JP4111352B2 - High-cleaning refining method for stainless steel - Google Patents

High-cleaning refining method for stainless steel Download PDF

Info

Publication number
JP4111352B2
JP4111352B2 JP14855096A JP14855096A JP4111352B2 JP 4111352 B2 JP4111352 B2 JP 4111352B2 JP 14855096 A JP14855096 A JP 14855096A JP 14855096 A JP14855096 A JP 14855096A JP 4111352 B2 JP4111352 B2 JP 4111352B2
Authority
JP
Japan
Prior art keywords
inclusions
refining
amount
slag
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14855096A
Other languages
Japanese (ja)
Other versions
JPH09310113A (en
Inventor
隆二 中尾
雅文 宮嵜
博範 高野
央 岩崎
浩之 河合
忠則 松並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP14855096A priority Critical patent/JP4111352B2/en
Publication of JPH09310113A publication Critical patent/JPH09310113A/en
Application granted granted Critical
Publication of JP4111352B2 publication Critical patent/JP4111352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ステンレス鋼の精錬法において、Caの添加方法およびスラグの組成を制御することにより、溶鋼中の非金属介在物(以下、単に介在物という)の無害化をはかる高清浄度ステンレス鋼の製造方法に関するものである。
【0002】
【従来の技術】
ステンレス鋼の介在物は、その量が多すぎたり融点が高く硬質の場合には、製品の表面疵や加工時の割れ発生の原因となる。一般に介在物を除去したり、介在物の融点を下げ軟質化する方法はステンレス鋼の精錬ではAOD,VOD等の二次精錬炉で実施している。
【0003】
すなわち、酸素ガスを吹込み、脱炭等の処理を行う酸化精錬の終了後、酸化精錬時に生成したクロム酸化物を含むスラグを還元するために、CaOを主体とする塩基性フラックスと共に、SiやAl等の還元剤を添加し、Arガスや窒素ガス等の不活性ガスを吹込むことにより攪拌し、脱酸および介在物の除去を促進させている。特に低硫・低酸素化の要求される材料に対しては還元剤としてAlを用いる方法が採用されている。
【0004】
これはAlは脱酸力が強く、脱硫能の高いスラグを形成させることができるためである。また、この方法では通常、還元時に生成した高融点のAl23 を改質して、介在物の組成を抑制し、かつ鋳造時のノズル閉塞を防止するためにCaが添加されている。
【0005】
ステンレス鋼中の介在物の低減および軟質化をはかるためにCaやAlを添加する例としては、特公昭60−30686号公報および特開平60−306439号公報に記載の方法が知られている。
特公昭60−32686号公報に記載の方法は、酸素濃度に対応してCaまたはAlの添加量を制御することにより、介在物を低融点のCaO−Al23 とすることで、浮上分離を促進させて大型介在物量を低減できることが述べられている。
しかし、該方法では硬質の介在物(MgO−Al23 ,MgO)が皆無になっておらず、介在物の無害化の点では問題が残っている。
【0006】
さらに、特開平6−306439号公報に記載の方法は、Al中の〔Mg〕濃度を1.0mass%以下とし、スラグ中の(MgO)濃度を8mass%以下とし、かつ〔Ca〕と〔Al〕濃度を調整することで硬質のMgO−Al23 介在物を低減できることが述べられている。
しかし、この方法ではAl23 濃度の高い高融点のCaO−Al23 介在物(一般には60mass%以上のAl23 を含む)およびMgO介在物が残存しており、一部にはMgO−Al23 介在物が存在するために介在物の無害化は完全に達成されていない。
【0007】
【発明が解決しようとする課題】
本発明はステンレス鋼の精錬法において、還元剤にAlを用い、その後に添加するCa量、Ca添加後の不活性ガス吹込み量およびスラグ組成を制御することにより、還元時に生成した硬質のAl23 を軟質化し、かつ硬質の介在物の生成を抑えることで、介在物の完全無害化を達成し、これにより製品の表面疵や加工時の割れを防止することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために下記手段を採用するものである。
すなわち、ステンレス鋼の精錬において、酸化精錬時に生成したクロム酸化物を含むスラグの還元剤としてAlを用い、かつ出鋼後の取鍋内の溶鋼にCaまたはCa合金あるいはこれらの両者を添加する工程において、CaまたはCa合金あるいはこれらの両者を添加する量をCaの純分で溶鋼トン当り50g以上かつ120g以下とし、かつ該Caの添加後に溶鋼内に下記(1)式を満足する量の不活性ガスを吹込んで溶鋼の攪拌を行うことを特徴とするステンレス鋼の高清浄化精錬法にある。
1.5≦W Ca /Q ≦4.2 ・・・(1)
:不活性ガスの吹込み流量(Nm
Ca:添加したCaまたはCa合金中のCa純分量の合計(kg)
【0009】
さらに、前記精錬後のスラグ中の(MgO)濃度を15mass%以下とし、かつスラグ中の(CaO)/(Al23 )の濃度比を1.0以上、2.5以下とすることを特徴とするステンレス鋼の高清浄化精錬法にある。
【0010】
【発明の実施の形態】
本発明者らはステンレス鋼の製品の表面疵や加工時の割れの原因として、硬質の介在物であるAl23 ,MgO,MgO−Al23 ,CaOおよびAl23 濃度の高いCaO−Al23 の影響が極めて大きいことを見出し、かつこれらの介在物の硬質、軟質の区別は介在物組成より求められる介在物の融点で評価できることを見出した。
さらに、Alを還元剤として用い、精錬炉から出鋼後、取鍋内でCaまたはCa合金あるいはこれらの両者を添加した場合の介在物の組成推移について種々の調査を重ねた結果、下記の知見を得た。
【0011】
▲1▼還元剤としてAlを添加した場合は、溶鋼中に介在物として硬質のAl23 ,MgO−Al23 ,MgOおよびAl23 濃度の高いCaO−Al23 が生成し、これが後工程まで残存することがある。
▲2▼取鍋内で、CaまたはCa合金あるいはこれらの両者を添加し、溶鋼の攪拌を十分に行うことによって、上記介在物の軟質化反応が進行し、介在物の主体は一部にSiO2 およびMgOを含んだ比較的Al23 濃度の低いCaO−Al23 となる。
【0012】
▲3▼CaまたはCa合金あるいはこれらの両者を添加した後の溶鋼の攪拌が不十分な場合には、硬質のAl23 ,MgO−Al23 ,MgOおよびAl23 濃度の高いCaO−Al23 が残存すると共に、Ca添加によって生成したCaOが介在物として残存することがある。
▲4▼スラグ中の(MgO)濃度が極端に高い場合およびスラグ中の(CaO)/(Al23 )濃度比が極端に高かったり、低かったりした場合には、上記の硬質の介在物が残存することがある。
【0013】
したがって、硬質の介在物であるAl23 ,MgO−Al23 ,MgO,CaOおよびAl23 濃度の高いCaO−Al23 の生成を抑制するには、Caの添加量、Ca添加後の不活性ガス吹込みによる溶鋼の攪拌量およびスラグの組成を適切に制御することが非常に重要であることがわかった。
また、前記の特開平6−306439号公報に記載されている、還元剤として添加するAl中のMg濃度の規制、あるいは溶鋼中〔Ca〕,〔Al〕の規制は、Ca添加後の溶鋼への不活性ガス吹込み量が十分であれば緩和できることを確認した。
【0014】
さらに、介在物には多種類の硬質の介在物が存在することから、これらを一律に評価する指標として、介在物の組成より求められる介在物の融点を用いることが有効であり、介在物の融点が1600℃を超える介在物を高融点介在物とし、この高融点介在物の全介在物に占める存在率を高融点介在物の発生率として定義して、介在物の無害化を評価すればよいことがわかった。
なお、高融点介在物の発生率が高いほど、介在物の絶対量が多くなる傾向になることが確認された。
【0015】
上記の結果に基づき、Ca添加量、Ca添加後の溶鋼への不活性ガス吹込み量およびスラグ組成を制御することに着目して、高融点介在物の発生率を抑える条件について検討した。
なお、還元剤としてAlを用いる場合、スラグの還元反応の促進をはかり、かつ低硫・低酸素化を円滑に達成するためには、精錬中における溶鋼中の〔Al〕濃度は100〜1500ppmの範囲であり、本発明においてもこの範囲内に調整している。
【0016】
図1は、酸化精錬後のステンレス鋼にAlを添加して還元精錬を行い、この溶鋼を取鍋に出鋼し、取鍋内にCaあるいはCa合金を添加し、不活性ガスを吹込んで精錬を行った場合の、取鍋で添加する溶鋼トン当りのCa添加量と高融点介在物の発生率の関係を示す。なお、Ca源としてCa合金を添加する場合のCa添加量はCa合金中に含まれるCa量であり、Ca添加量/ガス吹込み流量は4.0kg/Nm3 以下とした。
図1より、溶鋼トン当りのCa添加量が50gより小さい場合には、MgO,MgO−Al23 およびAl23 濃度の高いCaO−Al23 の高融点介在物の発生率が急激に増大するために、溶鋼トン当りのCa添加量は50g以上が必要である。
【0017】
図2は、図1と同様な精錬において、Ca添加量/ガス吹込み流量を1.3〜8.2kg/Nm3 とした場合のCa添加量/ガス吹込み流量と高融点介在物の発生率の関係を示す。なお、Caの溶鋼トン当りの添加量は、いずれも50g以上とした場合の値である。
図2より、Ca添加量/ガス吹込み流量の値が4.2を超えると高融点介在物の発生率が急激に増大するために、Ca添加量/ガス吹込み流量は4.2以下とする必要がある。
【0018】
これより、前記(1)式の関係が求められる。なお、Ca添加量およびガス吹込み流量が多くなると、取鍋での溶鋼温度の低下が大きく、制御が難しくなるために、溶鋼トン当りのCa添加量としては120g以下、Ca添加量/ガス吹込み流量の比は1.5kg/Nm3 以上が望ましい。
【0019】
図3には前記精錬後のスラグ中の(MgO)濃度と高融点介在物の発生率の関係を示す。なお、Caの添加量およびCa添加後の溶鋼への不活性ガス吹込み流量は本発明の条件内で行った場合である。
図3より、スラグ中の(MgO)濃度が15mass%を超えると徐々に高融点介在物の発生率が増大しており、スラグ中の(MgO)濃度は15mass%以下とする必要がある。
【0020】
図4には前記精錬後のスラグ中の(CaO)/(Al23 )の濃度比と高融点介在物の発生率の関係を示す。なお、Caの添加量およびCa添加後の溶鋼への不活性ガス吹込み流量は本発明の条件内で行った場合である。
図4より、スラグ中の(CaO)/(Al23 )の濃度比が1.0未満および2.5を超えると高融点介在物の発生率が増大しており、スラグ中の(CaO)/(Al23 )の濃度比は1.0以上、2.5以下にする必要がある。
【0021】
以上のように、Al23 ,MgO,MgO−Al23 ,CaOおよびAl23 濃度の高いCaO−Al23 の高融点介在物の発生率を抑制するためには、取鍋内で添加するCa量、Caの添加後の溶鋼内への不活性ガスの吹込み流量および精錬後のスラグ中の(MgO)濃度、(CaO)/(Al23 )濃度比を適正な範囲に制御することが重要である。
【0022】
【実施例】
SUS304ステンレス鋼(18mass%Cr−8mass%Ni)を60t電気炉にて溶解し、AOD炉にてO2 −Ar混合ガスによる脱炭精錬を行った後に、Arガス吹込み下で還元剤としてAlを添加して、還元精錬を行った後に取鍋に出鋼した。
取鍋内ではCaおよびCa合金を添加し、その後、取鍋底部よりArガスを吹込み攪拌処理を行った。なお、精錬中における溶鋼中の〔Al〕濃度は100〜1000ppmの範囲にあり、スラグ量は溶鋼トン当り40〜100kgの範囲にあった。
【0023】
得られた鋼は連続鋳造により、断面サイズ178mmφのビレットとし、次いで線材圧延により5.5mmφの線材とし、この線材を0.5mmφに冷間伸線加工した。表1にAOD精錬後のスラグ組成、Ca添加条件および線材品質をまとめて示す。なお、No.1〜6の例は本発明例、No.7〜10は本発明の条件外の比較例を示す。
【0024】
【表1】

Figure 0004111352
【0025】
介在物の調査は、線材横断面10cm2 を光学顕微鏡により観察し、5μm以上の介在物個数を測定すると共に、X線マイクロアナライザーによる組成分析を行った。組成分析結果より各介在物毎の融点を換算し、融点が1600℃以上の介在物個数を求め、高融点介在物の発生率を算出した。
【0026】
本発明の例では高融点介在物の発生率が低位に安定しており、かつ線材中の5μm以上の介在物個数も著しく低減しており、介在物の無害化を達成できた。
【0027】
【発明の効果】
本発明では、ステンレス鋼の精錬において、精錬後のスラグ組成、取鍋内で添加するCaの量およびCa添加後の不活性ガスの吹込み流量を制御することにより、硬質の高融点介在物の発生率を低位に安定させることができるので、介在物の無害化を達成できる。このため、製品の表面疵や加工時の割れのない材料を製造でき、冷間加工性の優れた細線、極細線などの製造が可能になった。
【図面の簡単な説明】
【図1】取鍋内で添加するCaまたはCa合金あるいはこれらの両者の溶鋼トン当りのCa添加量と高融点介在物の発生率の関係を示す図
【図2】取鍋内で添加するCa量とCa添加後の不活性ガスの吹込み流量の比と高融点介在物の発生率の関係を示す図
【図3】精錬後のスラグ中の(MgO)濃度と高融点介在物の発生率の関係を示す図
【図4】精錬後のスラグ中の(CaO)/(Al23 )の濃度比と高融点介在物の発生率の関係を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high cleanliness stainless steel for detoxifying non-metallic inclusions (hereinafter simply referred to as inclusions) in molten steel by controlling the addition method of Ca and the composition of slag in the refining method of stainless steel. It is related with the manufacturing method.
[0002]
[Prior art]
If the amount of stainless steel inclusions is too large or has a high melting point and is hard, it can cause surface defects on the product and cracks during processing. In general, a method of removing inclusions or lowering the melting point of the inclusions to make them softer is performed in a secondary refining furnace such as AOD or VOD in the refining of stainless steel.
[0003]
That is, after the completion of oxidation refining in which oxygen gas is blown and decarburization is performed, in order to reduce slag containing chromium oxide generated during oxidation refining, together with basic flux mainly composed of CaO, Si and A reducing agent such as Al is added, and stirring is performed by blowing an inert gas such as Ar gas or nitrogen gas to promote deoxidation and removal of inclusions. In particular, a method using Al as a reducing agent is employed for materials that require low sulfur and low oxygen.
[0004]
This is because Al has a strong deoxidizing power and can form a slag having a high desulfurization ability. Also, in this method, Ca is usually added in order to modify the high melting point Al 2 O 3 produced at the time of reduction to suppress the composition of inclusions and prevent nozzle clogging during casting.
[0005]
As examples of adding Ca and Al in order to reduce inclusions and soften the inclusions in stainless steel, methods described in JP-B-60-30686 and JP-A-60-306439 are known.
In the method described in Japanese Patent Publication No. 60-32686, the inclusion is changed to CaO—Al 2 O 3 having a low melting point by controlling the amount of Ca or Al added in accordance with the oxygen concentration. It is stated that the amount of large inclusions can be reduced by promoting the above.
However, this method does not eliminate hard inclusions (MgO—Al 2 O 3 , MgO), and there remains a problem in terms of detoxification of the inclusions.
[0006]
Furthermore, in the method described in JP-A-6-306439, the [Mg] concentration in Al is set to 1.0 mass% or less, the (MgO) concentration in slag is set to 8 mass% or less, and [Ca] and [Al It is stated that hard MgO—Al 2 O 3 inclusions can be reduced by adjusting the concentration.
However, in this method, high melting point CaO—Al 2 O 3 inclusions (generally containing 60 mass% or more of Al 2 O 3 ) and MgO inclusions with a high Al 2 O 3 concentration remain, and some of them Since MgO—Al 2 O 3 inclusions exist, the inclusions are not completely detoxified.
[0007]
[Problems to be solved by the invention]
In the refining method of the stainless steel, the present invention uses hard Al produced during reduction by using Al as a reducing agent and controlling the amount of Ca added thereafter, the amount of inert gas blown after Ca addition, and the slag composition. It is intended to soften 2 O 3 and suppress the formation of hard inclusions, thereby making the inclusions completely harmless, thereby preventing product surface flaws and cracks during processing. is there.
[0008]
[Means for Solving the Problems]
The present invention employs the following means to achieve the above object.
That is, in the refining of stainless steel, a process of using Al as a reducing agent for slag containing chromium oxide generated during oxidative refining, and adding Ca or Ca alloy or both of them to the molten steel in the ladle after steel is removed In this case, the amount of Ca or Ca alloy or both of them added is not less than 50 g and 120 g or less per ton of molten steel in terms of pure Ca, and the amount satisfying the following formula (1) in the molten steel after the addition of Ca The present invention resides in a highly purified refining method for stainless steel, characterized in that molten steel is stirred by blowing active gas.
1.5 ≦ W Ca / Q d ≦ 4.2 (1)
Q d : Blowing flow rate of inert gas (Nm 3 )
W Ca : Total amount of pure Ca in the added Ca or Ca alloy (kg)
[0009]
Furthermore, the (MgO) concentration in the slag after the refining is 15 mass% or less, and the concentration ratio of (CaO) / (Al 2 O 3 ) in the slag is 1.0 or more and 2.5 or less. It is in the high cleaning and refining method of stainless steel, which is a feature.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have high concentrations of Al 2 O 3 , MgO, MgO—Al 2 O 3 , CaO and Al 2 O 3 which are hard inclusions as the cause of surface defects and cracks during processing of stainless steel products. It has been found that the influence of CaO—Al 2 O 3 is extremely large, and the distinction between hard and soft inclusions can be evaluated by the melting point of the inclusions determined from the inclusion composition.
Furthermore, as a result of repeated investigations on the composition transition of inclusions when Al was used as a reducing agent and Ca or Ca alloy or both of them were added in the ladle after steel removal from the refining furnace, the following findings Got.
[0011]
▲ 1 ▼ the case of adding Al as a reducing agent, hard Al 2 O 3, MgO-Al 2 O 3, MgO and Al 2 O 3 concentrations of high CaO-Al 2 O 3 is generated as inclusions in the molten steel However, this may remain until a subsequent process.
(2) In the ladle, Ca or Ca alloy or both of them are added, and the molten steel is sufficiently stirred to advance the softening reaction of the inclusions. CaO—Al 2 O 3 having a relatively low Al 2 O 3 concentration containing 2 and MgO.
[0012]
(3) When stirring of molten steel after addition of Ca or Ca alloy or both of them is insufficient, hard Al 2 O 3 , MgO-Al 2 O 3 , MgO and Al 2 O 3 concentrations are high. While CaO—Al 2 O 3 remains, CaO produced by addition of Ca may remain as inclusions.
(4) When the (MgO) concentration in the slag is extremely high and the (CaO) / (Al 2 O 3 ) concentration ratio in the slag is extremely high or low, the above hard inclusions May remain.
[0013]
Therefore, in order to suppress the formation of hard inclusions Al 2 O 3 , MgO—Al 2 O 3 , MgO, CaO and CaO—Al 2 O 3 having a high Al 2 O 3 concentration, the amount of Ca added, It was found that it is very important to appropriately control the amount of stirring of the molten steel and the composition of the slag by injecting inert gas after adding Ca.
Further, the regulation of Mg concentration in Al added as a reducing agent or regulation of [Ca] and [Al] in molten steel described in JP-A-6-306439 is applied to molten steel after addition of Ca. It was confirmed that if the inert gas blowing amount of was sufficient, it could be relaxed.
[0014]
Furthermore, since there are many kinds of inclusions in the inclusion, it is effective to use the melting point of the inclusion determined from the composition of the inclusion as an index for uniformly evaluating these inclusions. If the inclusion having a melting point exceeding 1600 ° C. is defined as a high melting point inclusion, the abundance ratio of the high melting point inclusion in all the inclusions is defined as the occurrence rate of the high melting point inclusion, and the detoxification of the inclusion is evaluated. I found it good.
It was confirmed that the higher the incidence of high melting point inclusions, the greater the absolute amount of inclusions.
[0015]
Based on the above results, focusing on controlling the amount of Ca added, the amount of inert gas blown into the molten steel after addition of Ca, and the slag composition, the conditions for suppressing the incidence of high melting point inclusions were examined.
When Al is used as the reducing agent, the [Al] concentration in the molten steel during refining is 100 to 1500 ppm in order to promote the reduction reaction of slag and smoothly achieve low sulfur and low oxygen. This range is also adjusted in the present invention.
[0016]
Fig. 1 shows reduction refining by adding Al to stainless steel after oxidation refining, removing this molten steel into a ladle, adding Ca or Ca alloy into the ladle, and blowing in an inert gas to refining Shows the relationship between the amount of Ca added per ton of molten steel added in the ladle and the incidence of high melting point inclusions. In addition, the Ca addition amount in the case of adding a Ca alloy as a Ca source is the amount of Ca contained in the Ca alloy, and the Ca addition amount / gas blowing flow rate was 4.0 kg / Nm 3 or less.
From FIG. 1, when the amount of Ca addition per ton of the molten steel is 50g less than, MgO, incidence of high-melting inclusions MgO-Al 2 O 3 and Al 2 O 3 higher concentrations CaO-Al 2 O 3 In order to increase rapidly, the amount of Ca added per ton of molten steel is required to be 50 g or more.
[0017]
FIG. 2 shows the generation of high melting point inclusions and Ca addition amount / gas injection flow rate when the Ca addition amount / gas injection flow rate is 1.3 to 8.2 kg / Nm 3 in the same refining as in FIG. The relationship of rate is shown. In addition, the addition amount per ton of molten steel of Ca is a value when all are 50 g or more.
From FIG. 2, when the value of Ca addition amount / gas injection flow rate exceeds 4.2, the incidence of high melting point inclusions increases rapidly, so the Ca addition amount / gas injection flow rate is 4.2 or less. There is a need to.
[0018]
From this, the relationship of said (1) Formula is calculated | required. As the Ca addition amount and the gas blowing flow rate increase, the temperature of the molten steel in the ladle decreases greatly, and control becomes difficult. Therefore, the Ca addition amount per ton of molten steel is 120 g or less, and the Ca addition amount / gas blowing rate. The flow rate ratio is preferably 1.5 kg / Nm 3 or more.
[0019]
FIG. 3 shows the relationship between the (MgO) concentration in the slag after refining and the occurrence rate of high melting point inclusions. In addition, the addition amount of Ca and the flow rate of the inert gas blown into the molten steel after the addition of Ca are performed within the conditions of the present invention.
As shown in FIG. 3, when the (MgO) concentration in the slag exceeds 15 mass%, the generation rate of high melting point inclusions gradually increases, and the (MgO) concentration in the slag needs to be 15 mass% or less.
[0020]
FIG. 4 shows the relationship between the concentration ratio of (CaO) / (Al 2 O 3 ) in the slag after refining and the incidence of high melting point inclusions. In addition, the addition amount of Ca and the inert gas blowing flow rate to the molten steel after the addition of Ca are performed under the conditions of the present invention.
From FIG. 4, when the concentration ratio of (CaO) / (Al 2 O 3 ) in the slag is less than 1.0 and exceeds 2.5, the incidence of high melting point inclusions increases, and (CaO in the slag increases. ) / (Al 2 O 3 ) concentration ratio must be 1.0 or more and 2.5 or less.
[0021]
As described above, in order to suppress the incidence of high melting point inclusions of Al 2 O 3 , MgO, MgO—Al 2 O 3 , CaO, and CaO—Al 2 O 3 having a high Al 2 O 3 concentration, Appropriate amount of Ca added in the pan, flow rate of inert gas into the molten steel after addition of Ca, (MgO) concentration in the slag after refining, (CaO) / (Al 2 O 3 ) concentration ratio It is important to control within a proper range.
[0022]
【Example】
SUS304 stainless steel (18 mass% Cr-8 mass% Ni) was melted in a 60-ton electric furnace, decarburized and refined with an O 2 -Ar mixed gas in an AOD furnace, and then Al was added as a reducing agent under Ar gas blowing. Was added to the ladle after reduction refining.
Ca and Ca alloy were added in the ladle, and then Ar gas was blown from the bottom of the ladle to perform stirring. In addition, the [Al] concentration in the molten steel during refining was in the range of 100 to 1000 ppm, and the amount of slag was in the range of 40 to 100 kg per ton of molten steel.
[0023]
The obtained steel was formed into a billet with a cross-sectional size of 178 mmφ by continuous casting, and then into a wire rod of 5.5 mmφ by wire rolling, and this wire was cold drawn to 0.5 mmφ. Table 1 summarizes the slag composition, Ca addition conditions and wire quality after AOD refining. In addition, No. Examples 1 to 6 are examples of the present invention, No. 7-10 show comparative examples outside the conditions of the present invention.
[0024]
[Table 1]
Figure 0004111352
[0025]
The inclusions were examined by observing a cross section of 10 cm 2 of the wire rod with an optical microscope, measuring the number of inclusions of 5 μm or more, and conducting composition analysis with an X-ray microanalyzer. The melting point of each inclusion was converted from the composition analysis result, the number of inclusions having a melting point of 1600 ° C. or higher was determined, and the incidence of high melting point inclusions was calculated.
[0026]
In the example of the present invention, the incidence of high melting point inclusions is stable at a low level, and the number of inclusions of 5 μm or more in the wire is remarkably reduced, and the inclusions can be made harmless.
[0027]
【The invention's effect】
In the present invention, in the refining of stainless steel, by controlling the slag composition after refining, the amount of Ca added in the ladle and the flow rate of the inert gas after the addition of Ca, Since the incidence can be stabilized at a low level, inclusions can be rendered harmless. For this reason, it is possible to produce a material that is free from surface defects and cracks during processing, and it has become possible to produce fine wires and ultra fine wires with excellent cold workability.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of Ca added per ton of molten steel and the rate of occurrence of high melting point inclusions in a ladle. Fig. 3 shows the relationship between the ratio of the flow rate of the inert gas after addition of Ca and the flow rate of inert gas and the occurrence rate of high melting point inclusions. FIG. 4 is a diagram showing the relationship between the concentration ratio of (CaO) / (Al 2 O 3 ) in the slag after refining and the incidence of high melting point inclusions.

Claims (2)

ステンレス鋼の精錬において、酸化精錬時に生成したクロム酸化物を含むスラグの還元剤としてAlを用い、かつ出鋼後の取鍋内の溶鋼にCaまたはCa合金あるいはこれらの両者を添加する工程において、CaまたはCa合金あるいはこれらの両者を添加する量をCaの純分で溶鋼トン当り50g以上かつ120g以下とし、かつ該Caの添加後に溶鋼内に下記(1)式を満足する量の不活性ガスを吹込んで溶鋼の攪拌を行うことを特徴とするステンレス鋼の高清浄化精錬法。
1.5≦W Ca /Q ≦4.2 ・・・(1)
:不活性ガスの吹込み流量(Nm
Ca:添加したCaまたはCa合金中のCa純分量の合計(kg)
In the refining of stainless steel, in the step of using Al as a reducing agent for slag containing chromium oxide generated during oxidative refining, and adding Ca or Ca alloy or both of them to the molten steel in the ladle after the steel is tapped, The amount of Ca or Ca alloy, or both of them added is 50 g or more and 120 g or less per ton of molten steel in terms of pure Ca, and after the addition of Ca, an inert gas in an amount that satisfies the following formula (1) A high-cleaning refining method for stainless steel, characterized by stirring molten steel by blowing
1.5 ≦ W Ca / Q d ≦ 4.2 (1)
Q d : Blowing flow rate of inert gas (Nm 3 )
W Ca : Total amount of pure Ca in the added Ca or Ca alloy (kg)
前記精錬後のスラグ中の(MgO)濃度を15mass%以下とし、かつスラグの中の(CaO)/(Al)の濃度比を1.0以上、2.5以下とすることを特徴とする請求項1に記載のステンレス鋼の高清浄化精錬法。The (MgO) concentration in the slag after refining is 15 mass% or less, and the concentration ratio of (CaO) / (Al 2 O 3 ) in the slag is 1.0 or more and 2.5 or less. The highly purified refining method for stainless steel according to claim 1.
JP14855096A 1996-05-21 1996-05-21 High-cleaning refining method for stainless steel Expired - Lifetime JP4111352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14855096A JP4111352B2 (en) 1996-05-21 1996-05-21 High-cleaning refining method for stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14855096A JP4111352B2 (en) 1996-05-21 1996-05-21 High-cleaning refining method for stainless steel

Publications (2)

Publication Number Publication Date
JPH09310113A JPH09310113A (en) 1997-12-02
JP4111352B2 true JP4111352B2 (en) 2008-07-02

Family

ID=15455275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14855096A Expired - Lifetime JP4111352B2 (en) 1996-05-21 1996-05-21 High-cleaning refining method for stainless steel

Country Status (1)

Country Link
JP (1) JP4111352B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489355B2 (en) 1993-12-01 2002-12-03 Eli Lilly And Company Methods of inhibiting the effects of amyloidogenic proteins
US5521198A (en) 1993-12-21 1996-05-28 Eli Lilly And Company Methods of inhibiting autoimmune diseases
US6417198B1 (en) 1993-12-21 2002-07-09 Eli Lilly And Company Methods of inhibiting CNS problems in post-menopausal women
US6703407B1 (en) 1994-09-20 2004-03-09 Eli Lilly And Company Benzofuran compounds, compositions, and methods
WO1997001549A1 (en) 1995-06-26 1997-01-16 Eli Lilly And Company Benzothiophene compounds
US6353003B1 (en) 1998-06-17 2002-03-05 Eli Lilly And Company Method for reducing levels of homocysteine and C-reactive protein

Also Published As

Publication number Publication date
JPH09310113A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP4111352B2 (en) High-cleaning refining method for stainless steel
KR100889685B1 (en) A method for refining with high purity of stainless steel
JP3719131B2 (en) Si deoxidized steel excellent in fatigue strength and method for producing the same
JP2999671B2 (en) Melting method of Ca-added steel
JP2000129336A (en) Melting method for high cleanliness steel
JP3885267B2 (en) Manufacturing method of highly clean ultra-low sulfur steel with excellent resistance to hydrogen-induced cracking
JP3319245B2 (en) Method for producing highly clean austenitic stainless steel
JP2021123773A (en) Ni-Cr-Al-Fe ALLOY HAVING EXCELLENT SURFACE PROPERTIES AND METHOD FOR PRODUCING THE SAME
JPH10158720A (en) High cleaning refining method of stainless steel
JPH10195521A (en) Thorough cleaning method of al-containing stainless steel
JP4295836B2 (en) High cleaning method for Al-containing stainless steel
JPH11279631A (en) Method for refining molten stainless steel
JPH10298631A (en) Method for melting clean steel
JPH09227989A (en) Calcium-treated steel and treatment of molten steel with calcium
JPS58130215A (en) Deoxidizing method of molten steel
JPH05331523A (en) Method for refining molten steel for bearing steel
JP6981589B1 (en) Manufacturing method of high cleanliness steel
JPH07316631A (en) Deoxidizing and cleaning method of molten steel
JP2749695B2 (en) Stainless steel scouring method
JP4063452B2 (en) Stainless steel desulfurization method
JPS6239205B2 (en)
JPH05140632A (en) Production of stainless steel having ultrahigh cleanliness
JP3806990B2 (en) Manufacturing method of highly clean stainless steel
WO2021256161A1 (en) Process for producing steel having high cleanliness

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term