JPS58223362A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58223362A
JPS58223362A JP57106348A JP10634882A JPS58223362A JP S58223362 A JPS58223362 A JP S58223362A JP 57106348 A JP57106348 A JP 57106348A JP 10634882 A JP10634882 A JP 10634882A JP S58223362 A JPS58223362 A JP S58223362A
Authority
JP
Japan
Prior art keywords
well
channel
transistor
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57106348A
Other languages
Japanese (ja)
Inventor
Tsutomu Wada
力 和田
Kinya Kato
加藤 謹矢
Kazutake Kamihira
員丈 上平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57106348A priority Critical patent/JPS58223362A/en
Publication of JPS58223362A publication Critical patent/JPS58223362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To contrive not to generate latch-up by extinguishing a parasitic bi- polar transistor by a method wherein the device is so formed that at least one set of source and drain of a C-MOSFET form Schottky contact. CONSTITUTION:The n-well type C-MOSFET is composed of a p-channel MOSFET 33 formed on the n<-> well 32 of a p<-> substrate 31 and an n-channel MOSFET 34 formed in the substrate 31. Where, the source 40 and the drain 41 of the FET 33 are constituted so as to form Schottky contact between the well 32. The current flowing through the Schottky contact depends on the majority carrier of the semiconductor side, and the injection efficiency of the minority carrier is remarkably low. Thereby, the parasitic transistor is extinguished, and thus latch-up does not occur. As a result, the removal of a guard ring, etc. is enabled, and the transverse expansion of the well can be reduced, therefore the high density can be attained.

Description

【発明の詳細な説明】 本発明は、半導体装置、特に0MO8集積回路の菓子構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to confectionery structures for semiconductor devices, particularly OMO8 integrated circuits.

pチャネル形とnチャネル形のMOS)ランジスタから
なゐ0MO8素子は、低消費電力、広い動作電源電圧範
囲などの優れた特長を有し、大規模集積回路においても
広く用いられているが、外来雛音が入力もしくは出力端
子に加わった場合に異常電流が流れ続けてしまういわゆ
るラッチアップ現象が生じる欠点があつ九。
The MO8 element, which consists of p-channel type and n-channel type MOS) transistors, has excellent features such as low power consumption and a wide operating power supply voltage range, and is widely used in large-scale integrated circuits. There is a drawback that a so-called latch-up phenomenon occurs in which abnormal current continues to flow when a signal is applied to the input or output terminal.

本発明は、このような状況に鍾みてなされたもので、そ
の目的線、MO8i子の高密度、短い製造期間という長
所f濾膜することなく、ラッチアップf、完全に防止す
ることが可能な0MO8素子からなる半導体装f1t、
を提供することにある。
The present invention was developed in view of this situation, and its objectives include the advantages of high density of MO8i elements and short manufacturing period. Latch-up can be completely prevented without using a filtration membrane. A semiconductor device f1t consisting of 0MO8 elements,
Our goal is to provide the following.

このような目的を達成するために、本発明は、0M08
 X子is成するpチャネルおよびnチャネルMO8)
ランジスタの少なくとも一方のソースおよびドレインが
ショットΦ接触を形成するように構成したものである。
In order to achieve such an objective, the present invention provides 0M08
X-channel is formed by p-channel and n-channel MO8)
The source and drain of at least one of the transistors are configured to form a shot Φ contact.

以下、実施例を用いて本発明の詳細な説明するが、はじ
めに、従来の0M08 X子においてラッチアップ現象
が生じる機構および本発明によってそれが解決できる原
理について説明する。
The present invention will be described in detail below using examples, but first, the mechanism by which the latch-up phenomenon occurs in the conventional 0M08 X-element and the principle by which the latch-up phenomenon can be solved by the present invention will be explained.

M1図は、従来用いられている0MO8素子の構造を模
式的に示したものである。図において、11がpチャネ
ルMO8IIンジスタ、12がnチャネルMO8)ラン
ジスタを示し、それぞれn−基板13に形成されたp十
領域としてのドレイン14゜ソース15および両者間の
表面上に形成されたゲート1Gならびにn−基板13に
設けられたp−ウェル17に形成された?領域としての
ドレイン18.ソース19およびゲート20から構成さ
れる。
Diagram M1 schematically shows the structure of a conventionally used 0MO8 element. In the figure, 11 indicates a p-channel MO8II transistor, and 12 indicates an n-channel MO8) transistor, each of which has a drain 14° as a p region formed on an n-substrate 13, a source 15, and a gate formed on the surface between the two. 1G and formed in the p-well 17 provided in the n-substrate 13? Drain as region 18. It is composed of a source 19 and a gate 20.

このように、0MO8素子にお・いては、基板、ウェル
、ソース、ドレイン、更にnチャネルMOSトランジス
タ12の周囲、即ちp−ウェル1Tの周縁部に形成され
たp+領領域らなるガードリンク21ならびにpチャネ
ルMO8)7ンジスタ11のドレイン14およびnチャ
ネルMO8トランジスタ12のソース19に隣接して設
けられたそれぞれn4−およびp十領域からなる電位固
定用高濃度拡散層22,23、というように濃度および
伝導型の異なる不純物層が多数共存するため、異11不
純物間にnpn とpnp型のバイポーラトランジスタ
が形成されてしまう。図にはこのような寄生バイボー2
トランジスタの代表例を示したが、このようなトランジ
スタTrl 、 Trgは互いに連なってpnpn 構
造の寄生サイリスタを構成すゐ。
In this way, in the 0MO8 element, the guard link 21 consisting of the substrate, the well, the source, the drain, and the p+ region formed around the n-channel MOS transistor 12, that is, the periphery of the p-well 1T; High concentration diffusion layers 22 and 23 for potential fixing consisting of n4- and p10 regions, respectively, are provided adjacent to the drain 14 of the p-channel MO8 transistor 11 and the source 19 of the n-channel MO8 transistor 12. Since many impurity layers of different conductivity types coexist, npn and pnp bipolar transistors are formed between the different impurity layers. The figure shows such parasitic bibo 2.
Although typical examples of transistors have been shown, such transistors Trl and Trg are connected to each other to form a parasitic thyristor with a pnpn structure.

第2図に、その等価回路を示す。同図において、雑音電
流IfをトリガとしてトランジスタTrl 。
FIG. 2 shows its equivalent circuit. In the figure, the transistor Trl is triggered by the noise current If.

Trs が正帰還ループによジオン状態fIa続し、電
流が流れ続けることになるのが2ツチアツプ現象である
The double-up phenomenon occurs when Trs remains in the dion state fIa through the positive feedback loop, and the current continues to flow.

これを防ぐためには、トランジスタTr+もしくはTr
sの電流増幅率hyx を低減させる方法が有効でおる
ことは明白であり、とのhFl は周知のようにエミッ
タ注入効率訃よびベース輸送効率によって決定される。
To prevent this, transistor Tr+ or Tr
It is clear that a method of reducing the current amplification factor hyx of s is effective, and hFl is determined by the emitter injection efficiency and the base transport efficiency, as is well known.

このため、従来はウェルを深くして失効ベース幅を広く
したり、ベース領域の不純物濃度を増加させたりしてベ
ース輸送効率の低下をはかる方法が用いられていた。
For this reason, conventional methods have been used to reduce the base transport efficiency by deepening the well to widen the lapsed base width or increasing the impurity concentration in the base region.

しかしながら、これらの方法は、高密度化に適合しない
、あるいはエピタキシャル層を用い為必要があるなど、
MO8木子本来の高密度、短い製作期間という長所を滅
殺してしまう不都合があった。
However, these methods are not compatible with high density, or require the use of epitaxial layers.
There was an inconvenience that destroyed the original advantages of MO8 Kiko, such as high density and short production period.

そこで、本発明は上述したように電流増幅率hyg を
決めるもう一つの1!累であるエミッタ注入効率の低減
に主眼を置いたものである。
Therefore, the present invention provides another 1! that determines the current amplification factor hyg as described above. The main focus is on reducing the emitter injection efficiency.

即ち、第1図のように通常のpn 接合を形成するソー
ス、ドレインでは、その不純物濃度は1x10” at
oms/c1++”以上である一方、ウェルないし基板
の不純物濃度は5〆10  〜2 X 10”a t 
o m s/cnt8  程度であり、このような条件
下ではエミッタ注入効率は0.99以上でpn接合を流
れる電流の大部分がウェルないし基板の少数キャリアに
よっている。周知の通り1バイボ一シ動作はベース領域
に注入される少数キャリアによって生じるため、上述し
たような条件下では寄生バイポーラトランジスタTr+
 ないしTr+  は確実に動作し得る状態にある。
That is, in the source and drain forming a normal pn junction as shown in Fig. 1, the impurity concentration is 1x10" at
oms/c1++" or more, while the impurity concentration of the well or substrate is 5〆10 to 2 x 10"a t
The emitter injection efficiency is about 0.0 m s/cnt8 under such conditions, and the emitter injection efficiency is 0.99 or more, and most of the current flowing through the pn junction is caused by minority carriers in the well or the substrate. As is well known, the one-by-one operation is caused by minority carriers injected into the base region, so under the above conditions, the parasitic bipolar transistor Tr+
Tr+ is in a state where it can be reliably operated.

これに対し、本発明では、通常pn接合を形成するよう
に構成されるソース、ドレ・fンが、ショットキ接触を
形成するように構成する。周知のように、ショットキ接
触を流れる電流は半導体側の多数キャリアによっており
、少数キャリアの注入効率4著しく低い。例えばウェル
ないし基板の不純物濃度が前述したような値を有する場
合には、この注入効率は 0.001 以下となり、寄
生バイポーラトランジスタの電流増幅率は1/1000
以下で、実質上寄生バイポーラトランジスタは消滅した
と同様となる。従って、このように第2図に示した寄生
バイポーラトランジスタTrl 、Tr!の一方もしく
は両方を除去することにより寄生サイリスタは消滅し、
ラッチアップは生じなくなる。
On the other hand, in the present invention, the source, drain, and drain, which are normally configured to form a pn junction, are configured to form a Schottky contact. As is well known, the current flowing through the Schottky contact is caused by majority carriers on the semiconductor side, and the minority carrier injection efficiency 4 is extremely low. For example, if the impurity concentration of the well or substrate has the value mentioned above, the injection efficiency will be 0.001 or less, and the current amplification factor of the parasitic bipolar transistor will be 1/1000.
In the following, it is virtually the same as if the parasitic bipolar transistor had disappeared. Therefore, the parasitic bipolar transistors Trl, Tr! shown in FIG. The parasitic thyristor disappears by removing one or both of the
Latch-up will no longer occur.

ショットキ接触を形成するためのソース、ドレインの材
料としては各種金属もしくは金属シリサイドを用いるこ
とができる。−例として、特にn基板の場合にはアルミ
ニウムが加工性の点からも好適であり、同じくn基板に
適するものとしては白金がある。また、napいずれの
基板に対しても使用できるものとしては例えばモリブデ
ンやタングステン等がおるが、とれらは金属シリサイド
を形成する。
Various metals or metal silicides can be used as the source and drain materials for forming the Schottky contact. - For example, especially in the case of an n-substrate, aluminum is suitable from the viewpoint of workability, and platinum is also suitable for an n-substrate. Further, materials that can be used for either nap substrate include, for example, molybdenum and tungsten, which form metal silicide.

第3図は、本発明の一実施例の構造を模式的に示す断面
図である。本実施例はnウェル型0MO8素子に適用し
た例であり、p−基板31に設けたn−ウェル32に形
成したpチャネルMO8)うンジスタ33とp−基板3
1に形成したnチャネルMO8)ランジスタ34とによ
って構成しである。両トランジスタのゲート35および
36はいずれもポリシリコンによって構成し、pチャネ
ル間O8)ランジスタ33の周囲、即ちn−ウェル32
の周縁部にはn 領域からなるガードリンク37が設け
である。
FIG. 3 is a sectional view schematically showing the structure of an embodiment of the present invention. This embodiment is an example applied to an n-well type MO8 element, in which a p-channel MO8 transistor 33 formed in an n-well 32 provided in a p-substrate 31 and a p-channel MO8 transistor 33 and a p-substrate 3
It is composed of an n-channel MO8) transistor 34 formed in 1. The gates 35 and 36 of both transistors are both made of polysilicon, and the gates 35 and 36 are formed of polysilicon between the p-channel transistors 33, that is, the n-well 32.
A guard link 37 consisting of an n area is provided at the peripheral edge of the area.

ここで、nチャネルMO8)ンンジスタ34のソース3
8およびドレイン3gはいずれもn 領域により構成し
であるが、pチャネル間O8トランジスタ33のソース
40およびドレイン41はn−ウェル32との間でショ
ットキ接触を形成するようにアルミニウムによって構成
しである。
Here, the source 3 of the n-channel MO8) transistor 34 is
The source 40 and drain 41 of the p-channel O8 transistor 33 are made of aluminum so as to form a Schottky contact with the n-well 32, while the source 40 and drain 3g of the p-channel O8 transistor 33 are made of aluminum. .

上記構成のCMOS素子のラッチアップ特性を測定した
ところ、ラッチアップは全く認められず。
When the latch-up characteristics of the CMOS element having the above configuration were measured, no latch-up was observed at all.

ショットキ接触を用いた本発明の構成が極めて有効であ
ることが確認された。
It has been confirmed that the configuration of the present invention using Schottky contact is extremely effective.

また、この場合、ショットキ接触は極めて浅く形成でき
るため、短チヤネル効果も起こりKくいことが確認され
た。
Furthermore, in this case, it was confirmed that since the Schottky contact can be formed extremely shallowly, short channel effects also occur and are less likely to occur.

なお、上述した実施例では従来のCMO8素子即ち第1
図に示した素子管形成する場合と同様のフォトマスクを
使用したため、ガードリング31の他、pチャネルトラ
ンジスタ33のドレイン41に隣接してn 領域からな
る電位固定用高濃度拡散142およびnチャネルトラン
ジスタのソース38に隣接して金属層43が形成されて
いるが、本発明による場合上述したようにラッチアップ
が起こらないことから、これらは取除くことができる。
In addition, in the above-mentioned embodiment, the conventional CMO8 element, that is, the first
Since the same photomask as in the case of forming the element tube shown in the figure was used, in addition to the guard ring 31, a high concentration diffusion 142 for potential fixing consisting of an n region adjacent to the drain 41 of the p channel transistor 33 and the n channel transistor Although a metal layer 43 is formed adjacent to the source 38, these can be removed since latch-up does not occur in the case of the present invention as described above.

第4図にその例をボす。なお、本実施例では、nチャネ
ルMO8)ランジスタ34のソース44、ドレイン45
もショットキ接触を形成するようにモリブデンによって
構成しである。lfc、n−ウェル32の深さも、従来
は先に述べたように4〜6μmと深くしてラッチアップ
を起こりにくくしていたが、本実施例では2μmと極め
て浅く形成しである。このためウェルの横波がりも少な
くなる結果、従来のCMOB素子に比較して高密度化す
ることが可能となる。また、各ソース、ドレインを形成
する際、ポリシリコンから表るゲート35.36の上に
も金属が被着されるようにすることにより、ゲート電極
を低抵抗化できる利点も得られる。
An example is shown in Figure 4. In this embodiment, the source 44 and drain 45 of the n-channel MO transistor 34 are
It is also composed of molybdenum to form a Schottky contact. Conventionally, the depth of the lfc and n-well 32 was made as deep as 4 to 6 .mu.m to prevent latch-up from occurring, as described above, but in this embodiment, it is formed as extremely shallow as 2 .mu.m. As a result, transverse waves in the well are reduced, making it possible to achieve higher density than conventional CMOB elements. Further, when forming each source and drain, metal is also deposited on the gates 35 and 36 exposed from polysilicon, thereby providing the advantage that the resistance of the gate electrode can be reduced.

以上説明したように、本発明のCMO8素子によれば、
ソース、ドレインにショットキ接触を利用したことによ
り、寄生バイポーラトランジスタを消滅させ、ラッチア
ップの問題を抜本的に解決することができる。その結果
、ガードリング等の除去も可能であり、またウェルを浅
くできウェルの横波が9も低減できるため、著しい高密
度化が達成できると共に、製造工程も簡略化できる。ま
たソース、ドレインは金属等によって構成するため寄生
抵抗を小さくできると共に、工程上の工夫によってはゲ
ート電極の抵抗も低減できるため高速化も可能であり、
更に浅い接合であるために短チヤネル効果も起きにくい
等の種々優れた効果を有する。
As explained above, according to the CMO8 element of the present invention,
By using Schottky contacts for the source and drain, parasitic bipolar transistors can be eliminated and the latch-up problem can be fundamentally solved. As a result, it is possible to remove the guard ring, etc., and the well can be made shallower, reducing transverse waves in the well by as much as 9, so that a significant increase in density can be achieved and the manufacturing process can be simplified. In addition, since the source and drain are made of metal, etc., parasitic resistance can be reduced, and through process improvements, the resistance of the gate electrode can also be reduced, making it possible to increase speed.
Furthermore, since the bond is shallow, it has various excellent effects such as the short channel effect being less likely to occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMO8素子の一例を模式的に示した断
面図、第2図は寄生サイリスタの等価回路、第3図は本
発明の一実施例を示す断面図、第4図は本発明の他の実
施例を示す断面図である。 31・慟・・p−基板、32・・・・n−ウェル、33
串・・・pfヤネルMO8)ランジスタ、34番・−・
nチャネルMO8)ランジスタ、40.41.44.4
5・・−・ショットキ接触を形成するソース、ドレイン
。 特許出願人 日本!侶電話公社 代理人山川政樹 10− 第1図 第2図 第3図
Fig. 1 is a cross-sectional view schematically showing an example of a conventional CMO8 element, Fig. 2 is an equivalent circuit of a parasitic thyristor, Fig. 3 is a cross-sectional view showing an embodiment of the present invention, and Fig. 4 is a cross-sectional view showing an example of the present invention. FIG. 3 is a sectional view showing another embodiment of the invention. 31..p-substrate, 32..n-well, 33
Skewer...pf Yarnel MO8) Langister, No. 34...
n-channel MO8) transistor, 40.41.44.4
5... Source and drain forming Schottky contact. Patent applicant Japan! Masaki Yamakawa 10- Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] pチャネルMO8)ランジス、タ およびnチャネルM
O8)ランジスタとによって構成される0MO8素子か
らなる半導体装置において、pチャネルMOSトランジ
スタもしくはnチャネルMO8)ランジスタの少なくと
も一方のソースおよびドレインがショットキ接触を形成
するように構成したことを特徴とする半導体装置。
p-channel MO8) Rungis, Ta and n-channel M
O8) A semiconductor device comprising an 0MO8 element constituted by a transistor, characterized in that the source and drain of at least one of a p-channel MOS transistor or an n-channel MO8) transistor form a Schottky contact. .
JP57106348A 1982-06-21 1982-06-21 Semiconductor device Pending JPS58223362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57106348A JPS58223362A (en) 1982-06-21 1982-06-21 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57106348A JPS58223362A (en) 1982-06-21 1982-06-21 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58223362A true JPS58223362A (en) 1983-12-24

Family

ID=14431291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57106348A Pending JPS58223362A (en) 1982-06-21 1982-06-21 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58223362A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170760A (en) * 1984-09-14 1986-04-11 Matsushita Electronics Corp Vertical type mosfet
JPS62274776A (en) * 1986-05-23 1987-11-28 Hitachi Ltd Semiconductor device
US4807010A (en) * 1985-08-26 1989-02-21 Siemens Aktiengesellschaft Integrated circuit in complementary circuit technology comprising a substrate bias voltage generator and a Schottky diode
US4942441A (en) * 1986-03-29 1990-07-17 Hitachi, Ltd. Thin film semiconductor device and method of manufacturing the same
US5061981A (en) * 1987-05-22 1991-10-29 Hall John H Double diffused CMOS with Schottky to drain contacts
WO1997021240A3 (en) * 1995-12-06 1997-07-31 Siemens Ag Cmos device
JP2006514424A (en) * 2002-05-16 2006-04-27 スピネカ セミコンダクター, インコーポレイテッド Schottky barrier CMOS device and method
JP2006303532A (en) * 2000-07-11 2006-11-02 Toshiba Corp Semiconductor device and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170760A (en) * 1984-09-14 1986-04-11 Matsushita Electronics Corp Vertical type mosfet
US4807010A (en) * 1985-08-26 1989-02-21 Siemens Aktiengesellschaft Integrated circuit in complementary circuit technology comprising a substrate bias voltage generator and a Schottky diode
US4942441A (en) * 1986-03-29 1990-07-17 Hitachi, Ltd. Thin film semiconductor device and method of manufacturing the same
JPS62274776A (en) * 1986-05-23 1987-11-28 Hitachi Ltd Semiconductor device
US5061981A (en) * 1987-05-22 1991-10-29 Hall John H Double diffused CMOS with Schottky to drain contacts
WO1997021240A3 (en) * 1995-12-06 1997-07-31 Siemens Ag Cmos device
JP2006303532A (en) * 2000-07-11 2006-11-02 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2006514424A (en) * 2002-05-16 2006-04-27 スピネカ セミコンダクター, インコーポレイテッド Schottky barrier CMOS device and method

Similar Documents

Publication Publication Date Title
US4760433A (en) ESD protection transistors
US5329147A (en) High voltage integrated flyback circuit in 2 μm CMOS
US6465283B1 (en) Structure and fabrication method using latch-up implantation for improving latch-up immunity in CMOS fabrication process
JPH0654797B2 (en) CMOS semiconductor device
JPS58223362A (en) Semiconductor device
JPH0360149A (en) Vdmos/logic integrated circuit composed of diode
JPS63244874A (en) Input protective circuit
JPH09321150A (en) Semiconductor device
KR100480674B1 (en) Bipolar transistor with a diode embedded between the collector and the emitter and its manufacturing method
JP3425574B2 (en) I / O protection device for semiconductor integrated circuit
JPH05226627A (en) Semiconductor device
JPS5949702B2 (en) Semiconductor integrated circuit device
EP0138162A2 (en) CMOS structure
JPH05206387A (en) Semiconductor integrated circuit
JP2006210943A (en) High breakdown voltage semiconductor device
KR20010050164A (en) Semiconductor device protection circuit whose operation is stabilized
JPH06151443A (en) Semiconductor device and its manufacture
KR100571423B1 (en) Bipolar transistor in bicmos device and method of fabricating the same
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
JPS61208260A (en) Semiconductor device
JPS63244876A (en) Complementary mis type semiconductor device and manufacture thereof
JP3334170B2 (en) Semiconductor device
JPS5885558A (en) Semi-custom semiconductor device
JPS61101072A (en) Complementary mos semiconductor device
JPH0964288A (en) Semiconductor integrated circuit device