JPH09111329A - Production of highly clean austenitic stainless steel - Google Patents

Production of highly clean austenitic stainless steel

Info

Publication number
JPH09111329A
JPH09111329A JP7268124A JP26812495A JPH09111329A JP H09111329 A JPH09111329 A JP H09111329A JP 7268124 A JP7268124 A JP 7268124A JP 26812495 A JP26812495 A JP 26812495A JP H09111329 A JPH09111329 A JP H09111329A
Authority
JP
Japan
Prior art keywords
concentration
rare earth
stainless steel
cleanliness
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7268124A
Other languages
Japanese (ja)
Other versions
JP3319245B2 (en
Inventor
Takayuki Nishi
隆之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26812495A priority Critical patent/JP3319245B2/en
Publication of JPH09111329A publication Critical patent/JPH09111329A/en
Application granted granted Critical
Publication of JP3319245B2 publication Critical patent/JP3319245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a process for producing a highly clean austenitic stainless steel. SOLUTION: This process for producing the highly clean rare earth elements contg. stainless steel comprises executing the treatment by the following stages 1 to 4:1. Crude molten metal is tapped and is subjected to decarburization oxidation refining, then, to predeoxidation by Si and Mn. 2. The molten metal is deoxidized by specifying Al to >=3.0% and forming CaO-Al2 O3 slag. 3. Al is specified to >=0.3% in all ensuring stages and the molten metal is subjected to killing to confine the total oxygen concn. to <=0.003%. 4. The formation of rare earth oxide is thereafter suppressed by adjusting the rare earth elements to >=0.01%. In this method, the Al-Ca and/or Mg composite deoxidation to specify the Ca and/or Mg to >=0.001% is further usable in the above 2 and 3. As a result, the cleanliness in the smelting process is improved, the degradation in the cleanliness by addition of the rare earth elements is suppressed and the clogging of a nozzle at the time of continuous casting is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高い清浄度を有
し、かつノズル閉塞を防止することができる、希土類元
素含有オーステナイト系ステンレス鋼の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth element-containing austenitic stainless steel which has high cleanliness and can prevent nozzle clogging.

【0002】[0002]

【従来の技術】一般に溶鋼を高清浄化するためには、充
分に脱酸すること、すなわち適切な量の脱酸元素を添加
するとともに、生成した脱酸生成物(介在物)を浮上除
去させる必要がある。しかし、希土類元素を0.01wt%以
上含有するオーステナイト系ステンレス鋼では、溶鋼中
へ添加した際、多量の希土類酸化物が生成して清浄性の
悪化を招く。
2. Description of the Related Art Generally, in order to highly clean molten steel, it is necessary to sufficiently deoxidize it, that is, to add an appropriate amount of deoxidizing element and to float the produced deoxidizing product (inclusions). There is. However, in an austenitic stainless steel containing a rare earth element in an amount of 0.01 wt% or more, when added to molten steel, a large amount of a rare earth oxide is generated, resulting in deterioration of cleanability.

【0003】これは、希土類元素は酸素との親和力が非
常に強いため、周囲の他の酸化物を還元して希土類酸化
物が生成すること、一旦生成した希土類酸化物は溶鋼と
比重が近いため、浮上分離されないことによる。このよ
うに、希土類元素は鋼の脱酸剤としては或る程度機能す
るものの、鋼の清浄性を悪化させる。
This is because the rare earth element has a very strong affinity with oxygen, so that other oxides around it are reduced to form a rare earth oxide, and the rare earth oxide once generated has a specific gravity close to that of molten steel. , Because it is not floated and separated. Thus, although the rare earth element functions to some extent as a deoxidizer for steel, it deteriorates the cleanliness of steel.

【0004】さらに、生成した希土類酸化物によって連
続鋳造時にノズル閉塞が生じ、実操業上大きな支障とな
っている。
Further, the generated rare earth oxide causes nozzle clogging during continuous casting, which is a serious obstacle in actual operation.

【0005】このため、希土類元素を添加する鋼種で
は、その添加前に別の一般的な脱酸元素(例えばAl、Si
等)が使用される。しかしこのような場合でも、希土類
元素は酸素と親和力が強いので介在物やスラグを還元し
て、溶鋼中に多量の希土類酸化物を生成するため、清浄
度向上やノズル閉塞防止は必ずしも充分ではない。
Therefore, in the case of a steel type to which a rare earth element is added, another general deoxidizing element (for example, Al or Si) is added before the addition.
Etc.) are used. However, even in such a case, since the rare earth element has a strong affinity with oxygen, it reduces inclusions and slag and produces a large amount of rare earth oxide in the molten steel. .

【0006】ノズル閉塞を避けるため、鋳造時に鋳型内
へ希土類元素の添加が行われることもあるが、この方法
ではノズル閉塞は回避できるものの、清浄度の改善を図
ることができず、また希土類元素の偏析等の問題があ
る。
[0006] In order to avoid nozzle clogging, rare earth elements may be added into the mold during casting. With this method, although nozzle clogging can be avoided, cleanliness cannot be improved, and rare earth elements cannot be improved. There is a problem such as segregation of.

【0007】希土類元素を含有するオーステナイト系ス
テンレス鋼の溶製方法では、溶解炉から出鋼して取鍋で
脱炭のための酸化精錬を行った後、必要に応じてさらに
脱硫工程、窒素添加工程、溶鋼温度を保持するための昇
熱工程、脱酸工程、希土類元素添加工程などの様々な工
程を要する。
In the method for smelting an austenitic stainless steel containing a rare earth element, a steel is taken out from a smelting furnace and subjected to oxidative refining for decarburization in a ladle, followed by a desulfurization step and nitrogen addition if necessary. Various processes such as a process, a heating process for maintaining the temperature of molten steel, a deoxidizing process, and a rare earth element adding process are required.

【0008】これらの工程は一般に脱酸元素を添加する
還元精錬であるが、その方法や順序について特に明確な
指針や考え方はなかった。例えば、窒素添加工程は窒素
ガスを溶鋼へ吹き込み所定の窒素量とするものである
が、その工程では窒素添加歩留まりおよび処理時間が考
慮されることはあっても、脱酸の進行状態を考慮する考
え方はなかった。また、オーステナイト系ステンレス鋼
溶製のように複数の精錬工程を経る場合、熱付与を行う
ための酸素吹き込みによる昇熱を行うが、この昇熱工程
では実質的には溶鋼中の全酸素濃度が高い状態を呈して
いることが多く、この段階における溶鋼の脱酸程度や清
浄性が考慮されることはなかった。したがって従来の製
造方法では、その後の脱酸工程で所期の低酸素濃度まで
低下させようとしても酸化物が大量に生成し、高清浄性
を達成するのは容易ではない。
[0008] These steps are generally reduction refining in which a deoxidizing element is added, but there is no particular clear guideline or idea regarding the method and sequence. For example, in the nitrogen addition step, nitrogen gas is blown into the molten steel to obtain a predetermined amount of nitrogen, but in the step, the nitrogen addition yield and the treatment time may be taken into consideration, but the progress of deoxidation should be taken into consideration. I had no idea. Further, when undergoing a plurality of refining steps such as austenitic stainless steel melting, the temperature is raised by blowing oxygen to provide heat, but in this temperature raising step, the total oxygen concentration in the molten steel is substantially In many cases, it was in a high state, and the degree of deoxidation and cleanliness of molten steel at this stage were not considered. Therefore, in the conventional manufacturing method, it is not easy to achieve high cleanliness because a large amount of oxide is generated even if the oxygen concentration is lowered to the desired low oxygen concentration in the subsequent deoxidation step.

【0009】特公昭62−39205 号公報には、溶鋼の二次
精錬において脱酸剤、フラックスおよびスラグ改質剤を
添加する高清浄度鋼の製造方法が示されている。しか
し、その実施例ではSiトレースの低炭素Alキルド鋼の製
造の場合しか記載されておらず、この方法は、酸素との
親和力が高い希土類元素を含有するオーステナイト系ス
テンレス鋼の製造にそのまま適用できるものではない。
これは、CrやNiを多量に含む鋼種では、溶鋼中のCrによ
る酸素溶解度の上昇およびNiとAlとの相互作用により、
一般にAlの脱酸力は低下する傾向にあるからである。
Japanese Patent Publication No. Sho 62-39205 discloses a method for producing a high cleanliness steel in which a deoxidizing agent, a flux and a slag modifier are added in the secondary refining of molten steel. However, the examples only describe the case of producing a Si trace low carbon Al killed steel, and this method can be directly applied to the production of an austenitic stainless steel containing a rare earth element having a high affinity with oxygen. Not a thing.
This is due to the increase in oxygen solubility due to Cr in molten steel and the interaction between Ni and Al in steel types containing a large amount of Cr and Ni.
This is because the deoxidizing power of Al generally tends to decrease.

【0010】特開昭63−277708号公報には、VOD処理
後において溶鋼とスラグを直接攪拌し、スラグ中のSiO2
を10wt%以下などとする高清浄度ステンレス鋼の製造法
が示されている。しかし、この方法が希土類元素を添加
するオーステナイト系ステンレス鋼の場合にも有効かど
うかは明らかではない。
In Japanese Patent Laid-Open No. 63-277708, molten steel and slag are directly stirred after VOD treatment, and SiO 2 in the slag is mixed.
A method for producing high-cleanliness stainless steel with a content of 10 wt% or less is shown. However, it is not clear whether this method is also effective in the case of austenitic stainless steel to which rare earth elements are added.

【0011】[0011]

【発明が解決しようとする課題】本発明は、希土類元素
を含有するオーステナイト系ステンレス鋼の製造の際の
上記課題を解決するためのものである。本発明の目的
は、溶製過程での溶鋼の清浄性向上を図ることによっ
て、希土類元素添加による清浄性悪化を防止し、さらに
これによって連続鋳造時のノズル閉塞を防止することに
より、高品質と安定操業を両立させ得る製造方法を提供
することにある。
DISCLOSURE OF THE INVENTION The present invention is to solve the above problems in the production of an austenitic stainless steel containing a rare earth element. The purpose of the present invention is to improve the cleanliness of molten steel in the melting process, to prevent deterioration of cleanliness due to the addition of rare earth elements, and further to prevent nozzle clogging during continuous casting, thereby achieving high quality. An object of the present invention is to provide a manufacturing method capable of achieving both stable operation.

【0012】[0012]

【課題を解決するための手段】本発明者は、希土類元素
を含有するオーステナイト系ステンレス鋼の高清浄化を
達成するには、希土類元素を添加する以前の段階で予備
脱酸した後、Al脱酸を徹底し、もしくはAl脱酸を充分に
行うため、Al脱酸と同時にCaおよび/またはMgを添加し
て複合脱酸を施し、溶鋼段階で高清浄化を実施しておく
のが最も効果的であることを知見した。
In order to achieve high cleaning of austenitic stainless steel containing a rare earth element, the present inventor has carried out pre-deoxidation at a stage before adding a rare earth element and then Al deoxidation. In order to thoroughly perform Al deoxidation or to perform sufficient Al deoxidation, it is most effective to add Ca and / or Mg at the same time as Al deoxidation to perform complex deoxidation and perform high cleaning at the molten steel stage. I found that there is.

【0013】本発明の要旨は、次の(1) および(2) の高
清浄性の希土類元素含有オーステナイト系ステンレス鋼
の製造方法にある。
The gist of the present invention resides in the following methods (1) and (2) for producing a highly clean rare earth element-containing austenitic stainless steel.

【0014】(1)希土類元素を含有するオーステナイト
系ステンレス鋼の製造方法であって、下記〜の工程
で処理することを特徴とする高清浄性の希土類元素含有
オーステナイト系ステンレス鋼の製造方法。以下、本発
明の第1方法という。
(1) A method for producing an austenitic stainless steel containing a rare earth element, the method comprising the steps of: Hereinafter, this is referred to as a first method of the present invention.

【0015】溶解炉から粗溶湯を取鍋に出鋼して脱炭
のための酸化精錬を行った後、SiおよびMnで予備脱酸す
る。
The crude molten metal from the melting furnace is tapped into a ladle, subjected to oxidative refining for decarburization, and then pre-deoxidized with Si and Mn.

【0016】引き続きAl濃度を0.03wt%以上とすると
ともに、CaO-Al2O3 系スラグを形成して脱酸を行う。
Subsequently, the Al concentration is made 0.03 wt% or more, and CaO—Al 2 O 3 slag is formed to perform deoxidation.

【0017】それ以降の全精錬工程にわたってAl濃度
が0.03wt%以上となるように調整を行い、次いでキリン
グを行い全酸素濃度を0.003 wt%以下とする。
Throughout the entire refining process thereafter, adjustment is made so that the Al concentration becomes 0.03 wt% or more, and then killing is performed to make the total oxygen concentration 0.003 wt% or less.

【0018】その後、LaおよびCeを主成分とする希土
類元素を添加してその濃度を0.01wt%以上とすることに
より、希土類酸化物の生成を抑制する。
After that, rare earth elements containing La and Ce as main components are added to make the concentration 0.01 wt% or more, thereby suppressing the generation of rare earth oxides.

【0019】(2)希土類元素を含有するオーステナイト
系ステンレス鋼の製造方法であって、下記、′、
′及びの工程で処理することを特徴とする高清浄性
の希土類元素含有オーステナイト系ステンレス鋼の製造
方法。以下、本発明の第2方法という。このおよび
の工程は、上記(1) の第1方法の場合と同じである。
(2) A method for producing an austenitic stainless steel containing a rare earth element, comprising the steps of:
A process for producing a highly clean rare earth element-containing austenitic stainless steel, which is characterized in that the treatment is carried out in steps 1 and 2. Hereinafter, this is referred to as a second method of the present invention. The steps of and are the same as in the case of the first method (1).

【0020】溶解炉から粗溶湯を取鍋に出鋼して脱炭
のための酸化精錬を行った後、SiおよびMnで予備脱酸す
る。
The crude molten metal from the melting furnace is tapped into a ladle, subjected to oxidation refining for decarburization, and then pre-deoxidized with Si and Mn.

【0021】′引き続きAl濃度を0.03wt%以上、Caお
よび/またはMg濃度を単独または合計で0.001 wt%以上
とすると共に、CaO-Al2O3 系スラグを形成して脱酸を行
う。
'Subsequently, the Al concentration is set to 0.03 wt% or more, the Ca and / or Mg concentration is set to 0.001 wt% or more alone or in total, and CaO-Al 2 O 3 slag is formed to perform deoxidation.

【0022】′それ以降の全精錬工程にわたってAl濃
度が0.03wt%以上、Caおよび/またはMg濃度が単独また
は合計で0.001 wt%以上となるように調整を行い、次い
でキリングを行い全酸素濃度を0.003 wt%以下とする。
′ Adjustment is made so that the Al concentration is 0.03 wt% or more and the Ca and / or Mg concentration is 0.001 wt% or more alone or in total over the entire refining process thereafter, and then killing is performed to adjust the total oxygen concentration. 0.003 wt% or less.

【0023】その後、LaおよびCeを主成分とする希土
類元素を添加してその濃度を0.01wt%以上とすることに
より、希土類酸化物生成を抑制する。
After that, rare earth elements containing La and Ce as main components are added so that the concentration thereof is 0.01 wt% or more, thereby suppressing generation of rare earth oxides.

【0024】ここでいう「希土類元素」は、LaおよびCe
の他に、NdおよびPrなどのランタノイドおよびY(イッ
トリウム)を指し、その添加にはLaおよびCeを主成分と
する合金(例えば、ミッシュメタル)および/またはY
を用いる。以下、希土類元素濃度を表す場合にはLa+Ce
で示す。
The term "rare earth element" as used herein means La and Ce.
In addition, it refers to lanthanoids such as Nd and Pr and Y (yttrium), and the addition thereof is an alloy containing La and Ce as main components (for example, Misch metal) and / or Y.
Is used. In the following, when expressing the rare earth element concentration, La + Ce
Indicated by

【0025】Al濃度、Caおよび/またはMg濃度およびLa
+Ce濃度の望ましい上限は、それぞれ0.2 wt%、0.005
wt%および0.1 wt%である。
Al concentration, Ca and / or Mg concentration and La
Desirable upper limits of + Ce concentration are 0.2 wt% and 0.005, respectively.
wt% and 0.1 wt%.

【0026】[0026]

【発明の実施の形態】本発明方法における処理工程は、
大別すると出鋼した後の脱炭酸化精錬工程と、主に予備
脱酸、脱酸および、希土類元素添加を行う還元工程とか
らなる。したがって、本発明方法を実施するための精錬
装置は、VOD炉、RH真空精錬装置、酸素および攪拌
用ガスなどの吹き込み装置ならびに筒状浸漬管などを備
えた真空または大気圧の取鍋精錬装置、誘導溶解炉など
である。
BEST MODE FOR CARRYING OUT THE INVENTION
When roughly classified, it consists of a decarbonation refining process after tapping, and a reduction process mainly performing preliminary deoxidation, deoxidation, and addition of a rare earth element. Therefore, the refining apparatus for carrying out the method of the present invention includes a VOD furnace, an RH vacuum refining apparatus, a blowing apparatus for oxygen and a stirring gas, a vacuum or atmospheric ladle refining apparatus equipped with a cylindrical dipping tube, and the like. For example, an induction melting furnace.

【0027】本発明の第1方法およびその各条件の限定
理由について、wt%でC: 0.050〜0.15%、Si:0.05〜
0.5 %、Mn: 0.3〜0.6 %、P:0.04%以下、S:0.01
%以下、Cr:20〜30%、Ni:10〜15%,N: 0.1〜0.3
%、La+Ce:0.01〜0.1 %、残部:Feおよび不純物から
なる希土類元素含有オーステナイト系ステンレス鋼を製
造することを目標として、原料を電気炉で溶解して出鋼
した後、VOD炉を用いて取鍋精錬を行う場合を例にと
って説明する。
Regarding the first method of the present invention and the reasons for limiting the respective conditions, C: 0.050 to 0.15% in wt% and Si: 0.05 to
0.5%, Mn: 0.3-0.6%, P: 0.04% or less, S: 0.01
%, Cr: 20-30%, Ni: 10-15%, N: 0.1-0.3
%, La + Ce: 0.01 to 0.1%, balance: Fe, with the aim of producing a rare earth element-containing austenitic stainless steel consisting of impurities and impurities, the raw material was melted in an electric furnace, tapped, and then removed using a VOD furnace. The case of performing pot refining will be described as an example.

【0028】粗溶鋼をVOD炉で脱炭のための酸化精錬
を行ってC濃度を0.05〜0.15wt%にした後、最初にSiお
よびMnで予備脱酸(以下、予備複合脱酸という)を行
い、酸素濃度を予備的に低減する(前記の工程)。こ
の時の予備複合脱酸剤の添加方法は特に限定しないが、
予備複合脱酸の効果を発揮させるためには、Si濃度は0.
05wt%以上、Mn濃度は 0.3wt%以上にすることが望まし
い。しかし、製品材料の溶接性およびクリープ性の劣化
を防ぐ観点から、Si濃度は 0.4wt%以下、Mn濃度は 0.5
wt%未満であることが望ましい。
Oxidative refining of the crude molten steel for decarburization is performed in a VOD furnace to adjust the C concentration to 0.05 to 0.15 wt%, and then preliminary deoxidation (hereinafter referred to as preliminary composite deoxidation) with Si and Mn is performed. Then, the oxygen concentration is preliminarily reduced (step described above). At this time, the method of adding the preliminary composite deoxidizer is not particularly limited,
In order to exert the effect of preliminary composite deoxidation, the Si concentration is 0.
05wt% or more, Mn concentration is preferably 0.3wt% or more. However, from the viewpoint of preventing deterioration of the weldability and creep properties of product materials, the Si concentration is 0.4 wt% or less and the Mn concentration is 0.5 wt% or less.
It is preferably less than wt%.

【0029】次に前記の脱酸工程を施す。まず、Al濃
度が0.03wt%以上になるようAlを添加して脱酸を行い、
溶鋼中の全酸素濃度を望ましくは0.003 wt%以下まで低
下させる。Al濃度が0.03wt%未満では、全酸素濃度を上
記値以下まで下げることができず、清浄度を向上させる
効果に乏しい。このとき、Al濃度の更に望ましい範囲は
0.05〜0.1 wt%である。Al濃度が0.05wt%であれば、熱
力学的計算から全酸素濃度を0.002 wt%以下まで低減さ
せることが期待できる。Al濃度の望ましい上限は、製品
材料の溶接性および耐クリープ特性の観点から決まる。
Next, the above-mentioned deoxidizing step is performed. First, Al is added so that the Al concentration is 0.03 wt% or more, and deoxidation is performed.
The total oxygen concentration in molten steel is desirably reduced to 0.003 wt% or less. If the Al concentration is less than 0.03 wt%, the total oxygen concentration cannot be reduced to the above value or less, and the effect of improving cleanliness is poor. At this time, the more desirable range of Al concentration is
It is 0.05 to 0.1 wt%. If the Al concentration is 0.05 wt%, it can be expected from thermodynamic calculation that the total oxygen concentration is reduced to 0.002 wt% or less. The desirable upper limit of Al concentration is determined from the viewpoint of weldability and creep resistance of the product material.

【0030】このときのスラグの主成分はCaO とAl2O3
であるが、wt%でCaO/Al2O3 比の範囲が 1.5〜4.0 のCa
O-Al2O3 系スラグを形成させる必要がある。この下限を
1.5とする理由は、スラグ中Al2O3 の活量を充分下げてA
l脱酸の効果を発揮させるためである。このとき、CaO
/Al2O3 比のさらに望ましい下限は3である。CaO/Al2O
3 比が3以上であればCaO 飽和領域内で最もAl2O3 の活
量が低い領域となるので、Al濃度が0.03wt%であっても
全酸素濃度を0.002 wt%以下まで低減させることができ
る。一方、上限4を超えるとスラグの滓化性が悪化し、
操業上支障をきたすのみならず、滓化性の悪化スラグ−
溶鋼による脱酸反応の低下をもたらす。
The main components of the slag at this time are CaO and Al 2 O 3
However, the CaO / Al 2 O 3 ratio in the range of 1.5-4.0 wt%
It is necessary to form O-Al 2 O 3 slag. This lower bound
The reason for setting 1.5 is to reduce the activity of Al 2 O 3 in the slag sufficiently
l This is to exert the effect of deoxidation. At this time, CaO
A more desirable lower limit of the / Al 2 O 3 ratio is 3. CaO / Al 2 O
If the 3 ratio is 3 or more, the activity of Al 2 O 3 is the lowest in the CaO saturated region, so reduce the total oxygen concentration to 0.002 wt% or less even if the Al concentration is 0.03 wt%. You can On the other hand, when the upper limit of 4 is exceeded, the slag slagification property deteriorates,
Not only does it hinder the operation, but the slag that deteriorates the slag-
It causes a decrease in deoxidation reaction due to molten steel.

【0031】上記のようなCaO −Al2O3 スラグ中ではSi
O2は不純物となるため、不可避的に混入するSiO2の上記
スラグ中の望ましい濃度は10wt%未満、さらに望ましい
のは5wt%以下である。10wt%以上ではAlによってスラ
グ中のSiO2が還元され、溶鋼中の全酸素濃度およびSi濃
度の増加を招き、Al脱酸の効果が損なわれる。5wt%以
下であれば、実質的に全酸素濃度およびSi濃度の増加は
生じない。
Si is contained in the CaO--Al 2 O 3 slag as described above.
Since O 2 becomes an impurity, the desirable concentration of SiO 2 inevitably mixed in the slag is less than 10 wt%, and more desirably 5 wt% or less. When the content is 10 wt% or more, Al reduces SiO 2 in the slag, increases the total oxygen concentration and Si concentration in the molten steel, and impairs the Al deoxidizing effect. If it is 5 wt% or less, substantially no increase in total oxygen concentration and Si concentration occurs.

【0032】また、スラグ化(滓化)促進のため20Wt%
以下のCaF2の添加、耐火物保護のため20wt%以下のMgO
の添加は、それぞれ許容される。このようなスラグ組成
の制御は、予備複合脱酸した後必要に応じて一旦除滓し
てから、脱酸によって生じたAl2O3 濃度を考慮しなが
ら、生石灰、蛍石、ドロマイト等の造滓剤を添加すれば
よい。
20 Wt% for promoting slag formation (slag formation)
Addition of CaF 2 below, 20 wt% or less of MgO for protection of refractories
Is allowed in each case. Such control of the slag composition is performed by pre-composite deoxidation, then once slagging if necessary, and then taking into account the Al 2 O 3 concentration generated by deoxidation, while producing quick lime, fluorspar, dolomite, etc. A slag agent may be added.

【0033】次に前記の工程に移る。すなわち、これ
以降の全精錬工程にわたってAl濃度が0.03wt%以上とな
るように調整を行い、次いでキリングを施して全酸素濃
度を0.003 wt%以下とする。
Next, the above steps are performed. That is, the Al concentration is adjusted to 0.03 wt% or more over the entire refining process thereafter, and then killing is performed to reduce the total oxygen concentration to 0.003 wt% or less.

【0034】ただし、前記の工程が終了した後、必要
または必要程度に応じて、バブリングランスなどから窒
素添加、および温度低下を補償するため酸素吹き込みに
よる溶鋼昇熱(以下、Al昇熱という)を行う。
However, after the above steps are completed, if necessary or necessary, nitrogen is added from a bubbling lance or the like, and molten steel heating by oxygen blowing (hereinafter referred to as Al heating) to compensate for temperature decrease is performed. To do.

【0035】これらの処理を実施する場合にはその工程
以降、実施しない場合には前記の工程以降では、適宜
Alを添加して溶鋼中Al濃度が0.03wt%以上、望ましくは
0.05wt%以上となるように調整する必要がある。この理
由は、窒素添加やAl昇熱の工程において周囲からの酸素
による溶鋼中の全酸素濃度の増加を防ぐためである。
When these treatments are carried out, after that step, when they are not carried out, after the above-mentioned steps, appropriately.
Al concentration in molten steel is 0.03 wt% or more by adding Al, preferably
It is necessary to adjust it to be 0.05 wt% or more. The reason for this is to prevent an increase in the total oxygen concentration in the molten steel due to oxygen from the surroundings in the steps of nitrogen addition and Al heating.

【0036】このとき、Al濃度を0.05wt%以上とすれ
ば、溶鋼中の全酸素濃度を低く抑制することができる。
さらに、Al濃度を高めに維持する方が、Al濃度の調整お
よびその管理の面でより容易となる。また、窒素添加時
にAl濃度を高めておけば窒素の溶解度が高まり、窒素歩
留まりが向上し、処理時間も短縮できるという副次的な
効果も期待できる。
At this time, if the Al concentration is 0.05 wt% or more, the total oxygen concentration in the molten steel can be suppressed low.
Furthermore, maintaining the Al concentration at a higher level makes it easier to adjust and control the Al concentration. Further, if the Al concentration is increased when nitrogen is added, the solubility of nitrogen is increased, the nitrogen yield is improved, and the processing time can be shortened.

【0037】さらに全酸素濃度を0.003 wt%以下として
充分な清浄性を確保するために、最終工程である希土類
元素添加前に、キリング時間を設定する。この理由は、
Al脱酸によって生じたAl2O3 系介在物を浮上除去すると
ともに、前述の窒素添加やAl昇熱によって生じたスラグ
起因の介在物および再酸化起因の介在物も浮上除去する
ためである。
Further, in order to secure sufficient cleanliness by setting the total oxygen concentration to 0.003 wt% or less, the killing time is set before the final step of adding the rare earth element. The reason for this is
This is because the Al 2 O 3 -based inclusions generated by the Al deoxidation are floated and removed, and at the same time, the slag-induced inclusions and the reoxidation-induced inclusions that are caused by the above-mentioned nitrogen addition and Al heating are also floated and removed.

【0038】浮上除去に必要なキリング時間は、溶鋼量
および取鍋形状によって異なるが、簡便な指標として単
位溶鋼量(t:トン)の三乗根あたりの時間(s:秒)
で与えることができる。望ましいキリング時間は150 s
/(t1/3)以上、さらに望ましいのは200 s/(t1/3)
以上である。即ち、全酸素濃度は、キリング時間を150
s/(t1/3)以上とすれば0.003 wt%以下に、同じく20
0 s/(t1/3)以上とすれば0.002 wt%以下に、それぞ
れ低下させることができる。
The killing time required for floating removal varies depending on the molten steel amount and ladle shape, but as a simple index, the time per cube root of the unit molten steel amount (t: ton) (s: seconds)
Can be given by The desired killing time is 150 s
/ (T 1/3 ) or more, more preferably 200 s / (t 1/3 ).
That is all. That is, the total oxygen concentration is 150 times the killing time.
If s / (t 1/3 ) or more, 0.003 wt% or less, 20
If it is 0 s / (t 1/3 ) or more, it can be reduced to 0.002 wt% or less.

【0039】次いで、前記の希土類元素の添加工程を
施し、La+Ce濃度を0.01wt%以上とする。希土類元素
は、ランタノイドの他にY(イットリウム)も選択する
ことができ、その添加の際にはLaおよびCeを主成分とす
る合金(例えば、ミッシュメタル)および/またはYを
用いる。このような希土類元素の添加工程およびLa+Ce
濃度とすれば、溶鋼中の希土類酸化物生成を抑制するこ
とができる。
Next, the above-mentioned step of adding the rare earth element is performed to make the La + Ce concentration 0.01 wt% or more. As the rare earth element, Y (yttrium) can be selected in addition to the lanthanoid, and when adding Y, an alloy containing La and Ce as main components (for example, misch metal) and / or Y is used. Such rare earth element addition process and La + Ce
When the concentration is set, the production of rare earth oxides in molten steel can be suppressed.

【0040】前述のように溶鋼中の全酸素濃度を低下さ
せ、清浄度の高い状態で希土類元素を添加すれば、酸素
と親和力の強い希土類元素によって生じるこれら酸化物
の生成を最小限に抑制することができ、鋳片の清浄度の
悪化、さらにはノズル閉塞等の製造上の不都合を同時に
回避することができる。
As described above, if the total oxygen concentration in the molten steel is lowered and the rare earth element is added in a state of high cleanliness, the formation of these oxides caused by the rare earth element having a strong affinity for oxygen is suppressed to the minimum. Therefore, it is possible to avoid deterioration of the cleanliness of the slab and further avoid manufacturing inconveniences such as nozzle clogging.

【0041】上記の本発明方法が適用可能なLa+Ce濃度
の上限は、鋼種によって変わるが、およそ0.1 wt%であ
る。
The upper limit of the La + Ce concentration to which the method of the present invention can be applied is about 0.1 wt% although it varies depending on the steel type.

【0042】次に、本発明の第2方法について述べる。Next, the second method of the present invention will be described.

【0043】この第2方法は、さらに効果的な脱酸を行
い高清浄性を得るために、前記と同様に施す予備複合
脱酸後の各工程においてAl濃度を0.03wt%以上にすると
ともに、前記′の工程以降の各工程のようにCaおよび
/またはMgを添加して、所定のCaおよび/またはMg濃度
を維持し、Alとの複合脱酸効果を得るものである。
In the second method, in order to perform more effective deoxidation and obtain high cleanliness, the Al concentration is set to 0.03 wt% or more in each step after the preliminary composite deoxidation performed in the same manner as described above, and Ca and / or Mg are added as in each step after the above step 'to maintain a predetermined Ca and / or Mg concentration and obtain a complex deoxidizing effect with Al.

【0044】このAlとの複合脱酸効果は、Caおよび/ま
たはMg濃度を単独もしくは合計で0.001 wt%以上となる
ように調整することで得ることができる。Caおよび/ま
たはMg濃度の望ましい上限は0.005 wt%である。この複
合脱酸効果は、CaまたはMgの単独もしくはCaおよびMgの
併用のいずれの場合も、この上限値0.005 wt%を超える
と飽和し、増大しない。
The composite deoxidizing effect with Al can be obtained by adjusting the Ca and / or Mg concentrations alone or in total to 0.001 wt% or more. The desirable upper limit of Ca and / or Mg concentration is 0.005 wt%. This composite deoxidizing effect is saturated and does not increase when the upper limit value of 0.005 wt% is exceeded in either case of Ca or Mg alone or in the case of combined use of Ca and Mg.

【0045】特にCaを使用した場合には、脱酸生成物は
低融点化して凝集肥大化し易くなるため、浮上を促進す
る効果も副次的に期待できる。
In particular, when Ca is used, the deoxidation product has a low melting point and is likely to be aggregated and enlarged, so that an effect of promoting floating can be expected secondarily.

【0046】また、予備複合脱酸後の各工程においてAl
濃度を0.05wt%以上にすれば、Caおよび/またはMgを添
加する際の歩留まりが向上し、その濃度を単独もしくは
合計で少なくとも0.001 wt%にすればAlとの複合脱酸の
効果が高まり、かつさらなる脱酸向上および高清浄化が
得られる。
In each step after the preliminary composite deoxidation, Al
If the concentration is 0.05 wt% or more, the yield at the time of adding Ca and / or Mg is improved, and if the concentration is solely or at least 0.001 wt%, the effect of complex deoxidation with Al is enhanced, In addition, further improvement of deoxidation and high cleaning can be obtained.

【0047】CaおよびMgの添加方法は特に制限されな
い。例えば、Ca-Si 合金、Ni-Mg 合金などの塊状あるい
はワイヤー状のもので添加するなどの、一般的な方法が
使用可能である。
The method of adding Ca and Mg is not particularly limited. For example, it is possible to use a general method such as adding in Ca-Si alloy, Ni-Mg alloy or the like in a lump or wire form.

【0048】なお、鋼中のCaおよびMgは、必要に応じて
最後に溶鋼中から蒸発除去することができる。すなわ
ち、介在物が浮上し、スラグに吸収されて溶鋼外に除か
れて充分な高清浄度が得られ、かつ材料特性上特に必要
がない場合には、真空処理時および底吹きAr攪拌等の工
程をつけ加えることによって蒸発させ、適宜除去する。
If necessary, Ca and Mg in the steel can be finally removed by evaporation from the molten steel. That is, inclusions are floated, absorbed by slag and removed to the outside of molten steel to obtain a sufficiently high cleanliness, and when there is no particular need for material properties, during vacuum processing and bottom-blown Ar stirring, etc. Evaporate by adding steps and remove as appropriate.

【0049】本発明の第2方法においても、予備複合脱
酸後のSiおよびMn濃度、複合脱酸後のCaO-Al2O3 系スラ
グの組成、希土類元素添加前のキリング時間およびLa+
Ce濃度の上限については、本発明の第1方法の場合と全
く同じでよい。
Also in the second method of the present invention, the Si and Mn concentrations after the preliminary composite deoxidation, the composition of the CaO-Al 2 O 3 slag after the composite deoxidation, the killing time before the addition of the rare earth element and La +
The upper limit of the Ce concentration may be exactly the same as in the case of the first method of the present invention.

【0050】[0050]

【実施例】wt%でC: 0.050〜0.15%、Si: 0.1〜0.5
%、Mn: 0.3〜0.6 %、P:0.04%以下、S:0.01%以
下、Cr:22〜24%、Ni:10〜11%,N:0.21〜0.23%、
La+Ce:0.01〜0.05%を目標成分とする希土類元素
含有オーステナイト系ステンレス鋼の製造試験を次のよ
うに実施した。
[Example] C: 0.050 to 0.15% by weight%, Si: 0.1 to 0.5
%, Mn: 0.3 to 0.6%, P: 0.04% or less, S: 0.01% or less, Cr: 22 to 24%, Ni: 10 to 11%, N: 0.21 to 0.23%,
La + Ce: A production test of a rare earth element-containing austenitic stainless steel having a target component of 0.01 to 0.05% was carried out as follows.

【0051】(試験1)2t高周波誘導炉を用いてArシ
ールした状態で、脱炭後の状態を模擬した未脱酸溶鋼
(C:0.05〜0.15wt%、Si:0.02〜0.1 wt%、Mn: 0.1
〜0.3 wt%、N:0.01wt%以下、La+Ce:なし、その他
は上記組成、温度:1550〜1650℃)及び合成スラグを保
持し、Si及びMnによる予備複合脱酸ありまたはなし、Al
脱酸(Al添加)、バブリングによる窒素添加(320Nリッ
トル/min、約10分間)、Al昇熱を模擬した酸素吹き付け
(120Nリットル/min、約5分間)の各処理工程を施し
た。
(Test 1) Undeoxidized molten steel (C: 0.05 to 0.15 wt%, Si: 0.02 to 0.1 wt%, Mn) simulating the state after decarburization with Ar sealed using a 2t high frequency induction furnace : 0.1
~ 0.3 wt%, N: 0.01 wt% or less, La + Ce: None, others have the above composition, temperature: 1550 to 1650 ° C) and synthetic slag, with or without preliminary composite deoxidation by Si and Mn, Al
Each treatment step of deoxidation (addition of Al), addition of nitrogen by bubbling (320 Nl / min, about 10 minutes), and oxygen blowing simulating Al heating (120 Nl / min, about 5 minutes) were performed.

【0052】その後、 155〜470 s/(t1/3)のキリン
グを施して、LaおよびCeを主に含有するミッシュメタル
(以下、REM と記す)をLa+Ce濃度が0.01〜0.05wt%に
なるように添加した。
Thereafter, 155 to 470 s / (t 1/3 ) is subjected to killing so that the La + Ce concentration of the misch metal mainly containing La and Ce (hereinafter referred to as REM) becomes 0.01 to 0.05 wt%. So added.

【0053】次いで、Ar雰囲気中において、上注ぎでト
ラフおよびノズルを介して鋳型に鋳造し、2t鋼塊とし
た。
Next, in an Ar atmosphere, it was cast into a mold by top pouring through a trough and a nozzle to obtain a 2t steel ingot.

【0054】上記の各工程で、Al脱酸後のREM 添加前か
ら鋼塊に到るまでのAl濃度の最大値および最小値並びに
スラグ組成、REM 添加前の全酸素濃度および清浄度、鋼
塊での全酸素濃度および清浄度を調査した。表1にAl濃
度、スラグ組成、全酸素濃度(T.〔O〕)および清浄度
の評価を示す。
In each of the above steps, the maximum and minimum values of Al concentration before REM addition after reaching the steel ingot after Al deoxidation, slag composition, total oxygen concentration and cleanliness before REM addition, steel ingot The total oxygen concentration and cleanliness were investigated. Table 1 shows the evaluation of Al concentration, slag composition, total oxygen concentration (T. [O]) and cleanliness.

【0055】[0055]

【表1】 [Table 1]

【0056】全酸素濃度の評価は0.003 wt%を超えるも
のを×(不可)、0.002 wt%以上0.003 wt%未満を○
(良)、0.002 wt%未満を◎(優)とした。清浄度の評
価は、介在物指数で1を超えるものを×(不可)、 0.5
〜1を○(良)、0.5 未満を◎(優)とした。なお、こ
の介在物指数は、単位面積あたりの介在物個数を本鋼種
で基準となる単位面積あたりの介在物個数で除したもの
である。単位面積あたりの個数計測については、研磨し
た試料を光学顕微鏡(倍率 100倍)で介在物径別に個数
計測し、介在物径の重み付けをした個数を被検面積で除
したものである。
The evaluation of the total oxygen concentration is x (impossible) if it exceeds 0.003 wt%, and ○ if 0.002 wt% or more and less than 0.003 wt%
(Good) and less than 0.002 wt% were marked as ◎ (excellent). The cleanliness was evaluated as follows: x (impossible) if inclusion index exceeds 1, 0.5
-1 (good), less than 0.5 ◎ (excellent). The inclusion index is obtained by dividing the number of inclusions per unit area by the number of inclusions per unit area, which is a reference in the present steel type. Regarding the number of samples per unit area, the number of polished samples was measured by an optical microscope (magnification 100 times) for each inclusion diameter, and the weighted number of the inclusions was divided by the test area.

【0057】表1の実施例1から4に示すように、Siお
よびMnで予備複合脱酸を行い、それ以降の工程の間、Al
濃度が0.03wt%以上、スラグのCaO/Al2O3 比が1.5 以
上、SiO2濃度が10wt%未満になるよう調整した結果、RE
M 添加前後の清浄度がともに良好になった。
As shown in Examples 1 to 4 of Table 1, pre-composite deoxidation was performed with Si and Mn, and Al was used during the subsequent steps.
As a result of adjusting the concentration to be 0.03 wt% or more, the CaO / Al 2 O 3 ratio of slag to be 1.5 or more, and the SiO 2 concentration to be less than 10 wt%, RE
Both the cleanliness before and after the addition of M became good.

【0058】一方、比較例5に示すように、予備複合脱
酸を行わなかった場合、それ以降のAl濃度を安定させる
ことが困難であった。比較例6、7に示すように、予備
複合脱酸以降の工程でAl濃度が0.03wt%未満になると、
REM 添加前後の清浄度はいずれも不可であった。比較例
8に示すように、Al脱酸時のスラグのCaO/Al2O3 比が1.
5 未満になると、REM 添加前後の清浄度はともに不可で
あった。比較例9に示すように、Al脱酸時のスラグ中Si
O2濃度が10wt%以上になると、特にREM 添加後の清浄度
が不可であった。比較例10では、REM 添加前のキリング
時間を充分に確保しなかったために、全酸素濃度が0.00
3 wt%を超えた。この結果、特にREM 添加後の清浄度が
不可となった。
On the other hand, as shown in Comparative Example 5, when the preliminary composite deoxidation was not carried out, it was difficult to stabilize the Al concentration thereafter. As shown in Comparative Examples 6 and 7, when the Al concentration was less than 0.03 wt% in the steps after the preliminary composite deoxidation,
The cleanliness before and after the addition of REM was impossible. As shown in Comparative Example 8, the CaO / Al 2 O 3 ratio of the slag during Al deoxidation was 1.
When it was less than 5, the cleanliness before and after the addition of REM was impossible. As shown in Comparative Example 9, Si in the slag during deoxidation of Al
When the O 2 concentration was 10 wt% or more, the cleanliness was not good, especially after adding REM. In Comparative Example 10, since the killing time before the addition of REM was not sufficiently secured, the total oxygen concentration was 0.00
Exceeded 3 wt%. As a result, especially the cleanliness after REM addition became impossible.

【0059】(試験2)38t電気炉−VODプロセス
または80t電気炉−VODプロセスを用いて、VOD
炉で脱炭した未脱酸溶鋼(C:0.05〜0.15wt%、Si:0.
02〜0.05wt%、Mn:0.1 〜0.3 wt%、N:0.01wt%以
下、La+Ce:なし、その他は前記と同じ組成、温度:16
00〜1650℃)を用いて、前記と同目標成分の希土類元素
含有オーステナイト系ステンレス鋼の製造試験を実施し
た。
(Test 2) Using a 38t electric furnace-VOD process or an 80t electric furnace-VOD process, VOD
Undeoxidized molten steel decarburized in a furnace (C: 0.05 to 0.15 wt%, Si: 0.
02-0.05wt%, Mn: 0.1-0.3wt%, N: 0.01wt% or less, La + Ce: None, others are the same composition as above, temperature: 16
The production test of the rare earth element-containing austenitic stainless steel having the same target composition as the above was carried out by using (00 to 1650 ° C.).

【0060】SiおよびMnによる予備複合脱酸後、一旦除
滓して造滓剤を添加してスラグを形成し、Alを所定量添
加して脱酸を行った。その後、2回に分けて窒素添加を
行い、その間にAl昇熱を施して溶鋼温度を保った。
After the preliminary composite deoxidation with Si and Mn, the slag was once removed and a slag was added to form a slag, and a predetermined amount of Al was added for deoxidation. Thereafter, nitrogen was added in two batches, and Al was heated during that period to maintain the molten steel temperature.

【0061】この間、適宜Alを添加してAl濃度を確保し
た。さらにREM 添加前には所定条件のキリングを実施し
た。キリング後、ミッシュメタルを添加してLa+Ce濃度
の範囲を0.01〜0.05wt%に調整した。次いで、連続鋳造
にてスラブ形状に鋳込んだ。
During this period, Al was appropriately added to secure the Al concentration. Furthermore, killing was carried out under specified conditions before the addition of REM. After killing, misch metal was added to adjust the range of La + Ce concentration to 0.01 to 0.05 wt%. Then, it was cast into a slab shape by continuous casting.

【0062】上記の試験において、Al脱酸後のAl濃度お
よびスラグ組成、鋳造時のノズル閉塞状況、スラブでの
全酸素濃度および清浄度を調査した。
In the above test, the Al concentration after Al deoxidation and the slag composition, the nozzle clogging condition during casting, the total oxygen concentration in the slab and the cleanliness were investigated.

【0063】表2にAl濃度、スラグ組成、ノズル閉塞の
有無、全酸素濃度(T.〔O〕)および清浄度の評価を示
す。評価方法は試験1の場合と同じである。
Table 2 shows evaluations of Al concentration, slag composition, presence / absence of nozzle clogging, total oxygen concentration (T. [O]) and cleanliness. The evaluation method is the same as in the case of test 1.

【0064】[0064]

【表2】 [Table 2]

【0065】表2の実施例1から4に示すように、本発
明で定める条件または望ましい条件を全て満たす場合に
は、ノズル閉塞を起こすことなく連続鋳造が可能であ
り、かつスラブ清浄度は良好であった。これは、REM 添
加前に清浄度を向上させたことによるものである。
As shown in Examples 1 to 4 in Table 2, when all the conditions defined in the present invention or desirable conditions are satisfied, continuous casting is possible without causing nozzle clogging, and the slab cleanliness is good. Met. This is because the cleanliness was improved before the addition of REM.

【0066】一方、比較例5、6に示すように、本発明
で定める条件または望ましい条件を満たさない場合に
は、ノズル閉塞が生じて全量連続鋳造することができ
ず、また鋳造できたスラブの清浄度も不可であった。こ
れは、REM 添加前の清浄度が悪化した結果である上記試
験1および試験2で得られた結果を、さらに図1により
説明する。
On the other hand, as shown in Comparative Examples 5 and 6, when the conditions defined in the present invention or the desirable conditions were not satisfied, nozzle clogging occurred and the entire amount could not be continuously cast, and the slabs that could be cast were The cleanliness was also unacceptable. This is a result of deterioration of cleanliness before addition of REM, and the results obtained in the above-mentioned Test 1 and Test 2 will be further explained with reference to FIG.

【0067】図1は、上記試験1および試験2の場合
の、REM 添加前の清浄度にキリング時間が及ぼす影
響を示す図である。縦軸は清浄度指数であり、基準値=
1は本鋼種の許容基準の場合である。
FIG. 1 is a diagram showing the influence of the killing time on the cleanliness before the addition of REM in the above-mentioned Test 1 and Test 2. The vertical axis is the cleanliness index, and the standard value =
1 is the case of the acceptance standard for this steel type.

【0068】図示するように、単位溶鋼の三乗根t1/3
あたりのキリング時間が150 s未満では全酸素濃度が0.
003 wt%を超えるため清浄度が悪い。一方、150 s以上
では全酸素濃度が0.003 wt%以下となるため、清浄度が
良好となる。さらに200 s以上では全酸素濃度が0.002
wt%以下となるため、清浄度が優れている。
As shown in the figure, the cube root of unit molten steel t 1/3
If the killing time is less than 150 s, the total oxygen concentration is 0.
Cleanliness is poor because it exceeds 003 wt%. On the other hand, at 150 s or more, the total oxygen concentration is 0.003 wt% or less, so that the cleanliness is good. Furthermore, the total oxygen concentration is 0.002 for 200 s or more.
Since it is less than wt%, the cleanliness is excellent.

【0069】(試験3)前記試験2と同様の溶製をおこ
なった際に、Al脱酸以降の工程でAl添加とともに所定量
のCaおよび/またはMgの添加を行った時の、REM 添加前
における溶鋼中のCa+Mg濃度がスラブの清浄度に及ぼす
影響を調査した。図2に結果を示す。
(Test 3) When REM was added in the same manner as in Test 2 above, a predetermined amount of Ca and / or Mg was added together with Al in the steps after Al deoxidation, before addition of REM. The effect of Ca + Mg concentration in molten steel on the cleanliness of slabs was investigated. FIG. 2 shows the results.

【0070】図2は、スラブの清浄度とREM 添加前にお
ける溶鋼中のCa+Mg濃度との関係を示す図である。縦軸
は清浄度指数であり、基準値=1は前述のとおりであ
る。
FIG. 2 is a diagram showing the relationship between the cleanliness of the slab and the Ca + Mg concentration in the molten steel before the addition of REM. The vertical axis represents the cleanliness index, and the reference value = 1 is as described above.

【0071】図2に示すように、溶鋼中のCa+Mg濃度濃
度が10×10-3wt%以上で、スラブの清浄度は0.5 以下の
「優」となり、Caおよび/またはMgを所定濃度に維持す
ることが、スラブの高清浄化に有効であるのがわかる。
As shown in FIG. 2, when the concentration of Ca + Mg concentration in the molten steel is 10 × 10 −3 wt% or more, the cleanliness of the slab becomes “excellent” of 0.5 or less, and Ca and / or Mg are maintained at a predetermined concentration. It can be seen that this is effective for highly cleaning the slab.

【0072】[0072]

【発明の効果】本発明の希土類元素含有オーステナイト
系ステンレス鋼の製造方法によれば、溶製過程での溶鋼
の清浄性の飛躍的な向上が可能となり、さらには希土類
元素添加による清浄性の悪化を抑制することができる。
これによって、連続鋳造時のノズル閉塞を防止し、高品
質と安定操業とを両立させることが可能となる。
EFFECTS OF THE INVENTION According to the method for producing austenitic stainless steel containing a rare earth element of the present invention, the cleanliness of molten steel in the melting process can be dramatically improved, and the cleanliness of the molten steel deteriorates due to the addition of a rare earth element. Can be suppressed.
This makes it possible to prevent nozzle clogging during continuous casting and achieve both high quality and stable operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における試験1および試験2の場合の、
REM 添加前の清浄度にキリング時間が及ぼす影響を示す
図である。
FIG. 1 is the case of Test 1 and Test 2 in Examples,
It is a figure which shows the influence which killing time affects the cleanliness before REM addition.

【図2】スラブの清浄度とREM 添加前における溶鋼中の
Ca+Mg濃度との関係を示す図である。
[Fig. 2] Cleanliness of slabs and molten steel before REM addition
It is a figure which shows the relationship with Ca + Mg concentration.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類元素を含有するオーステナイト系ス
テンレス鋼の製造方法であって、溶解炉から粗溶鋼を取
鍋に出鋼して脱炭のための酸化精錬を行った後、Siおよ
びMnで予備脱酸し、引き続きAl濃度を0.03wt%以上とす
るとともに、CaO-Al2O3 系スラグを形成して脱酸を行
い、それ以降の全精錬工程にわたってAl濃度が0.03wt%
以上となるように調整を行い、次いでキリングを行い全
酸素濃度を0.003 wt%以下とした後、LaおよびCeを主成
分とする希土類元素を添加してその濃度を0.01wt%以上
とすることにより、希土類酸化物の生成を抑制すること
を特徴とする高清浄性の希土類元素含有オーステナイト
系ステンレス鋼の製造方法。
1. A method for producing an austenitic stainless steel containing a rare earth element, wherein crude molten steel is taken out from a melting furnace into a ladle and is subjected to oxidative refining for decarburization, followed by Si and Mn. Pre-deoxidation, followed by increasing the Al concentration to 0.03 wt% or more, forming CaO-Al 2 O 3 slag to deoxidize, and then the Al concentration is 0.03 wt% throughout the entire refining process.
After adjusting so that the total oxygen concentration is 0.003 wt% or less, the rare earth element containing La and Ce as the main components is added to make the concentration 0.01 wt% or more. , A method for producing a highly clean rare earth element-containing austenitic stainless steel, which is characterized by suppressing generation of rare earth oxides.
【請求項2】希土類元素を含有するオーステナイト系ス
テンレス鋼の製造方法であって、溶解炉から粗溶鋼を取
鍋に出鋼して脱炭のための酸化精錬を行った後、Siおよ
びMnで予備脱酸し、引き続きAl濃度を0.03ww%以上、Ca
および/またはMg濃度を単独または合計で0.001 wt%以
上とするとともに、CaO-Al2O3 系スラグを形成して脱酸
を行い、それ以降の全精錬工程にわたってAl濃度が0.03
wt%以上、Caおよび/またはMg濃度が単独または合計で
0.001 wt%以上となるように調整を行い、次いでキリン
グを行い全酸素濃度を0.003 wt%以下とした後、Laおよ
びCeを主成分とする希土類元素を添加してその濃度を0.
01wt%以上とすることにより、希土類酸化物生成を抑制
することを特徴とする高清浄性の希土類元素含有オース
テナイト系ステンレス鋼の製造方法。
2. A method for producing an austenitic stainless steel containing a rare earth element, wherein crude molten steel is taken out from a melting furnace into a ladle and is subjected to oxidative refining for decarburization, followed by Si and Mn. Pre-deoxidized, then continue to have Al concentration of 0.03 ww% or more, Ca
And / or Mg concentration is set to 0.001 wt% or more alone or in total, and CaO-Al 2 O 3 slag is formed to deoxidize, and Al concentration is 0.03 over the entire refining process thereafter.
wt% or more, Ca and / or Mg concentration alone or in total
After adjusting the concentration to 0.001 wt% or more, and then performing killing to reduce the total oxygen concentration to 0.003 wt% or less, a rare earth element containing La and Ce as the main components is added to reduce the concentration to 0.
A method for producing a highly clean rare earth element-containing austenitic stainless steel, which is characterized by suppressing the production of rare earth oxides by setting it to 01 wt% or more.
JP26812495A 1995-10-17 1995-10-17 Method for producing highly clean austenitic stainless steel Expired - Fee Related JP3319245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26812495A JP3319245B2 (en) 1995-10-17 1995-10-17 Method for producing highly clean austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26812495A JP3319245B2 (en) 1995-10-17 1995-10-17 Method for producing highly clean austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPH09111329A true JPH09111329A (en) 1997-04-28
JP3319245B2 JP3319245B2 (en) 2002-08-26

Family

ID=17454224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26812495A Expired - Fee Related JP3319245B2 (en) 1995-10-17 1995-10-17 Method for producing highly clean austenitic stainless steel

Country Status (1)

Country Link
JP (1) JP3319245B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088412A (en) * 2000-09-18 2002-03-27 Nippon Steel Corp Method for melting steel plate for thin sheet and cast slab cast by using the method
FR2838990A1 (en) * 2002-04-29 2003-10-31 Mannesmann Roehren Werke Ag PROCESS FOR MANUFACTURING ALUMINUM QUIET STEEL
DE10314476B4 (en) * 2002-04-29 2006-07-27 Salzgitter Mannesmann Gmbh Fabrication of an aluminum-killed steel for the continuous casting of semi-products for deep drawing applications without the addition of calcium
JP2007186722A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP2015515541A (en) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetic properties and calcium treatment method thereof
CN114317994A (en) * 2021-12-27 2022-04-12 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and organization process method
CN117660726A (en) * 2024-02-02 2024-03-08 东北大学 Steel rare earth treatment method for high-strength engineering machinery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088412A (en) * 2000-09-18 2002-03-27 Nippon Steel Corp Method for melting steel plate for thin sheet and cast slab cast by using the method
FR2838990A1 (en) * 2002-04-29 2003-10-31 Mannesmann Roehren Werke Ag PROCESS FOR MANUFACTURING ALUMINUM QUIET STEEL
GB2388847A (en) * 2002-04-29 2003-11-26 Mannesmann Roehren Werke Ag A method of making ultra-low-carbon aluminium killed steel
GB2388847B (en) * 2002-04-29 2005-03-09 Mannesmann Roehren Werke Ag Method for producing an Al-killed steel
DE10314476B4 (en) * 2002-04-29 2006-07-27 Salzgitter Mannesmann Gmbh Fabrication of an aluminum-killed steel for the continuous casting of semi-products for deep drawing applications without the addition of calcium
JP2007186722A (en) * 2006-01-11 2007-07-26 Sumitomo Metal Ind Ltd TREATMENT METHOD FOR MOLTEN IRON BY Nd ADDITION
JP4591354B2 (en) * 2006-01-11 2010-12-01 住友金属工業株式会社 Treatment method of molten iron by Nd addition
JP2015515541A (en) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド Non-oriented electrical steel sheet with excellent magnetic properties and calcium treatment method thereof
CN114317994A (en) * 2021-12-27 2022-04-12 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and organization process method
CN114317994B (en) * 2021-12-27 2024-01-30 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and tissue process method
CN117660726A (en) * 2024-02-02 2024-03-08 东北大学 Steel rare earth treatment method for high-strength engineering machinery
CN117660726B (en) * 2024-02-02 2024-04-26 东北大学 Steel rare earth treatment method for high-strength engineering machinery

Also Published As

Publication number Publication date
JP3319245B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP3550924B2 (en) Method for manufacturing high carbon steel wire and wire
JP3319245B2 (en) Method for producing highly clean austenitic stainless steel
JP6903182B1 (en) Ni-Cr-Al-Fe alloy with excellent surface properties and its manufacturing method
KR100885118B1 (en) Converter working method of phosphorous added low carbon steel using ladle slag
JP3510989B2 (en) Refining method of Si alloy iron and stainless steel used for refining stainless steel
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
JP4111352B2 (en) High-cleaning refining method for stainless steel
JP3536461B2 (en) High carbon steel wire with excellent drawability and aging resistance
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JPH08225820A (en) Production of high carbon silicon killed steel
JP3282865B2 (en) Manufacturing method of high carbon steel for high strength ultra fine wire
JPH07316631A (en) Deoxidizing and cleaning method of molten steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JPH05331523A (en) Method for refining molten steel for bearing steel
JP3221812B2 (en) Low oxygen steel smelting method
JPH06145766A (en) Method for producing low-al and low-si steel
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
JPH0892629A (en) Production of oxide dispersed steel
JPH08283823A (en) Production of dead soft steel excellent in surface property
CN117286318A (en) Low-oxygen smelting method of chromium-nickel-molybdenum stainless steel band
JP3843590B2 (en) Method for producing Ti deoxidized ultra-low carbon steel
CN118147529A (en) Ultralow-oxygen free-cutting alloy die steel and smelting method thereof
JPH06158143A (en) Steel making method of high carbon steel
JPS626605B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130621

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees