor substrate 1 → cathode electrode 8, and a channel current flows, and the anode electrode 1 → cathode electrode 6 → n-type epitaxial semiconductor layer 2 →
A Schottky diode current flows through the path from the n-type semiconductor substrate 1 to the cathode electrode 8.

さらに、カソード電極8に対してn型エピタキシャル半
導体層2とp型領域3で形成されるpn接合の拡散電圧
以上の電圧をアノードを極7に印加すると、p型領域3
のゲート絶縁膜5の下の表面Kn型チャネル9が形成さ
れ、アノード電極7→n型ドレイン領域4→n型チヤネ
ル9→n型エピタキシヤル半導体層2→n型半導体基板
1→カソード電極8という電流経路が形成され、チャネ
ル電流が、アノード電極7→ゲート電極6→n型エピタ
キシヤル半導体層2→n型半導体基板1→カンード電極
8という経路でショットキーダイオード電流が流れると
ともに、アノード電極7−+ p型領域3→n型エピタ
キシャル半導体層2→n型半導体基板1→カンード電極
8という経路でダイオード電流が流れる。
Furthermore, when a voltage higher than the diffusion voltage of the pn junction formed by the n-type epitaxial semiconductor layer 2 and the p-type region 3 is applied to the anode electrode 7, the p-type region 3
A Kn-type channel 9 is formed on the surface under the gate insulating film 5 of the anode electrode 7 → n-type drain region 4 → n-type channel 9 → n-type epitaxial semiconductor layer 2 → n-type semiconductor substrate 1 → cathode electrode 8. A current path is formed, and a Schottky diode current flows along the path of anode electrode 7 → gate electrode 6 → n-type epitaxial semiconductor layer 2 → n-type semiconductor substrate 1 → cando electrode 8, and a Schottky diode current flows through the anode electrode 7 - + A diode current flows through the path of p-type region 3 → n-type epitaxial semiconductor layer 2 → n-type semiconductor substrate 1 → cando electrode 8.

一方、アノード電極7にカソード電極8に対してしきい
値電圧以下の電圧を印加した場合、チャネルが形成され
ないためチャネル電流は流れず、ショットキーダイオー
ド電流、ダイオード電流も流れない。
On the other hand, when a voltage lower than the threshold voltage is applied to the anode electrode 7 with respect to the cathode electrode 8, a channel is not formed, so no channel current flows, and neither a Schottky diode current nor a diode current flows.

第2図に本実施例による半導体装置の電流−電圧特性を
示す。ここで、順方向については、しきい値電圧vth
以上で同図の特性11に示すようにチャネル電流が流れ
始め、n型エピタキシャル半導体層2とゲート電極6に
よって形成されるショットキー接合の接合電圧’Pg以
上で同図の特性12に示すようにショットキーダイオー
ド電流が流れ始め、さらにn型エピタキシャル半導体層
2とp型領域3で形成されるpn接合の拡散電圧”b1
以上では同図の特性13に示すようにダイオード電流が
流れ始める。よって、全電流はこれらの和となり、同図
の特性14に示すようになる。一方、逆方向には電流は
流れない。
FIG. 2 shows the current-voltage characteristics of the semiconductor device according to this example. Here, in the forward direction, the threshold voltage vth
With the above, the channel current starts to flow as shown in characteristic 11 of the figure, and when the junction voltage of the Schottky junction formed by the n-type epitaxial semiconductor layer 2 and the gate electrode 6 exceeds 'Pg, as shown in characteristic 12 of the figure. The Schottky diode current begins to flow, and the diffusion voltage "b1" of the pn junction formed between the n-type epitaxial semiconductor layer 2 and the p-type region 3 increases.
In this case, a diode current begins to flow as shown in characteristic 13 in the figure. Therefore, the total current is the sum of these values, as shown in characteristic 14 in the figure. On the other hand, no current flows in the opposite direction.

このように、本実施例による半導体装置では、しきい値
電圧の設定によってOVから順方向電流を流し始めるこ
とが可能であり、順方向電圧が小さい2端子の整流素子
を実現することができる。
As described above, in the semiconductor device according to this embodiment, it is possible to start flowing forward current from OV by setting the threshold voltage, and a two-terminal rectifier with a small forward voltage can be realized.

なお、本発明は上述の実施例にのみ限定される”もので
はなく、特許請求の範囲に記載された範囲内において種
々変更し得るものであることは言うまでもない。
It goes without saying that the present invention is not limited only to the above-described embodiments, but can be modified in various ways within the scope of the claims.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明による半導体装置は、Ovから電
流が流れ始める絶縁ゲート型電界効果トランジスタを、
その制御端子を独立の端子とせず2−9へ− 端子素子として動作させるとともに、ショットキーダイ
オードを絶縁ゲート型電界効果トランジスタと並列に形
成するようKしたので、順方向電圧の増加に伴って、チ
ャネル電流、ショットキーダイオード電流およびダイオ
ード電流を頴次流し始めることによって項方向電圧の小
さい整流素子を2端子で実現することが可能でラシ、整
流回路の構成を複雑化することなく整流素子の順方向損
失を低減できる効果がある。
As described above, the semiconductor device according to the present invention includes an insulated gate field effect transistor in which current begins to flow from Ov.
Since the control terminal is not made an independent terminal and is operated as a terminal element, and the Schottky diode is formed in parallel with the insulated gate field effect transistor, as the forward voltage increases, By starting to flow the channel current, Schottky diode current, and diode current sequentially, it is possible to realize a rectifying element with a small voltage in the forward direction using two terminals. This has the effect of reducing directional loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の半導体装置の断面図、
第2図は本発明による実施例の半導体装置の電流−電圧
特性を示す図、第3図は従来のダイオードおよび3端子
整流素子の電流−電圧特性を示す図である。 1・・・・低抵抗n型半導体基板、2・・・・h型エピ
タキシャル半導体層、3・Φ・・p型領−ト電極、T・
・・・アノード電極、8曇・拳eカソード電極、9・・
・・n型チャネル、10・・・・溝。 特許出願人 日本電信電話株式会社 代 理 人 山 川 政 樹(ほか1名)第2因 第1@ 第3図
FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention;
FIG. 2 is a diagram showing current-voltage characteristics of a semiconductor device according to an embodiment of the present invention, and FIG. 3 is a diagram showing current-voltage characteristics of a conventional diode and a three-terminal rectifier. DESCRIPTION OF SYMBOLS 1...Low resistance n-type semiconductor substrate, 2...H-type epitaxial semiconductor layer, 3...Φ...p-type region electrode, T...
...anode electrode, 8 cloudy fist e cathode electrode, 9...
...n-type channel, 10...groove. Patent applicant: Nippon Telegraph and Telephone Corporation Agent: Masaki Yamakawa (and 1 other person) 2nd cause 1 @ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型の半導体基板の第1の主面側に形成された
第2の導電型を有するチャネル形成領域と、前記チャネ
ル形成領域内に形成された第1の導電型を有するドレイ
ン領域と、前記ドレイン領域内において前記第1の主両
側から半導体基板に達するように形成された溝と、前記
溝内に形成されたゲート絶縁膜およびゲート電極と、前
記半導体基板の第2の主面側に形成されたソース電極と
から構成される構造の絶縁ゲート型電界効果トランジス
タから成り、前記溝内に形成された前記ゲート絶縁膜の
一部が除去されて前記ゲート電極と前記半導体基板との
間でショットキー接合部を設け、さらに前記チャネル形
成領域と前記ドレイン領域と前記ゲート電極とを互いに
電気的に接続する電極を設けたことを特徴とする半導体
装置。
a channel formation region having a second conductivity type formed on the first main surface side of a semiconductor substrate having a first conductivity type; and a drain region having a first conductivity type formed within the channel formation region. , a groove formed in the drain region to reach the semiconductor substrate from both sides of the first main surface, a gate insulating film and a gate electrode formed in the groove, and a second main surface side of the semiconductor substrate. A part of the gate insulating film formed in the groove is removed to form a gap between the gate electrode and the semiconductor substrate. What is claimed is: 1. A semiconductor device comprising: a Schottky junction; and an electrode for electrically connecting the channel forming region, the drain region, and the gate electrode to each other.
JP63242281A 1988-09-29 1988-09-29 Semiconductor device Pending JPH0291975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242281A JPH0291975A (en) 1988-09-29 1988-09-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242281A JPH0291975A (en) 1988-09-29 1988-09-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0291975A true JPH0291975A (en) 1990-03-30

Family

ID=17086928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242281A Pending JPH0291975A (en) 1988-09-29 1988-09-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0291975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258640A (en) * 1992-09-02 1993-11-02 International Business Machines Corporation Gate controlled Schottky barrier diode
US5430323A (en) * 1992-10-02 1995-07-04 Fuji Electric Co., Ltd. Injection control-type Schottky barrier rectifier
JP2003178369A (en) * 2002-08-09 2003-06-27 Sony Corp Right management method, record regeneration method and right providing device
WO2005074025A2 (en) * 2002-12-20 2005-08-11 Hamza Yilmaz Self-aligned trench mos junctions field-effect transistor for high-frequency applications
WO2011105434A1 (en) * 2010-02-23 2011-09-01 富士電機ホールディングス株式会社 Semiconductor device
WO2013057564A1 (en) * 2011-10-18 2013-04-25 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258640A (en) * 1992-09-02 1993-11-02 International Business Machines Corporation Gate controlled Schottky barrier diode
US5430323A (en) * 1992-10-02 1995-07-04 Fuji Electric Co., Ltd. Injection control-type Schottky barrier rectifier
JP2003178369A (en) * 2002-08-09 2003-06-27 Sony Corp Right management method, record regeneration method and right providing device
WO2005074025A2 (en) * 2002-12-20 2005-08-11 Hamza Yilmaz Self-aligned trench mos junctions field-effect transistor for high-frequency applications
WO2005074025A3 (en) * 2002-12-20 2006-01-26 Hamza Yilmaz Self-aligned trench mos junctions field-effect transistor for high-frequency applications
WO2011105434A1 (en) * 2010-02-23 2011-09-01 富士電機ホールディングス株式会社 Semiconductor device
US8896084B2 (en) 2010-02-23 2014-11-25 Yoshitaka Sugawara Semiconductor device
WO2013057564A1 (en) * 2011-10-18 2013-04-25 Toyota Jidosha Kabushiki Kaisha Semiconductor device and method of producing the same

Similar Documents

Publication Publication Date Title
US5696396A (en) Semiconductor device including vertical MOSFET structure with suppressed parasitic diode operation
US4689647A (en) Conductivity modulated field effect switch with optimized anode emitter and anode base impurity concentrations
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
JPS62296474A (en) Vertical mosfet
JPH02126669A (en) Composite mos transistor and free ring diode
US5278443A (en) Composite semiconductor device with Schottky and pn junctions
JPH0575110A (en) Semiconductor device
JPH0793383B2 (en) Semiconductor device
JPS5922367A (en) Semiconductor device
JPS63156367A (en) Level shift diode
US4635086A (en) Self turnoff type semiconductor switching device
JPS6252469B2 (en)
JPH0291974A (en) Semiconductor device
JPH0291975A (en) Semiconductor device
US5497011A (en) Semiconductor memory device and a method of using the same
JPS6211017Y2 (en)
JPH0612823B2 (en) Bidirectional power high speed MOSFET device
US5212396A (en) Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations
JPH1117198A (en) Protection of logic well of component including integrated mos power transistor
JP3110094B2 (en) Insulated gate thyristor
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JPH06132529A (en) Mosfet device
JPH06291337A (en) Voltage regulation
JPH01134974A (en) Vertical mosfet
JPH0244776A (en) Insulated gate type bipolar transistor