JPH02250915A - Method for producing high clean dead soft steel - Google Patents

Method for producing high clean dead soft steel

Info

Publication number
JPH02250915A
JPH02250915A JP6924589A JP6924589A JPH02250915A JP H02250915 A JPH02250915 A JP H02250915A JP 6924589 A JP6924589 A JP 6924589A JP 6924589 A JP6924589 A JP 6924589A JP H02250915 A JPH02250915 A JP H02250915A
Authority
JP
Japan
Prior art keywords
slag
weight
steel
less
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6924589A
Other languages
Japanese (ja)
Other versions
JP2690350B2 (en
Inventor
Yoshiaki Hara
義明 原
Shoichi Hiwasa
章一 日和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13397171&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02250915(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1069245A priority Critical patent/JP2690350B2/en
Publication of JPH02250915A publication Critical patent/JPH02250915A/en
Application granted granted Critical
Publication of JP2690350B2 publication Critical patent/JP2690350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To reduce inclusion in a steel without lowering decarbonizing velocity by specifying T.Fe concn. and SiO2 concn. in ladle slag before vacuum degassing treatment at the time of producing the dead soft steel by executing the decarbonizing treatment with a vacuum degassing apparatus. CONSTITUTION:In the production of the dead soft steel by executing the decarbonizing treatment with the vacuum degassing apparatus, after removing the ladle slag flowing out into the ladle at the time of tapping the molten steel, combined slag having T.Fe concn. wt.% 0.5<= to <=6.0 and SiO2 concn. wt.% <=15.0 is added on the molten steel. By this method [O]T is made to <= about 30ppm, without lowering the decarbonizing velocity and defect index of inclusion is lowered to the level having no problem in the quality and the high clean dead soft steel is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は、真空脱ガス処理によって溶製される極低炭素
鋼の溶製方法に関するものである。 〈従来の技術〉 極低炭素鋼は、通常出鋼時に溶鋼を完全には脱酸せず、
真空脱ガス処理時に固溶0とCとのCO反応によって脱
炭が行われる。脱炭後、^lを添加して溶鋼を完全に脱
酸するために、真空脱ガス処理時に生成するAfi、O
,量が多く、また取鍋スラグ中の(T、 Fe)も低下
せず、キルド処理以降に鋼中の^lとスラグとの反応で
生成する1、0゜量も多(なり、低次^2キルド鋼に比
べて、鋼中介在物が多い。 鋼中の^lとスラグとの反応を抑えるために、特開昭5
9−70710号公報には取鍋スラグ上にスラグ改質材
を添加し、スラグの酸化度を低下させる技術が開示され
てい名、シかし、この方法をFf4低炭素鋼に適用する
と真空脱ガス装置での脱炭反応速度が低下し、所要のC
レベルにまで脱炭するのに要する時間が長くなるという
問題があり、また、その理由が解明されず極低炭素鋼に
は使用されていなかったのが実状であった。 〈発明が解決しようとする課題〉 本発明は、前述のような従来技術の問題に鑑み、極低炭
素鋼の真空脱ガス処理・溶製時において、脱炭速度を低
下させることなく鋼中介在物を低減することのできる溶
製方法に関するものである。 く課題を解決するための手段〉 本発明は、■真空脱ガス装置で晟炭処理を施す極低炭素
鋼の溶製において、真空脱ガス処理前の取鍋スラグ中、
T、Fe濃度を0.5重量%以上、6.0重量%以下と
し、かつSiO2濃度を15.0重量%以下とする手段
を用いることを特徴とする高洗浄極低炭素鋼の溶製方法
であり、また■出鋼時に取鍋に流出した取鍋スラグを除
去した後、T、Fe濃度が0.5重量%以上、6.0重
量%以下で、かつSiO2濃度が15.0111t%以
下の合成スラグをtsttaの上に添加することを特徴
とする高洗浄極低炭素鋼の溶製方法で、かつ■出鋼時に
取鍋に流出した取鍋スラグ上にAj!あるいはへ2滓の
ような還元剤を添加して該スラグ中、T、 Fe111
1度を0.5重量%以上、6.0重量%以下で、かつS
iO2濃度が15.0重量%以下とすることを特徴とす
る高洗浄極低炭素鋼の溶製方法である。 〈発明をなすに至った経過および作用〉鋼の清浄度を表
す指標の一つとして鋼中全酸素濃度
<Industrial Application Field> The present invention relates to a method for producing ultra-low carbon steel by vacuum degassing treatment. <Conventional technology> Ultra-low carbon steel usually does not completely deoxidize molten steel during tapping.
Decarburization is performed by CO reaction between solid solution 0 and C during vacuum degassing treatment. After decarburization, in order to completely deoxidize the molten steel by adding ^l, Afi, O produced during vacuum degassing treatment is
, the amount of (T, Fe) in the ladle slag does not decrease, and the amount of 1,0° produced by the reaction between the ^l in the steel and the slag after the kill treatment is also large (and low ^2 Compared to killed steel, there are more inclusions in the steel. In order to suppress the reaction between ^l in the steel and slag,
Publication No. 9-70710 discloses a technique for reducing the degree of oxidation of slag by adding a slag modifier to ladle slag. The decarburization reaction rate in the gas equipment decreases and the required C
There was a problem in that it took a long time to decarburize to a certain level, and the actual situation was that it was not used in ultra-low carbon steels because the reason for this was not clear. <Problems to be Solved by the Invention> In view of the problems of the prior art as described above, the present invention has been made to solve the problems of the prior art as described above. The present invention relates to a melting method that can reduce the amount of waste. Means for Solving the Problems> The present invention provides: (1) In the melting of ultra-low carbon steel that is subjected to charcoal treatment in a vacuum degassing device, in the ladle slag before the vacuum degassing treatment,
A method for producing highly clean ultra-low carbon steel characterized by using means for controlling the T, Fe concentration to 0.5% by weight or more and 6.0% by weight or less, and the SiO2 concentration to 15.0% by weight or less. and after removing the ladle slag that flowed into the ladle during tapping, the T and Fe concentrations are 0.5% by weight or more and 6.0% by weight or less, and the SiO2 concentration is 15.0111t% or less. A highly clean ultra-low carbon steel melting method characterized by adding synthetic slag of Aj! Alternatively, a reducing agent such as slag may be added to reduce T, Fe111 in the slag.
1 degree by 0.5% by weight or more and 6.0% by weight or less, and S
This is a method for producing highly clean ultra-low carbon steel, characterized in that the iO2 concentration is 15.0% by weight or less. <Process and effects leading to the invention> The total oxygen concentration in steel is one of the indicators of the cleanliness of steel.

〔0〕7がある。極
低炭素鋼冷延コイルの介在物性欠陥数と
There is [0]7. Number of inclusion defects in ultra-low carbon steel cold-rolled coils

〔0〕7との間
には第1図に示すような関係があり、(0) t <3
6ppmで介在物性欠陥指数が問題にならないレベルに
まで低下する。 そこで、(0) y <30ppwmを得るための条件
を調査した結果、次のことが判明した。
There is a relationship between [0]7 as shown in Figure 1, and (0) t <3
At 6 ppm, the inclusion defect index decreases to a level that does not pose a problem. Therefore, as a result of investigating the conditions for obtaining (0) y < 30 ppwm, the following was found.

〔0〕!に及ぼすスラグ組成、特に(T、 Fe) 。 (Sing)の影響を第2図、第3図に示したが、この
図から、スラグ中の(T、Fe)を6重量%(以下%と
略す)以下にし、かつ(Sing)を15%以下とする
ことにより
[0]! The effect of slag composition on, especially (T, Fe). The influence of (Sing) is shown in Figures 2 and 3. From these figures, it is clear that (T, Fe) in the slag is 6% by weight or less (hereinafter abbreviated as %) and (Sing) is 15%. By doing the following

〔0〕7を30ppm以下とできることが明
らかである。スラグ中の(FeO)や(Si0、)が鋼
中^lと次に示すような反応をして八!20、を生成す
るため(T、 Fe)や(Sing)濃度が高いと〔0
〕7が増加すると考えられる。 2^J!+3PeO−AI!、03 +3Fe2 AN
 +3/2SiO* −AN *** + 3/2 S
lしかしながら、極低炭素鋼の場合、RH装置において
真空脱炭処理を施すが、第4図に示すように(T、Fe
)が0.5%以下まで下がると脱炭不良率指数が上り、
真空脱炭中の脱炭速度が低下し、操業時間内にC濃度が
目標値まで下がらな(なる。 これは、脱炭反応に要する0のうちある割合はスラグか
ら供給されていたが、(T、 re)が低い場合には、
この■が不足するために脱炭速度が低下すると考えられ
る。この新発見が本発明をなすに至った理由である。 したがって、スラグ中の(T、 Fe)を0.5%以上
、6%以下とし、かつ(Sin、)を15%以下とする
ことによって、
It is clear that [0]7 can be reduced to 30 ppm or less. (FeO) and (Si0,) in the slag react with the steel as shown below. 20, when the (T, Fe) or (Sing) concentration is high,
] 7 is considered to increase. 2^J! +3PeO-AI! , 03 +3Fe2 AN
+3/2SiO* -AN *** +3/2 S
However, in the case of ultra-low carbon steel, vacuum decarburization treatment is performed in the RH equipment, but as shown in Figure 4 (T, Fe
) decreases to below 0.5%, the decarburization defect rate index increases,
The decarburization rate during vacuum decarburization decreases, and the C concentration does not fall to the target value within the operating time. When T, re) is low,
It is thought that the decarburization rate decreases due to the lack of this (■). This new discovery is the reason for the present invention. Therefore, by setting (T, Fe) in the slag to 0.5% or more and 6% or less, and (Sin,) to 15% or less,

〔0〕7は30ppm以下となり、介在
物性欠陥指数が問題にならないレベルまで低下し、かつ
脱炭速度が低下することはない。 極低炭素鋼は、脱酸せずに出鋼し、RH装置で真空脱炭
するので、スラグ中の(T、 Fe) 、  (SiO
l)を下げる場合に、鋼中酸素を脱酸しない方法を採用
する必要がある0例えば、出鋼時に取鍋へ流出した取鍋
スラグを除去し、酸素ポテンシャルの低い合成した溶製
用スラグを添加する方法、取鍋スラグ上へ金属へlある
いは^2滓のような還元剤を添加してスラグのみ還元す
る方法等を採用することができる。スラグ還元によって
(T、 Fe)を低下させる場合には、(T、 Fe)
を0.5%以下にしないでSingを十分還元すること
はむずかしいので、吹錬中の塩基度調整等により取鍋へ
流出するスラグ中の5lozを低(しておく必要がある
。 〈実施例〉 実施例と比較例とを以下に説明する。 実施例1では、出鋼時に取鍋へ流出した取鍋スラグを除
去した後、溶鋼280tに対し合成スラグ(CaO+6
0%、 Si0g88%、  A l *Os:31.
4%、T。 Fe:  0.6%>  3.000kgを添加した例
である。 実施例2では溶fl1280を上の取鍋スラグ1.00
0贈に対し、へi滓(472450%)  300kg
を添加し、実施例3では溶鋼280を上の取鍋スラグ1
.000kgに対し、^l滓(^1:50%)  50
0kgを添加した。 これに対し、比較例1. 2. 3では溶鋼280を上
の取鍋スラグ1,000kgに対して^l滓(Aj! 
:50%)を夫々600kg、  150kg、  3
80kg添加した。 スラグの成分特に(T−Fe) 、(Sift)はRH
処理前に、溶鋼中
[0]7 is 30 ppm or less, the inclusion defect index is reduced to a level that does not pose a problem, and the decarburization rate is not reduced. Ultra-low carbon steel is tapped without deoxidation and vacuum decarburized in an RH device, so (T, Fe), (SiO
l), it is necessary to adopt a method that does not deoxidize the oxygen in the steel.For example, ladle slag that flows into the ladle during tapping is removed, and synthesized slag with low oxygen potential is used. A method of adding a reducing agent such as l or 2 slag to the metal onto the ladle slag and reducing only the slag can be adopted. When reducing (T, Fe) by slag reduction, (T, Fe)
Since it is difficult to sufficiently reduce Sing without reducing Sing to 0.5% or less, it is necessary to keep the 5Loz in the slag flowing into the ladle low by adjusting the basicity during blowing. 〉 Examples and comparative examples will be described below. In Example 1, after removing the ladle slag that flowed into the ladle during tapping, synthetic slag (CaO + 6
0%, Si0g88%, A l *Os: 31.
4%, T. This is an example in which Fe: 0.6%>3.000 kg was added. In Example 2, melt fl 1280 was added to the upper ladle slag 1.00
For 0 gifts, hei slag (472450%) 300kg
In Example 3, molten steel 280 was added to the ladle slag 1 above.
.. 000kg, ^l slag (^1:50%) 50
0 kg was added. In contrast, comparative example 1. 2. In 3, molten steel 280 is added to 1,000 kg of ladle slag above and slag (Aj!
:50%) respectively 600kg, 150kg, 3
80 kg was added. The components of slag, especially (T-Fe) and (Sift), are RH
During molten steel before processing

〔0〕ア、(C)rはRH処理後に確
認した。 以上の結果を第1表に、纏めて示した。 第1表の実施例に示すように、゛スラグ中(T。 Fe)が0.5%以上6%以下、かつ(Sift)が1
5%以下の場合には、(0〕1が30ppm以下となり
、また(C)が処理時間内に目標値以下まで下がってい
る。 第1図は、鋼中全酸素濃度(0)Tと介在物性欠陥指数
との関係を示す特性図、第2図は、(T。 Fe)と(0)7との関係を示す特性図、第3図は、(
SiOz)と〔O12との関係を示す特性図、第4図は
、(T、Fe)と脱炭不良率指数との関係を示す特性図
である。
[0]A, (C)r was confirmed after RH treatment. The above results are summarized in Table 1. As shown in the examples in Table 1, ``(T.Fe) in the slag is 0.5% or more and 6% or less, and (Sift) is 1
When it is 5% or less, (0)1 becomes 30 ppm or less, and (C) decreases to below the target value within the treatment time. Figure 1 shows the total oxygen concentration in the steel (0)T and the intervening Figure 2 is a characteristic diagram showing the relationship between the physical property defect index and Figure 3 is a characteristic diagram showing the relationship between (T. Fe) and (0)7.
FIG. 4 is a characteristic diagram showing the relationship between (SiOz) and [O12] and FIG. 4 is a characteristic diagram showing the relationship between (T, Fe) and the decarburization failure rate index.

Claims (3)

【特許請求の範囲】[Claims] (1)真空脱ガス装置で脱炭処理を施す極低炭素鋼の溶
製において、真空脱ガス処理前の取鍋スラグ中、T、F
e濃度を0.5重量%以上、6.0重量%以下とし、か
つSiO_2濃度を15.0重量%以下とする手段を用
いることを特徴とする高清浄極低炭素鋼の溶製方法。
(1) In the melting of ultra-low carbon steel that is decarburized using a vacuum degassing device, T and F are found in the ladle slag before vacuum degassing.
A method for producing highly clean ultra-low carbon steel, characterized by using means for controlling the e concentration to 0.5% by weight or more and 6.0% by weight or less, and the SiO_2 concentration to 15.0% by weight or less.
(2)出鋼時に取鍋に流出した取鍋スラグを除去した後
、T、Fe濃度が0.5重量%以上、6.0重量%以下
で、かつSiO_2濃度が15.0重量%以下の合成ス
ラグを溶鋼の上に添加することを特徴とする高洗浄極低
炭素鋼の溶製方法。
(2) After removing the ladle slag that flowed into the ladle during tapping, the T and Fe concentrations are 0.5% by weight or more and 6.0% by weight or less, and the SiO_2 concentration is 15.0% by weight or less. A method for producing highly clean ultra-low carbon steel characterized by adding synthetic slag onto molten steel.
(3)出鋼時に取鍋に流出した取鋼スラグ上にAlある
いはAl滓のような還元剤を添加して該スラグ中、T、
Fe濃度を0.5重量%以上、6.0重量%以下で、か
つSiO_2濃度が15.0重量%以下とすることを特
徴とする高清浄極低炭素鋼の溶製方法。
(3) A reducing agent such as Al or Al slag is added to the steel tapping slag that flows into the ladle during tapping, and T,
A method for producing highly clean ultra-low carbon steel, characterized in that the Fe concentration is 0.5% by weight or more and 6.0% by weight or less, and the SiO_2 concentration is 15.0% by weight or less.
JP1069245A 1989-03-23 1989-03-23 Highly clean ultra low carbon steel melting method Expired - Fee Related JP2690350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069245A JP2690350B2 (en) 1989-03-23 1989-03-23 Highly clean ultra low carbon steel melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069245A JP2690350B2 (en) 1989-03-23 1989-03-23 Highly clean ultra low carbon steel melting method

Publications (2)

Publication Number Publication Date
JPH02250915A true JPH02250915A (en) 1990-10-08
JP2690350B2 JP2690350B2 (en) 1997-12-10

Family

ID=13397171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069245A Expired - Fee Related JP2690350B2 (en) 1989-03-23 1989-03-23 Highly clean ultra low carbon steel melting method

Country Status (1)

Country Link
JP (1) JP2690350B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531148A (en) * 1978-08-28 1980-03-05 Nippon Steel Corp Manufacture of clean cast steel product
JPS60152611A (en) * 1984-01-18 1985-08-10 Nippon Steel Corp Method for modifying slag
JPS63262412A (en) * 1987-04-20 1988-10-28 Nippon Steel Corp Method for cleaning molten steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531148A (en) * 1978-08-28 1980-03-05 Nippon Steel Corp Manufacture of clean cast steel product
JPS60152611A (en) * 1984-01-18 1985-08-10 Nippon Steel Corp Method for modifying slag
JPS63262412A (en) * 1987-04-20 1988-10-28 Nippon Steel Corp Method for cleaning molten steel

Also Published As

Publication number Publication date
JP2690350B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JP2008240126A (en) Method for refining molten stainless steel
JP2999671B2 (en) Melting method of Ca-added steel
JPH02250915A (en) Method for producing high clean dead soft steel
JP4111352B2 (en) High-cleaning refining method for stainless steel
JP3473388B2 (en) Refining method of molten stainless steel
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JPH09111329A (en) Production of highly clean austenitic stainless steel
JPH07268440A (en) Deoxidizing method of molten steel
JPS6157372B2 (en)
KR101786931B1 (en) Method for refining of molten stainless steel
JPS63262412A (en) Method for cleaning molten steel
JPH05331523A (en) Method for refining molten steel for bearing steel
JPH032315A (en) Method for refining high-cleanliness dead-soft carbon steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JPH08283823A (en) Production of dead soft steel excellent in surface property
JP3364534B2 (en) Manufacturing method of high clean steel
JP2001335824A (en) Method for producing high cleanliness steel
JPH0356614A (en) Production of low-oxygen dead-soft carbon steel
JP2002322508A (en) METHOD FOR PRODUCING EXTRA LOW Ti STEEL
JPH06145766A (en) Method for producing low-al and low-si steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JPH02285037A (en) Slag refining method for molten metal
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JP3806990B2 (en) Manufacturing method of highly clean stainless steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees