JP3510989B2 - Refining method of Si alloy iron and stainless steel used for refining stainless steel - Google Patents
Refining method of Si alloy iron and stainless steel used for refining stainless steelInfo
- Publication number
- JP3510989B2 JP3510989B2 JP19654499A JP19654499A JP3510989B2 JP 3510989 B2 JP3510989 B2 JP 3510989B2 JP 19654499 A JP19654499 A JP 19654499A JP 19654499 A JP19654499 A JP 19654499A JP 3510989 B2 JP3510989 B2 JP 3510989B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- stainless steel
- refining
- mgo
- alloy iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ステンレス鋼の精
錬に使用するSi合金鉄およびステンレス鋼の精錬方法
に関し、特に添加剤中の微量Ca、AlおよびMg濃度
とCr2 O3 還元後のスラグ成分とを制御することによ
り、溶鋼中の有害な硬質非金属介在物の生成を抑制しよ
うとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining Si alloy iron and stainless steel used for refining stainless steel, and particularly to trace amounts of Ca, Al and Mg in additives and slag after reduction of Cr 2 O 3. By controlling the components, the formation of harmful hard nonmetallic inclusions in molten steel is suppressed.
【0002】[0002]
【従来の技術】ステンレス鋼の介在物の無害化を図る技
術は数多く知られている。例えば、特開平4−9921
5号公報には、Fe−Si中の微量成分に関して、フェ
ロシリコン中の2wt%Alによって生成する非金属介在
物のAl2 O3 を、Al濃度の低いフェロシリコンを使
用することによって抑制している。しかし、この技術
は、Alを対象としたものであり、Caによる介在物組
成制御は示されていない。さらに、制御対象の介在物は
Al2 O3 であり、Al2 O3 と同様に有害な非金属介
在物であるAl2 O3 ・MgOについては全く触れられ
ていない。2. Description of the Related Art Many techniques for making harmless stainless steel inclusions are known. For example, JP-A-4-9921
In Japanese Patent Laid-Open No. 5 (1999), regarding a trace component in Fe-Si, non-metallic inclusion Al 2 O 3 generated by 2 wt% Al in ferrosilicon is suppressed by using ferrosilicon having a low Al concentration. There is. However, this technique is intended for Al, and the inclusion composition control by Ca is not shown. Further, inclusion of the control target is Al 2 O 3, is not mentioned at all the Al 2 O 3 · MgO is detrimental nonmetallic inclusions as well as Al 2 O 3.
【0003】次に、特開平7−188861号公報で
は、Al含有量の少ないフェロシリコンを用いて、取鍋
中にCa成分を窒素ガスとともに吹き込み、Al2 O3-
MnO系介在物を低融点の介在物に改質している。しか
し、この技術も改質すべき介在物の対象はAl2 O3-M
nOであり、酸素レベルが低くかつ高清浄の鋼に見られ
る、Al2 O3 ・MgOについては全く言及されていな
い。Next, in Japanese Patent Laid-Open Publication No. 7-188861, a ferrosilicon having a low Al content is used and a Ca component is blown into a ladle together with nitrogen gas to produce Al 2 O 3-.
The MnO-based inclusions are modified to have low melting points. However, the target of inclusions to be modified by this technology is Al 2 O 3 -M
No mention is made of Al 2 O 3 .MgO, which is nO and is found in highly clean steel with low oxygen levels.
【0004】一方、有害な非金属介在物であるAl2 O
3 ・MgOの生成を防止する技術として、特開平6−3
06438号公報には、2次精錬後のスラグ組成をMg
O濃度≦7wt%、Al2 O3 濃度≦6wt%、スラグ塩基
度CaO/SiO2 :1.3〜1.9に制御することに
より、Al2 O3 ・MgOの生成を抑制している。ま
た、特開平6−306439号公報では、スラグの還元
剤に〔wt%Mg〕≦1.0のAlを用い、出鋼後の取鍋
またはタンデイッシュ内の溶鋼にCaまたはCa合金を
添加することにより、硬質の非金属介在物であるAl2
O3 ・MgOおよびMgOを低融点のCaO−Al2 O
3 に制御している。On the other hand, Al 2 O which is a harmful non-metallic inclusion
As a technique for preventing the formation of 3.MgO, Japanese Patent Laid-Open No. 6-3
No. 06438 discloses the slag composition after secondary refining as Mg.
Generation of Al 2 O 3 .MgO is suppressed by controlling O concentration ≤ 7 wt%, Al 2 O 3 concentration ≤ 6 wt%, and slag basicity CaO / SiO 2 : 1.3 to 1.9. Further, in JP-A-6-306439, Al of [wt% Mg] ≦ 1.0 is used as a reducing agent for slag, and Ca or Ca alloy is added to molten steel in a ladle or a tundish after tapping. As a result, Al 2 which is a hard non-metallic inclusion is
O 3 · MgO and MgO are low melting point CaO-Al 2 O
It is controlled to 3 .
【0005】これらの技術は、介在物組成に最も影響す
る脱酸剤に関して、Al脱酸のみについて述べられ、通
常ステンレス鋼で行われているSi脱酸については全く
記述されていない。しかし、Si脱酸においても、有害
な非金属介在物であるAl2O3 ・MgOは生成してお
り、疵の原因になっているのが現状である。さらに、造
塊に近い時期(取鍋やタンデイッシュでの工程)に脱酸
能力のある元素を多量に投入することは、介在物数の増
加につながり、清浄性の悪化または取鍋精錬時間の増加
を招く。[0005] These techniques describe only Al deoxidizing as a deoxidizing agent that most affects the composition of inclusions, and do not describe Si deoxidizing which is usually performed in stainless steel. However, even in the deoxidation of Si, harmful non-metallic inclusions such as Al 2 O 3 .MgO are produced, which is the cause of defects. In addition, adding a large amount of deoxidizing element at a time close to the ingot (process in a ladle or tundish) leads to an increase in the number of inclusions, deteriorating the cleanliness or increasing the ladle refining time. Cause an increase.
【0006】[0006]
【発明が解決しようとする課題】本発明は、Si脱酸を
経て得られるステンレス鋼における、有害な硬質非金属
介在物Al2 O3 −MgOの生成を抑制することによっ
て、その後の圧延時や成形時に表面疵や加工割れの発生
を防止しようとするものである。SUMMARY OF THE INVENTION The present invention suppresses the formation of harmful hard non-metallic inclusions Al 2 O 3 --MgO in stainless steel obtained through Si deoxidation, so that the subsequent rolling or It is intended to prevent the occurrence of surface flaws and work cracks during molding.
【0007】[0007]
【課題を解決するための手段】本発明は、ステンレス鋼
の精錬時にスラグの還元剤ならびに溶鋼の脱酸剤として
使用する、Si合金鉄の組成およびCr2 O3 還元後の
スラグ組成を制御することにより、有害な硬質非金属介
在物Al2 O3 −MgOの生成を抑制し、圧延時や成形
時に表面疵や加工割れの発生を防止したところに特徴が
ある。The present invention controls the composition of Si alloy iron and the composition of slag after reduction of Cr 2 O 3 used as a reducing agent of slag and a deoxidizing agent of molten steel during refining of stainless steel. This suppresses the generation of harmful hard non-metallic inclusions Al 2 O 3 —MgO and prevents the generation of surface flaws and work cracks during rolling and forming.
【0008】すなわち、本発明の要旨構成は、次のとお
りである。
(1)Fe:10〜60wt%、残部が40〜90wt%の
SiとCa、AlおよびMgとを含む不可避的不純物元
素からなり、前記不純物中のCa、AlおよびMgが
〔wt%Ca〕≦2.0、〔wt%Al〕≦3.0および
〔wt%Mg〕≦0.1の範囲内でかつ、下記式を満たし
ていることを特徴とするステンレス鋼の精錬に用いるS
i合金鉄。
記
0.15×(〔wt%Al〕+3×〔wt%Mg〕)−0.
02≦〔wt%Ca〕That is, the gist of the present invention is as follows. (1) Fe: 10 to 60 wt% and the balance of 40 to 90 wt% of an unavoidable impurity element containing Si, Ca, Al and Mg, wherein Ca, Al and Mg in the impurities are [wt% Ca] ≦ 2.0, [wt% Al] ≦ 3.0 and [wt% Mg] ≦ 0.1, and S used for refining stainless steel characterized by satisfying the following formula:
i Alloy iron. Note 0.15 x ([wt% Al] + 3 x [wt% Mg])-0.
02 ≦ [wt% Ca]
【0009】(2)ステンレス鋼のAOD精錬におい
て、脱炭後のスラグのCr2 O3 還元剤および溶鋼の脱
酸剤として前記(1)に記載のSi合金鉄を使用し、C
r2 O3 還元後のスラグ成分を、フラックスとして石灰
石、そして螢石の添加により( wt%CaO)/( wt%Si
O2 ):1.3〜2.7の範囲に調整すると共に、下記
式の範囲に調整することを特徴とするステンレス鋼の精
錬方法。記 {( wt %Al 2 O 3 )+( wt %MgO)}+( wt %Ca
O)/( wt %SiO 2 )×10.0−38.0≦0 (2) In the AOD refining of stainless steel, the Si alloy iron described in (1) above is used as a Cr 2 O 3 reducing agent for decarburized slag and a deoxidizing agent for molten steel, and C
By adding limestone as a flux and fluorite to the slag component after the reduction of r 2 O 3 ( wt% CaO ) / ( wt% Si
O 2 ) : Adjusted in the range of 1.3 to 2.7, and
A method for refining stainless steel, characterized by adjusting within the range of the formula . Serial {(wt% Al 2 O 3 ) + (wt% MgO)} + (wt% Ca
O) / ( wt % SiO 2 ) × 10.0-38.0 ≦ 0
【0010】(3)ステンレス鋼のAOD精錬におい
て、脱炭後のスラグのCr2 O3 還元剤および溶鋼の脱
酸剤として前記(1)に記載のSi合金鉄を使用し、C
r2 O3 還元後のスラグを除滓し、その後、残滓にフラ
ックスとして石灰石、そして螢石の添加により( wt%C
aO)/( wt%SiO2 ):1.3〜2.7の範囲に調整
すると共に、下記式の範囲に調整することを特徴とする
ステンレス鋼の精錬方法。記 {( wt %Al 2 O 3 )+( wt %MgO)}+( wt %Ca
O)/( wt %SiO 2 )×10.0−38.0≦0 (3) In AOD refining of stainless steel, the Si alloy iron described in (1) above is used as a Cr 2 O 3 reducing agent for decarburized slag and a deoxidizing agent for molten steel, and C
After removing the slag after the reduction of r 2 O 3 , limestone as a flux and fluorite were added to the residue ( wt% C
aO ) / ( wt% SiO 2 ) : Adjusted within the range of 1.3 to 2.7
In addition, the method for refining stainless steel is characterized by adjusting within the range of the following formula . Serial {(wt% Al 2 O 3 ) + (wt% MgO)} + (wt% Ca
O) / ( wt % SiO 2 ) × 10.0-38.0 ≦ 0
【0011】(4)ステンレス鋼のVODまたはRH精
錬において、真空脱炭後のスラグのCr2 O3 還元剤お
よび溶鋼の脱酸剤として前記(1)に記載のSi合金鉄
を使用し、Cr2 O3 還元後のスラグ成分を、フラック
スとして石灰石、そして螢石の添加により( wt%Ca
O)/( wt%SiO2 ):1.3〜2.7の範囲に調整す
ると共に、下記式の範囲に調整することを特徴とするス
テンレス鋼の精錬方法。記 {( wt %Al 2 O 3 )+( wt %MgO)}+( wt %Ca
O)/( wt %SiO 2 )×10.0−38.0≦0 (4) In VOD or RH refining of stainless steel, the Si alloy iron described in the above (1) is used as the Cr 2 O 3 reducing agent of the slag after vacuum decarburization and the deoxidizing agent of molten steel, and Cr is used. By adding limestone as a flux and fluorite, the slag component after reduction of 2 O 3 ( wt% Ca
O ) / ( wt% SiO 2 ) : Adjust to the range of 1.3 to 2.7
In addition, the method for refining stainless steel is characterized by adjusting within the range of the following formula . Serial {(wt% Al 2 O 3 ) + (wt% MgO)} + (wt% Ca
O) / ( wt % SiO 2 ) × 10.0-38.0 ≦ 0
【0012】[0012]
【0013】なお、本発明のSi合金鉄は、溶鋼の脱酸
剤および/またはスラグの還元剤として用いるものであ
る。The Si alloy iron of the present invention is used as a deoxidizing agent for molten steel and / or a reducing agent for slag.
【0014】[0014]
【発明の実施の形態】発明者らは、圧延時や成形時に表
面疵や加工割れの発生したステンレス鋼板の疵部を詳細
に調査することにより、表面疵や加工割れの原因がAl
2 O3 −MgOを含む非金属介在物であることを見出し
た。このAl2 O3 −MgOを含む介在物は、高融点で
あり、凝集することで粗大化しやすく、硬質の非金属介
在物であるため、疵や割れの基点となる。以上の調査結
果を基に、有害な硬質非金属介在物の生成を防止し、融
点が約1300〜1400℃の低融点の軟質非金属介在
物である、CaO−SiO2 −Al2 O3 −MgO系介
在物が優先して生成する精錬方法について検討した。そ
の検討結果を、以下に詳述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The inventors have investigated in detail the flaws of a stainless steel plate in which surface flaws and work cracks have occurred during rolling and forming, and found that the cause of surface flaws and work cracks is Al.
It was found that it is a non-metallic inclusion containing 2 O 3 —MgO. The inclusions containing Al 2 O 3 —MgO have a high melting point, tend to coarsen due to agglomeration, and are hard nonmetallic inclusions, and thus become the starting point of flaws and cracks. Based on the above findings, to prevent the formation of harmful non-metallic inclusions, low melting soft nonmetallic inclusions having a melting point of about 1300~1400 ℃, CaO-SiO 2 -Al 2 O 3 - A refining method in which MgO-based inclusions are preferentially generated was examined. The examination results will be described in detail below.
【0015】まず、ステンレス鋼の鋼塊の製造手順をま
とめると、表1〜3に示す通りである。すなわち、表1
に示すAOD精錬は、ステンレス鋼の精錬法として、最
も一般的である。すなわち、電気炉で溶解し各成分元素
を添加した後、AODにて脱炭、Cr2 O3 還元、脱
酸、そして成分調整を行い、次いで取鍋精錬装置で温度
調整および成分微調整を行い、連続鋳造機または普通造
塊で溶鋼を鋳込むことによって、鋼塊が得られる。First, the procedures for producing a stainless steel ingot are summarized in Tables 1 to 3. That is, Table 1
The AOD refining shown in 1) is the most common refining method for stainless steel. That is, after melting in an electric furnace and adding each component element, decarburization, Cr 2 O 3 reduction, deoxidation, and component adjustment with AOD, and then temperature adjustment and component fine adjustment with a ladle refining device A steel ingot can be obtained by casting molten steel in a continuous casting machine or an ordinary ingot.
【0016】[0016]
【表1】 [Table 1]
【0017】表2に示す、別のAOD精錬は、溶鋼中の
硫黄濃度が高く、脱硫が必要な場合に適用される。すな
わち、電気炉で溶解し各成分元素を添加した後、AOD
にて脱炭、Cr2 O3 還元、除滓、フラックス添加、脱
酸、そして成分調整を行い、次いで取鍋精錬装置で温度
調整および成分微調整を行い、連続鋳造機または普通造
塊で溶鋼を鋳込むことによって、鋼塊が得られる。Another AOD refining shown in Table 2 is applied when the sulfur concentration in the molten steel is high and desulfurization is required. That is, after melting in an electric furnace and adding each component element, AOD
Decarburization, Cr 2 O 3 reduction, slag removal, flux addition, deoxidation, and component adjustment, then temperature adjustment and component fine adjustment with a ladle refining device, and continuous casting machine or ordinary ingot casting A steel ingot is obtained by casting.
【0018】[0018]
【表2】 [Table 2]
【0019】表3に示すVOD精錬は、特に低炭素、低
窒素鋼の製造に適用されるものである。すなわち、電気
炉で溶解し、各成分元素を添加した後、AODにて粗脱
炭を行い、VODまたはRHで真空脱炭、Cr2 O3 還
元、脱酸、そして成分調整を行い、取鍋精錬装置で温度
調整および成分微調整を行い、そして連続鋳造機または
普通造塊で溶鋼を鋳込むことによって、鋼塊が得られ
る。The VOD refining shown in Table 3 is particularly applicable to the production of low carbon, low nitrogen steel. That is, after melting in an electric furnace and adding each component element, rough decarburization is performed with AOD, vacuum decarburization, Cr 2 O 3 reduction, deoxidation, and component adjustment are performed with VOD or RH, and a ladle is prepared. A steel ingot is obtained by adjusting the temperature and finely adjusting the components in a refining apparatus, and casting the molten steel in a continuous casting machine or an ordinary ingot.
【0020】[0020]
【表3】 [Table 3]
【0021】さて、介在物組成に影響を及ぼす因子の
内、最も重要なのは脱酸剤の組成、特にSi合金鉄中の
Al、CaおよびMg、またCr2 O3 還元後のスラグ
組成、特に(wt%CaO)/(wt%SiO2 )、(wt%
Al2 O3 )および(wt%MgO)であり、それらの因
子と非金属介在物組成との関係を調査した。Of the factors that influence the composition of inclusions, the most important is the composition of the deoxidizer, particularly Al, Ca and Mg in Si alloy iron, and the slag composition after reduction of Cr 2 O 3 , especially ( wt% CaO) / (wt% SiO 2 ), (wt%
Al 2 O 3 ) and (wt% MgO), and the relationship between these factors and the composition of nonmetallic inclusions was investigated.
【0022】図1に、Si合金鉄中のCa、Alおよび
Mgと介在物組成との関係を示す。Al2 O3 −MgO
はSi合金鉄中にAlおよびMgが存在することにより
生成し、Caが存在することにより、Al2 O3 −Mg
Oの生成は抑制されていることがわかる。しかし、Ca
が2.0wt%以上では介在物中の(wt%CaO)が高く
なり、溶接時に黒点状の欠陥が発生する原因になるた
め、Caは2.0wt%以下とする必要がある。また、
〔wt%Al〕>3.0、〔wt%Mg〕>0.1でもSi
合金中のCaによるAl2 O3 −MgOの抑制は可能で
あるが、過脱酸による介在物数の増加、Si合金の製造
コスト増加を招くため、成分として必要でない限り、
〔wt%Al〕≦3.0、〔wt%Mg〕≦0.1にするの
が望ましい。また、図中の黒塗りの点はCa合金を取鍋
精錬(LF)で添加し、Si合金中の〔wt%Ca〕に換
算した値を用いている。つまり、Si合金のCa不足分
をCa合金によって補うことができるのである。FIG. 1 shows the relationship between Ca, Al and Mg in Si alloy iron and the composition of inclusions. Al 2 O 3 -MgO
Is produced by the presence of Al and Mg in Si alloy iron, and by the presence of Ca, Al 2 O 3 -Mg
It can be seen that the generation of O is suppressed. However, Ca
Is 2.0 wt% or more, (wt% CaO) in the inclusions becomes high, which causes defects in black dots during welding. Therefore, Ca must be 2.0 wt% or less. Also,
Even if [wt% Al]> 3.0 and [wt% Mg]> 0.1, Si
Although it is possible to suppress Al 2 O 3 —MgO by Ca in the alloy, since it causes an increase in the number of inclusions due to over-deoxidation and an increase in the manufacturing cost of the Si alloy, unless necessary as a component,
It is desirable that [wt% Al] ≦ 3.0 and [wt% Mg] ≦ 0.1. The black dots in the figure are the values obtained by adding Ca alloy by ladle refining (LF) and converting it to [wt% Ca] in Si alloy. That is, the Ca deficiency of the Si alloy can be supplemented by the Ca alloy.
【0023】以上の結果から、Si合金鉄中のCa、A
lおよびMgの含有量は、図1に示す点線の範囲に規制
すること、すなわち、〔wt%Ca〕≦2.0、〔wt%A
l〕≦3.0および〔wt%Mg〕≦0.1に制限した上
で、次式(1)を満足する範囲に規制することによっ
て、Al2 O3 −MgOの生成の抑制が実現することが
わかる。なお、Si合金のCaの不足分はCa合金を添
加することにより補うことができる。
0.15×(〔wt%Al〕+3×〔wt%Mg〕)−0.02≦〔wt%Ca〕
---(1)From the above results, Ca and A in Si alloy iron
The contents of 1 and Mg should be restricted within the range of the dotted line shown in FIG. 1, that is, [wt% Ca] ≦ 2.0, [wt% A
l] ≦ 3.0 and [wt% Mg] ≦ 0.1, and by limiting the ratio to satisfy the following expression (1), the generation of Al 2 O 3 —MgO can be suppressed. I understand. In addition, the shortage of Ca in the Si alloy can be supplemented by adding the Ca alloy. 0.15 x ([wt% Al] + 3 x [wt% Mg]) -0.02 ≤ [wt% Ca] --- (1)
【0024】次に重要な因子は、スラグの塩基度であ
る。スラグは、主として、CaO−SiO2 ・CaF2
の混合溶融物であり、場合によってはMgOおよびAl
2 O3を含むこともある。このスラグは、フラックスと
して石灰石および蛍石を添加し、Si合金鉄による脱酸
生成物SiO2 とともに溶融体を形成することにより、
生成する。なお、MgOは必要に応じて耐火物保護の目
的で添加され、Al2 O 3 はSi合金鉄中の微量成分で
あるAlが酸化して生じる。The next most important factor is the basicity of the slag.
It Slag is mainly CaO-SiO.2・ CaF2
A mixed melt of MgO and Al in some cases
2O3May be included. This slag is
Then, add limestone and fluorite and deoxidize with Si alloy iron
Product SiO2By forming a melt with
To generate. In addition, MgO should be used as a refractory protection
Al added as2O 3Is a trace element in Si alloy iron
It is generated by the oxidation of certain Al.
【0025】図2に、上記した成分範囲に調整したSi
合金鉄を使用した際の、Cr2 O3還元後スラグの塩基
度(wt%CaO)/(wt%SiO2 )と介在物組成との
関係を示す。ここで、(wt%CaO)とは、石灰石(wt
%CaO)の他、蛍石中のCa(56/78×Ca
F2)に由来するCaOを含む。同図から、(wt%Ca
O)/(wt%SiO2 )が1.3〜2.7の範囲内であ
れば、Al2 O3 −MgOの生成が抑制されることがわ
かる。In FIG. 2, Si adjusted to the above component range is used.
The relationship between the basicity (wt% CaO) / (wt% SiO 2 ) of Cr 2 O 3 reduced slag and the composition of inclusions when iron alloy is used is shown. Here, (wt% CaO) means limestone ( wt %
% Ca O), as well as Ca in fluorspar ( 56/78 × Ca
It contains CaO derived from F 2 ). From the figure, (wt% Ca
It can be seen that when O) / (wt% SiO 2 ) is in the range of 1.3 to 2.7, the production of Al 2 O 3 —MgO is suppressed.
【0026】また、図3に、Al2 O3 およびMgOを
含むスラグの組成と介在物組成との関係を示す。同図か
ら、点線で囲まれた範囲外ではAl2 O3 −MgO介在
物が生成することが明らかである。従って、次式(2)
の範囲内にCr2 O3 還元後のスラグを調整し、精錬を
行う必要がある。
{(wt%Al2 O3 )+(wt%MgO)}+(wt%CaO)/(wt%SiO2 )
×10.0−38.0≦0----(2)
ただし、1.3≦(wt%CaO)/(wt%SiO2 )≦
2.7FIG. 3 shows the relationship between the composition of slag containing Al 2 O 3 and MgO and the composition of inclusions. From the figure, it is clear that Al 2 O 3 —MgO inclusions are formed outside the range surrounded by the dotted line. Therefore, the following equation (2)
It is necessary to adjust the slag after the reduction of Cr 2 O 3 within the range of and to perform refining. {(Wt% Al 2 O 3 ) + (wt% MgO)} + (wt% CaO) / (wt% SiO 2 ) × 10.0-38.0 ≦ 0 ---- (2) However, 1. 3 ≦ (wt% CaO) / (wt% SiO 2 ) ≦
2.7
【0027】なお、Si合金鉄に不可避的に含まれる、
Al、MgおよびCaの介在物組成に与える影響は、そ
れぞれ次のように考えられる。はじめに、Si合金鉄中
のAlは、溶鋼中のOや非金属介在物中の低級酸化物
(SiO2 、MnO、Cr2 O3 )と反応して、Al2
O3 −MgOを構成する、Al2 O3 になるとともに、
スラグ中のMgOを還元し、還元されたMgが介在物と
反応してAl2 O3 −MgOを構成するMgOを生成す
る。同様に、Si合金鉄中のMgも溶鋼中のOや非金属
介在物中の低級酸化物と反応して、Al2O3 −MgO
を構成するMgOになる。従って、Si合金中のAlお
よびMgが高い方が、Al2 O3 −MgOを生成しやす
くなる。In addition, it is inevitably contained in Si alloy iron,
The influences of Al, Mg and Ca on the composition of inclusions are considered as follows. First, Al in Si alloy iron reacts with O in molten steel and lower oxides (SiO 2 , MnO, Cr 2 O 3 ) in nonmetallic inclusions to form Al 2
O 3 -MgO constitutes Al 2 O 3 , and
MgO in the slag is reduced, and the reduced Mg reacts with the inclusions to produce MgO that constitutes Al 2 O 3 —MgO. Similarly, Mg in Si alloy iron also reacts with O in molten steel and lower oxides in non-metallic inclusions to form Al 2 O 3 —MgO.
Becomes MgO which constitutes Therefore, the higher Al and Mg in the Si alloy, the easier it is to produce Al 2 O 3 —MgO.
【0028】Caは同様に溶鋼中のOや非金属介在物中
の低級酸化物と反応して、CaO−SiO2 −A12 O
3 −MgO系非金属介在物の一部を構成する、CaOを
生成する。Caは、A1やMgより酸化物を作り易いた
め、溶鋼中に微量で存在していても非金属介在物中にC
aOが存在することになり、結果として、Al2 O3−
MgOの生成を抑制することになる。Similarly, Ca reacts with O in molten steel and lower oxides in non-metallic inclusions to form CaO-SiO 2 -A 12 O.
3- CaO is formed which constitutes a part of the MgO-based non-metallic inclusion. Since Ca is easier to form an oxide than A1 or Mg, even if it is present in the molten steel in a trace amount, Ca is present in the non-metallic inclusions.
aO is present, and as a result, Al 2 O 3 −
This will suppress the production of MgO.
【0029】また、スラグ組成の影響は次のように考え
られる。すなわち、スラグ塩基度が上昇することによ
り、溶鋼中の酸素ポテンシャルが低下するとともに、ス
ラグ中のMgOの活量が上昇し、スラグ中のMgOが分
解し、溶鋼中に溶存Mgを生成する。そして、溶存Mg
が介在物と反応することで、介在物中の(wt%MgO)
が上昇して、Al2 O3 −MgOが生成される。逆に
(wt%CaO)/(wt%SiO2 )が1.3未満になる
と、MgOのスラグへの溶解度が上昇するため、MgO
の添加量が少なくても、耐火物からの溶損により、スラ
グ中の(wt%MgO)が上昇して、MgOの活量が上が
り、同様の機構により、Al2 O3 −MgO介在物を生
成しやすくなる。同様に、スラグ中のAl2 O3 および
MgOの含有量が2.7をこえる場合も、これらの酸化
物の活量が高くなり、Al2 O3 −MgO介在物を生成
しやすくなる。The influence of the slag composition is considered as follows. That is, as the slag basicity increases, the oxygen potential in the molten steel decreases, the activity of MgO in the slag increases, MgO in the slag decomposes, and dissolved Mg is generated in the molten steel. And dissolved Mg
Reacts with the inclusions, resulting in (wt% MgO) in the inclusions.
Rises and Al 2 O 3 —MgO is produced. On the other hand, when (wt% CaO) / (wt% SiO 2 ) is less than 1.3, the solubility of MgO in slag increases, so MgO
Even if the addition amount of Al is small, (wt% MgO) in the slag rises due to melting loss from the refractory, the activity of MgO rises, and by the same mechanism, Al 2 O 3 -MgO inclusions are removed. It is easy to generate. Similarly, when the contents of Al 2 O 3 and MgO in the slag exceed 2.7, the activities of these oxides increase and Al 2 O 3 —MgO inclusions are easily generated.
【0030】[0030]
【実施例】60ton のステンレス鋼を電気炉で溶解し、
AODまたはVODにて、種々のSi合金鉄をスラグの
Cr2 O3 の還元剤および溶鋼の脱酸剤として用い、ま
たCr2 O3 還元後のスラグを調整することを基本とし
て、表1〜3に示した、それぞれの工程で精錬を行っ
た。その後、連続鋳造機で鋳造した後、熱間圧延、次い
で冷間圧延を経て、1mm厚のステンレス鋼板を製造し
た。かくして得られた1mm厚のステンレス鋼板の表面
欠陥数と、加工割れの原因になる内部欠陥の数とを調査
した。その結果を、表4〜6に示す。なお、表面欠陥は
目視、内部欠陥は超音波探傷機により測定した。Example: 60 tons of stainless steel was melted in an electric furnace,
In AOD or VOD, various Si alloy irons are used as a reducing agent for Cr 2 O 3 of slag and a deoxidizing agent for molten steel, and the slag after Cr 2 O 3 reduction is basically adjusted. Refining was performed in each step shown in 3. Then, after casting with a continuous casting machine, hot rolling and then cold rolling were performed to manufacture a stainless steel plate having a thickness of 1 mm. The number of surface defects of the 1 mm-thick stainless steel sheet thus obtained and the number of internal defects that cause work cracking were investigated. The results are shown in Tables 4-6. The surface defects were visually observed, and the internal defects were measured by an ultrasonic flaw detector.
【0031】すなわち、表1に示した工程に従って、表
4に示すSi合金鉄をスラグのCr 2 O3 の還元剤およ
び溶鋼の脱酸剤に用いて、Cr2 O3 還元後のスラグの
調整は、Cr2 O3 還元後にスラグの組成分析を行い、
目的のスラグ組成になるように、CaO、CaF2 など
のフラックスを投入して行った。表4において、No.4
−1〜4−6までは比較例、No. 4−7〜4−12は発
明例を示す。No. 4−1、4−5、4−9、4−12は
Si合金中のCa不足をCa合金の添加で補った例であ
り、Si合金鉄中のCa濃度に換算して表記してある。That is, according to the steps shown in Table 1, the table
The Si alloy iron shown in 4 is the slag of Cr 2O3Reducing agent and
Used as a deoxidizer for molten steel and Cr2O3Of slag after reduction
Adjustment is Cr2O3After reducing, analyze the composition of the slag,
CaO, CaF so that the target slag composition is obtained2Such
It was carried out by throwing in the flux. In Table 4, No. 4
-1 to 4-6 are comparative examples, No. 4-7 to 4-12 are
Here is a clear example. No. 4-1, 4-5, 4-9, 4-12
This is an example of supplementing Ca deficiency in Si alloy by adding Ca alloy.
It is expressed in terms of Ca concentration in Si alloy iron.
【0032】また、表2に示した工程に従って、表5に
示すSi合金鉄をスラグのCr2 O 3 の還元剤および溶
鋼の脱酸剤に用いて、Cr2 O3 還元後のスラグの調整
は、Cr2 O3 還元後にスラグの組成分析を行い、除滓
をした後の残滓に、目的のスラグ組成になるようにCa
O、CaF2 などのフラックスを投入して行った。表5
において、No. 5−1〜5−6までは比較例、No. 5−
7〜5−12は発明例を示す。No. 5−1、5−5、5
−9、5−12はSi合金鉄中のCa不足をCa合金の
添加で補った例であり、Si合金鉄中のCa濃度に換算
して表記してある。In addition, according to the steps shown in Table 2,
Shows Si alloy iron as slag Cr2O 3Reducing agent and melt
Used as a deoxidizer for steel, Cr2O3Adjustment of slag after reduction
Is Cr2O3After reduction, analyze the composition of the slag and remove the slag.
The Ca residue so that the target slag composition is obtained
O, CaF2It was done by adding flux such as. Table 5
No. 5-1 to 5-6 are comparative examples, and No. 5-
7 to 5-12 show invention examples. No. 5-1, 5-5, 5
-9, 5-12 are the Ca alloy shortage in the Si alloy iron
It is an example supplemented by addition, converted to Ca concentration in Si alloy iron
Is written.
【0033】さらに、表3に示した工程に従って、表6
に示すSi合金鉄をスラグのCr2O3 の還元剤および
溶鋼の脱酸剤に用いて、Cr2 O3 還元後のスラグの調
整は、Cr2 O3 還元後にスラグの組成分析を行い、目
的のスラグ組成になるように、CaO、CaF2 などの
フラックスを投入して行った。表6において、No. 6−
1〜6−6までは比較例、No. 6−7〜6−12は発明
例を示す。No. 6−1、6−5、6−9、6−12はS
i合金中のCa不足をCa合金の添加で補った例であ
り、Si合金鉄中のCa濃度に換算して表記してある。Further, according to the steps shown in Table 3, Table 6
The Si ferroalloy shown in with the deoxidizer of the reducing agent and the molten steel Cr 2 O 3 in the slag, adjusting the slag after Cr 2 O 3 reduction is carried out composition analysis of the slag after Cr 2 O 3 reduction, A flux such as CaO or CaF 2 was added so that the desired slag composition was obtained. In Table 6, No. 6-
Nos. 1-6 to 6-6 are comparative examples, and Nos. 6-7 to 6-12 are inventive examples. No. 6-1, 6-5, 6-9, 6-12 is S
This is an example in which the Ca deficiency in the i alloy is supplemented by the addition of the Ca alloy, and is expressed in terms of the Ca concentration in the Si alloy iron.
【0034】[0034]
【表4】 [Table 4]
【0035】[0035]
【表5】 [Table 5]
【0036】[0036]
【表6】 [Table 6]
【0037】表4〜6から明らかなように、発明例で
は、有害なAl2 O3 −MgO複合介在物の生成が防止
された結果、表面欠陥および内部欠陥の発生を回避する
ことができた。As is clear from Tables 4 to 6, in the invention examples, generation of harmful Al 2 O 3 --MgO composite inclusions was prevented, and as a result, generation of surface defects and internal defects could be avoided. .
【0038】[0038]
【発明の効果】本発明によれば、微量に含有される、A
l、MgおよびCaの濃度を有利に制御したSi合金鉄
を提供でき、さらに、このSi合金鉄をステンレス鋼の
精錬に使用すること、そしてCr2 O3 還元期後のスラ
グ組成を制御することにより、溶鋼中における有害な硬
質非金属介在物の生成を抑制できるから、圧延時や成形
時に表面疵や加工割れの発生のない、ステンレス鋼を提
供できる。According to the present invention, A contained in a trace amount
It is possible to provide a Si-alloy iron in which the concentrations of 1, Mg and Ca are advantageously controlled, and further to use the Si-alloy iron for refining stainless steel, and to control the slag composition after the Cr 2 O 3 reduction period. As a result, it is possible to suppress the generation of harmful hard non-metallic inclusions in the molten steel, so that it is possible to provide a stainless steel that is free from surface defects and work cracks during rolling and forming.
【図1】Si合金中の〔wt%Ca〕、〔wt%Al〕およ
び〔wt%Mg〕と介在物組成との関係を示すグラフであ
る。FIG. 1 is a graph showing the relationship between [wt% Ca], [wt% Al] and [wt% Mg] in a Si alloy and the composition of inclusions.
【図2】スラグ塩基度(wt%CaO)/(wt%Si
O2 )と介在物組成との関係を示すグラフである。FIG. 2 Slag basicity (wt% CaO) / (wt% Si
3 is a graph showing the relationship between O 2 ) and the composition of inclusions.
【図3】スラグ組成と介在物組成との関係を示すグラフ
である。FIG. 3 is a graph showing the relationship between slag composition and inclusion composition.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 33/04 C22C 33/04 C 38/00 302 38/00 302Z 38/06 38/06 (72)発明者 田中 秀毅 神奈川県川崎市川崎区小島町4番2号 日本冶金工業株式会社 川崎製造所内 (72)発明者 笹山 眞一 神奈川県川崎市川崎区小島町4番2号 日本冶金工業株式会社 川崎製造所内 (56)参考文献 特開 昭53−11112(JP,A) 特開2000−1718(JP,A) 特開 平10−158720(JP,A) 特開 平9−104912(JP,A) 特開 平11−50127(JP,A) 特開 平3−211214(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21C 7/04 C21C 7/00 C21C 7/072 C21C 7/10 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 33/04 C22C 33/04 C 38/00 302 38/00 302Z 38/06 38/06 (72) Inventor Hideki Tanaka Kanagawa Prefecture No. 4-2 Kojima-cho, Kawasaki-ku, Kawasaki-shi Nippon Metallurgical Industry Co., Ltd. Kawasaki Plant (72) Inventor Shinichi Sasayama No. 4-2 Kojima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Nippon Metallurgy Co., Ltd. Kawasaki Plant (56) References JP 53-11112 (JP, A) JP 2000-1718 (JP, A) JP 10-158720 (JP, A) JP 9-104912 (JP, A) JP 11-50127 ( JP, A) JP-A-3-211214 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C21C 7/04 C21C 7/00 C21C 7/072 C21C 7/10
Claims (5)
wt%のSiとCa、AlおよびMgとを含む不可避的不
純物元素からなり、前記不純物中のCa、AlおよびM
gが〔wt%Ca〕≦2.0、〔wt%Al〕≦3.0およ
び〔wt%Mg〕≦0.1の範囲内でかつ、下記式を満た
していることを特徴とするステンレス鋼の精錬に用いる
Si合金鉄。 1. Fe: 10 to 60 wt%, balance 40 to 90
It consists of inevitable impurity elements containing wt% of Si and Ca, Al and Mg, and Ca, Al and M in the impurities.
Stainless steel characterized in that g is in the range of [wt% Ca] ≦ 2.0, [wt% Al] ≦ 3.0 and [wt% Mg] ≦ 0.1 and satisfies the following formula: Si alloy iron used for refining.
剤として用いることを特徴とする請求項1に記載のSi
合金鉄。2. The Si according to claim 1, which is used as a deoxidizing agent for molten steel and / or a reducing agent for slag.
Alloy iron.
後のスラグのCr2 O3 還元剤および溶鋼の脱酸剤とし
て請求項1に記載のSi合金鉄を使用し、Cr2 O3 還
元後のスラグ成分を、フラックスとして石灰石、そして
螢石の添加により( wt%CaO)/( wt%SiO2 ):
1.3〜2.7の範囲に調整すると共に、下記式の範囲
に調整することを特徴とするステンレス鋼の精錬方法。記 {( wt %Al 2 O 3 )+( wt %MgO)}+( wt %Ca
O)/( wt %SiO 2 )×10.0−38.0≦0 3. In the AOD refining of stainless steel, the Si alloy iron according to claim 1 is used as a Cr 2 O 3 reducing agent for decarburizing slag and a deoxidizing agent for molten steel, and after reducing Cr 2 O 3 Of the slag component of limestone as a flux and fluorite ( wt% CaO 2 ) / ( wt% SiO 2 ) :
A method for refining stainless steel, characterized by adjusting the range of 1.3 to 2.7 and adjusting the range of the following formula . Serial {(wt% Al 2 O 3 ) + (wt% MgO)} + (wt% Ca
O) / ( wt % SiO 2 ) × 10.0-38.0 ≦ 0
後のスラグのCr2 O3 還元剤および溶鋼の脱酸剤とし
て請求項1に記載のSi合金鉄を使用し、Cr2 O3 還
元後のスラグを除滓し、 その後、残滓にフラックスとして石灰石、そして螢石の
添加により( wt%CaO)/( wt%SiO2 ):1.3〜
2.7の範囲に調整すると共に、下記式の範囲に調整す
ることを特徴とするステンレス鋼の精錬方法。記 {( wt %Al 2 O 3 )+( wt %MgO)}+( wt %Ca
O)/( wt %SiO 2 )×10.0−38.0≦0 4. In the AOD refining of stainless steel, the Si alloy iron according to claim 1 is used as a Cr 2 O 3 reducing agent for decarburized slag and a deoxidizing agent for molten steel, and after Cr 2 O 3 reduction. Slag was removed, and then limestone as a flux and fluorite were added to the residue ( wt% CaO ) / ( wt% SiO 2 ) : 1.3-
A method for refining stainless steel, characterized in that the range is adjusted to the range of 2.7 and the range of the following formula . Serial {(wt% Al 2 O 3 ) + (wt% MgO)} + (wt% Ca
O) / ( wt % SiO 2 ) × 10.0-38.0 ≦ 0
いて、真空脱炭後のスラグのCr2 O3 還元剤および溶
鋼の脱酸剤として請求項1に記載のSi合金鉄を使用
し、Cr2 O3 還元後のスラグ成分を、フラックスとし
て石灰石、そして螢石の添加により( wt%CaO)/( w
t%SiO2 ):1.3〜2.7の範囲に調整すると共
に、下記式の範囲に調整することを特徴とするステンレ
ス鋼の精錬方法。記 {( wt %Al 2 O 3 )+( wt %MgO)}+( wt %Ca
O)/( wt %SiO 2 )×10.0−38.0≦0 5. In the VOD or RH refining of stainless steel, the Si alloy iron according to claim 1 is used as a Cr 2 O 3 reducing agent for the slag after vacuum decarburization and a deoxidizing agent for the molten steel, and Cr 2 O is used. 3 Add the slag component after reduction to limestone as flux and fluorite ( wt% CaO ) / ( w
t% SiO 2 ) : Adjusted within the range of 1.3 to 2.7.
In addition, a method for refining stainless steel, characterized by adjusting to the range of the following formula . Serial {(wt% Al 2 O 3 ) + (wt% MgO)} + (wt% Ca
O) / ( wt % SiO 2 ) × 10.0-38.0 ≦ 0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19654499A JP3510989B2 (en) | 1999-07-09 | 1999-07-09 | Refining method of Si alloy iron and stainless steel used for refining stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19654499A JP3510989B2 (en) | 1999-07-09 | 1999-07-09 | Refining method of Si alloy iron and stainless steel used for refining stainless steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001026811A JP2001026811A (en) | 2001-01-30 |
JP3510989B2 true JP3510989B2 (en) | 2004-03-29 |
Family
ID=16359516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19654499A Expired - Lifetime JP3510989B2 (en) | 1999-07-09 | 1999-07-09 | Refining method of Si alloy iron and stainless steel used for refining stainless steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3510989B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090062187A (en) * | 2007-12-12 | 2009-06-17 | 주식회사 포스코 | Method of refining high cr ferritic stainless steel for lowering c |
KR101239428B1 (en) * | 2009-12-15 | 2013-03-06 | 주식회사 포스코 | method of manufacturing ferritic stainless steel with good surface quality |
KR101239555B1 (en) | 2009-12-24 | 2013-03-06 | 주식회사 포스코 | The method for manufacturing the Ti bearing ferritic stainless steel improved the equiaxed structure ratio |
JP6330707B2 (en) * | 2015-03-26 | 2018-05-30 | Jfeスチール株式会社 | Melting method of low nitrogen steel |
EP4112753A1 (en) | 2020-02-27 | 2023-01-04 | Nippon Steel Stainless Steel Corporation | Stainless steel, stainless steel material, and stainless steel production method |
CN113186445A (en) * | 2021-03-31 | 2021-07-30 | 中北大学 | Method for controlling inclusion content of stainless steel product |
CN114231827B (en) * | 2021-11-24 | 2022-12-30 | 邯郸钢铁集团有限责任公司 | Control method for B-type inclusions of high-speed steel rail |
-
1999
- 1999-07-09 JP JP19654499A patent/JP3510989B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001026811A (en) | 2001-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5687590B2 (en) | Method for producing boron-containing stainless steel | |
KR101574446B1 (en) | Boron-containing stainless steel having excellent hot workability and excellent surface properties | |
CN116568833A (en) | Ni-based alloy with excellent surface properties and method for producing same | |
JP3510989B2 (en) | Refining method of Si alloy iron and stainless steel used for refining stainless steel | |
JP3319245B2 (en) | Method for producing highly clean austenitic stainless steel | |
KR100844794B1 (en) | A method for refining with high purity of austenitic stainless steel | |
JP2590626B2 (en) | Fe-Ni alloy cold rolled sheet excellent in cleanliness and etching piercing properties and method for producing the same | |
JP4354026B2 (en) | Stainless steel manufacturing method | |
JP3825570B2 (en) | Austenitic stainless steel slab excellent in workability and method for producing the same | |
JP3411220B2 (en) | Refining method of high nitrogen low oxygen chromium-containing molten steel | |
JP3036373B2 (en) | Manufacturing method of oxide dispersion steel | |
JP3626445B2 (en) | Fe-Ni alloy for low thermal expansion and high rigidity shadow mask excellent in surface property and etching processability and method for producing the same | |
WO2024084877A1 (en) | Ni-cr-fe-mo-based alloy having excellent surface properties, and method for producing same | |
JP2855333B2 (en) | Modification method of molten steel slag | |
JPH11199917A (en) | Method for refining austenitic stainless steel | |
JP3221812B2 (en) | Low oxygen steel smelting method | |
JP2855334B2 (en) | Modification method of molten steel slag | |
JPH04354853A (en) | Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its production | |
JPH07316631A (en) | Deoxidizing and cleaning method of molten steel | |
JPH07258720A (en) | Method for refining austenitic stainless steel having excellent hot workability | |
JP2024061288A (en) | Fe-Cr-Ni-BASED ALLOY HAVING EXCELLENT SURFACE CHARACTERISTICS, AND METHOD FOR MANUFACTURING THE SAME | |
JPS6239205B2 (en) | ||
JP3217952B2 (en) | Steel material for steel plate for can with few defects and manufacturing method | |
JPH09209025A (en) | Production of hic resistant steel excellent in low temperature toughness in welded part | |
JP2873729B2 (en) | Deoxidation refining method of chromium-containing molten steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3510989 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100109 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110109 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120109 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130109 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140109 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |