JPH02250221A - Manufacture of multi-conductor oxide superconducting wire - Google Patents

Manufacture of multi-conductor oxide superconducting wire

Info

Publication number
JPH02250221A
JPH02250221A JP1072497A JP7249789A JPH02250221A JP H02250221 A JPH02250221 A JP H02250221A JP 1072497 A JP1072497 A JP 1072497A JP 7249789 A JP7249789 A JP 7249789A JP H02250221 A JPH02250221 A JP H02250221A
Authority
JP
Japan
Prior art keywords
tape
powder
core
wire
side edges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1072497A
Other languages
Japanese (ja)
Other versions
JP3052309B2 (en
Inventor
Masahiro Kiyofuji
雅宏 清藤
Akira Nomoto
明 野本
Fumikazu Hosono
細野 史一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1072497A priority Critical patent/JP3052309B2/en
Publication of JPH02250221A publication Critical patent/JPH02250221A/en
Application granted granted Critical
Publication of JP3052309B2 publication Critical patent/JP3052309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce the amount of covering metal and suppress drop of denseness of the core part due to multi-core construction by wrapping a powder of oxide superconductor tightly with a tap of covering metal. CONSTITUTION:A tape 2 is shaped into U-profile, and a powder 1 of oxide superconductor is supplied onto this tape 2 until its two side edges are closed. The powder 1 is compressed, while overlap of the tape 2 side edges is increased, and wrapped tightly with the tape 2 so as to yield a composite wire. The covering metal constituting tape is not restricted to Ag, but Ag alloy such as Ag-Pd, Ag-Mgu, or a substance not reacting with good electroconductive or oxide superconductive material such as Cu, Au, Ni may be used. The allows reduction of the amount of covering metal 2 when turned into multi-core construction, which enables the electric conducted part to be made in dense construction.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体窒素を冷媒として使用可能な酸化物超電
導体をエネルギ一応用として活用するに適した多芯状線
材の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a multifilamentary wire suitable for utilizing an oxide superconductor that can use liquid nitrogen as a refrigerant for energy applications. be.

[従来技術] Y−Ba−Cu−0系等の酸化物超電導体は液体窒素温
度(77K)を越える臨界温度を示し、液体窒素温度で
使用できる超電導体として注目されている。
[Prior Art] Oxide superconductors such as the Y-Ba-Cu-0 system exhibit a critical temperature exceeding the liquid nitrogen temperature (77 K) and are attracting attention as superconductors that can be used at liquid nitrogen temperatures.

超電導材種としては、Y−Ba−Cu−0系、B1−P
b/5r−Ca−Cu−0系或はTl−Ba/5r−C
a−Cu−0系といったY系、旧糸、T1系のいずれの
酸化物超電導体の試作もなされており、77に1零磁場
中で、3000〜12000Δ/C−の臨界電流密度(
Jc)が得られている。
Superconducting grades include Y-Ba-Cu-0 series, B1-P
b/5r-Ca-Cu-0 system or Tl-Ba/5r-C
Prototypes of Y-based, old thread, and T1-based oxide superconductors such as the a-Cu-0 system have been made, and critical current densities of 3000 to 12000 Δ/C- (
Jc) is obtained.

その断面構成は単芯状のものが多いが、多芯状の線材の
試作もなされている。その製造方法は通常、酸化物超電
導体の粉末を金属、例えば銀パイプ中に充填して減面塑
性加工したものの所要本数を金属、例えば銀バイブ中に
組込んで減面塑性加工した後、焼結熱処理して多芯状線
材を作製する。
Most wire rods have a single-core cross-sectional configuration, but multi-core wires have also been prototyped. The manufacturing method is usually that oxide superconductor powder is filled into a metal such as a silver pipe and subjected to surface-reducing plastic processing, then the required number of pieces are incorporated into a metal such as a silver vibe, subjected to surface-reducing plastic processing, and then sintered. A multifilamentary wire is produced by heat treatment.

また、酸化物超電導体の粉末を銅テープで包被した後減
面塑性加工して線状とすることも検討されているが、後
者の方式による線材で超電導特性が出たとの報告はない
In addition, it has been considered to wrap oxide superconductor powder in copper tape and then perform surface-reducing plastic processing to make it into a wire, but there are no reports of wires using the latter method exhibiting superconducting properties.

銀被覆テープ状線材の例では、単芯の場合、厚さを小さ
くするにつれてJc値は増大するが、多芯化した場合、
多芯化の回数が増すにつれて特性が劣化してしまう。こ
れは酸化物超電導体部を多芯化した場合、被覆金属の断
面積比が増大するため、それに対応して減面加工時の緻
密化が悪くなると共に、焼結熱処理時の酸化物超電導体
の収縮に被覆金属のそれが追従できなくなるため、コア
部がポーラスなものになって終うことに起因していると
推定される。
In the example of a silver-coated tape-shaped wire, in the case of a single core, the Jc value increases as the thickness decreases, but when multi-core,
As the number of multi-core increases, the characteristics deteriorate. This is because when the oxide superconductor part is multi-core, the cross-sectional area ratio of the coating metal increases, which correspondingly deteriorates the densification during area reduction processing, and the oxide superconductor during sintering heat treatment. This is presumed to be due to the core becoming porous because the coating metal is unable to follow the shrinkage of the core.

本発明は前記した従来技術の欠点を解消し、特性の良好
′な多芯状金属被覆線材を得ることを目的としてなされ
たものである。
The present invention has been made with the object of solving the above-mentioned drawbacks of the prior art and providing a multicore metal-coated wire with good characteristics.

[課題を解決するための手段] 本発明の要旨は、単芯線材の形成方法として酸化物超電
導体の粉末を被覆金属のテープで巻締める方式を採用し
たことにあり、それによって被覆金属の量を減らし、多
芯化によるコア部の緻密化低下を抑えたものである。
[Means for Solving the Problems] The gist of the present invention is to adopt a method of wrapping oxide superconductor powder with a coated metal tape as a method for forming a single-core wire, thereby reducing the amount of coated metal. This reduces the densification of the core due to multi-core structure.

この場合、酸化物超電導体の粉末を被覆金属のテープで
巻締める手法としては、テープを断面U字状に成形しそ
の両側縁部が閉じるまでの間にそのテープ上に酸化物超
電導体の粉末を供給し、テープの両側縁部の重なりを増
加させながら前記粉末を圧縮して該粉末を前記テープで
緊密に包囲して複合線材とする方法が採用され、テープ
を構成する被覆金属としては、銀に限定されず、Ag−
Pd 。
In this case, the method of wrapping the oxide superconductor powder with a coated metal tape is to form the tape into a U-shaped cross section and wrap the oxide superconductor powder on the tape until the both edges are closed. A method is adopted in which the powder is compressed while increasing the overlap of both side edges of the tape to tightly surround the powder with the tape to form a composite wire, and the coated metal constituting the tape is: Not limited to silver, Ag-
Pd.

Ag−Mgu等の銀合金、Cu、^u、 N1等の虫型
導性或は酸化物超電導体と反応しないものが使用される
Silver alloys such as Ag-Mgu, and materials that do not react with insect-type conductors or oxide superconductors such as Cu, u, N1, etc., are used.

また、酸化物超電導材料としても特に限定されるもので
はなく 、Y−Ba−Cu−0や、YをEr5no等の
磁性元素(Ln)で置換したLn−Ba−Cu−0系、
l3l−Pb/5r−Ca−Cu−0系、Tl−Ba/
5r−Ca−Cu−0系その他の酸化物超電導体が適用
できる。
In addition, the oxide superconducting materials are not particularly limited, but include Y-Ba-Cu-0, Ln-Ba-Cu-0 based on which Y is replaced with a magnetic element (Ln) such as Er5no, etc.
l3l-Pb/5r-Ca-Cu-0 system, Tl-Ba/
Other oxide superconductors based on 5r-Ca-Cu-0 can be used.

[実 施 例〕 以下に、Y−Ba−Cu−0系粉末を原料とした銀被覆
多芯状線材の例を説明する。
[Example] Below, an example of a silver-coated multifilamentary wire using Y-Ba-Cu-0 powder as a raw material will be described.

生原料として市販試薬のY203 、BaCOz及びC
uOを用意し、それらをY 1Ba2CU30 、の組
成となるように精密に秤量し、それらをボールミルで良
く混合した後、それを所定の形状に成形した。次にそれ
を950℃の酸素雰囲気中で10時間仮焼した後、ボー
ルミルによる粉砕を行い、再度、成形−仮焼−粉砕を行
って所定粒径の超電導粉末とした。この粉末について交
流磁化率法により超電導特性を確認したところ、臨界温
度はTc=92にであった。
Commercially available reagents Y203, BaCOz and C were used as raw materials.
uO was prepared, weighed accurately so as to have a composition of Y 1Ba2CU30 , mixed well in a ball mill, and then molded into a predetermined shape. Next, it was calcined in an oxygen atmosphere at 950°C for 10 hours, and then pulverized using a ball mill, and then molded, calcined, and pulverized again to obtain a superconducting powder with a predetermined particle size. When the superconducting properties of this powder were confirmed by the alternating current magnetic susceptibility method, the critical temperature was found to be Tc=92.

次にその粉末を第1図に示すように、銀テープ2で巻締
めてなる銀被覆単芯線材3とした。この線材3は第2図
に示すように、厚さ50μmの銀テープ2をその中方向
に湾曲させて断面U字状に成形しながらその両側の側縁
が重なり合う前のテープ2」二に前記の超電導粉末1を
供給し、テープ2を第1及び第2のダイス4及び5を通
過させることによりテープ2の両側縁部の重なりを大き
くすると共に、粉末1を圧縮して外径2.0mmの単芯
線材3とした。その後その線材3をダイス引きにより外
径1.6mmにまで伸線してテープ2の両側縁部の重な
りを大きくする己共に、粉末1部をさらに圧縮してソリ
ッド化させた。
Next, as shown in FIG. 1, the powder was wrapped with a silver tape 2 to form a silver-coated single-core wire 3. As shown in FIG. 2, this wire 3 is made by bending a silver tape 2 with a thickness of 50 μm inward to form a U-shaped cross section. of superconducting powder 1 is supplied, and by passing the tape 2 through the first and second dies 4 and 5, the overlap of both side edges of the tape 2 is increased, and the powder 1 is compressed to have an outer diameter of 2.0 mm. Single core wire 3 was used. Thereafter, the wire rod 3 was drawn to an outer diameter of 1.6 mm by die drawing to increase the overlap of both side edges of the tape 2, and 1 part of the powder was further compressed to form a solid.

次に所定の長さに切断した37本の銀被覆単芯線材3を
外径1.0mm、肉厚0.5■の銀バイブ中に組み込ん
だ後、スェージャ−及び引抜ダイスを用いて外径2.0
朋まで減面塑性加工し、更に圧延により厚さ 1.On
m、巾4.01のテープ状線材に仕上げた。
Next, 37 silver-coated single-core wires 3 cut to a predetermined length were assembled into a silver vibe with an outer diameter of 1.0 mm and a wall thickness of 0.5 mm, and then the outer diameter was 2.0
Plastic working to reduce the surface area and further reduce the thickness by rolling 1. On
A tape-shaped wire rod with a width of 4.01 m and a width of 4.01 m was produced.

最後に920℃の酸素雰囲気中で20時間焼結熱処理し
た後、酸素アニールを行って多芯状の銀被覆酸化物超電
導線材とした。
Finally, after a sintering heat treatment in an oxygen atmosphere at 920° C. for 20 hours, oxygen annealing was performed to obtain a multicore silver-coated oxide superconducting wire.

このようにして作製した多芯状線材(37芯)の場合、
線材全体における超電導部の断面積比は約70%であり
、従来の多芯化法による20〜40%に比べて遥かに大
きくできた。このことは臨界電流密度(Jc )が一定
であったとしても、超電導状態で線材に流せる電流は線
材サイズを一定とすれば、倍程度まで向上することにも
なる。更に被覆金属である銀の断面積比が少ないことか
ら、焼結熱処理時の収縮特性が良好となり、緻密な酸化
物超電導体となってJc特性自体が向上する結果となる
In the case of the multicore wire rod (37 cores) produced in this way,
The cross-sectional area ratio of the superconducting portion in the entire wire was about 70%, which was much larger than the 20-40% obtained by the conventional multicore method. This means that even if the critical current density (Jc) is constant, the current that can be passed through the wire in the superconducting state can be increased to about twice as much if the wire size is constant. Furthermore, since the cross-sectional area ratio of silver, which is the coating metal, is small, the shrinkage characteristics during sintering heat treatment are good, resulting in a dense oxide superconductor and improved Jc characteristics itself.

具体的には、従来の多芯化法では、零磁場、77にで精
々Jc−1010^/cシであるのに対し、実施例のも
のはJ e = 420OA/c−を達成することがで
きた。
Specifically, in the conventional multi-core method, J e = 420 OA/c can be achieved at most, while J e = 420 OA/c at zero magnetic field of 77. did it.

尚、前記では37芯の例を示したが、これは多芯の本数
を限定するものではなく、6芯或は1330芯といった
増減は可能である。多芯化の際の被覆材として管材を使
用した場合を示したが、これはテープ又はシート材を用
いても差し支えない。
In addition, although the example of 37 cores was shown above, this does not limit the number of multiple cores, and it is possible to increase or decrease the number of cores, such as 6 cores or 1330 cores. Although the case where a tube material is used as a covering material in multi-core construction is shown, a tape or a sheet material may also be used.

また、単心線材におけるテープ側縁の重なりの程度はも
う少し大きくても良く、場合によっては重なりの位置を
ずらして二重に巻締めてもよい。
Further, the degree of overlapping of the side edges of the tape in the single-core wire may be a little larger, and depending on the case, the overlapping position may be shifted and the tape may be wound twice.

[発明の効果コ 以上から明らかなように、本発明によれば、多芯化した
際の被覆金属の量を減らすことができるので、超電導体
部の緻密化が可能で、多芯状線材の臨界電流密度を向上
させることができ、マグネット等に応用する場合にメリ
ットが大きい。また本発明によれば、製造が容易で、特
性の良い線材を提供できる利点がある。
[Effects of the Invention] As is clear from the above, according to the present invention, it is possible to reduce the amount of coating metal when making a multi-core wire, so it is possible to make the superconductor part denser, and it is possible to increase the density of the multi-core wire. The critical current density can be improved, which is a great advantage when applied to magnets, etc. Furthermore, the present invention has the advantage of being easy to manufacture and providing a wire rod with good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る方法の一実施例における単芯線材
の拡大横断面図、第2図はその単芯線材の成形方法を示
す説明図である。 1;超電導粉末、 2:銀テープ、 3:単芯線材、 4及び5:ダイス。
FIG. 1 is an enlarged cross-sectional view of a single-core wire in an embodiment of the method according to the present invention, and FIG. 2 is an explanatory diagram showing a method for forming the single-core wire. 1: Superconducting powder, 2: Silver tape, 3: Single core wire, 4 and 5: Dice.

Claims (1)

【特許請求の範囲】[Claims] (1)断面U字状に成形された被覆金属のテープ上にそ
の両側縁部が閉じるまでの間に酸化物超電導体の粉末を
供給し、前記テープの両側縁部の重なりを増加させなが
ら前記粉末を圧縮して該粉末を前記テープで緊密に包囲
することにより単芯線材を得、その単芯線材の複数本を
纏めて減面塑性加工した後、焼結熱処理することを特徴
とする多芯状酸化物超電導線材の製造方法。
(1) Powder of oxide superconductor is supplied onto a coated metal tape formed into a U-shaped cross section until both side edges of the tape close, and while increasing the overlap of both side edges of the tape, A single-core wire is obtained by compressing powder and tightly surrounding the powder with the tape, and a plurality of the single-core wires are collectively subjected to area-reducing plastic processing, and then subjected to sintering heat treatment. A method for producing a cored oxide superconducting wire.
JP1072497A 1989-03-24 1989-03-24 Method for producing multi-core oxide superconducting wire Expired - Fee Related JP3052309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072497A JP3052309B2 (en) 1989-03-24 1989-03-24 Method for producing multi-core oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072497A JP3052309B2 (en) 1989-03-24 1989-03-24 Method for producing multi-core oxide superconducting wire

Publications (2)

Publication Number Publication Date
JPH02250221A true JPH02250221A (en) 1990-10-08
JP3052309B2 JP3052309B2 (en) 2000-06-12

Family

ID=13491026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072497A Expired - Fee Related JP3052309B2 (en) 1989-03-24 1989-03-24 Method for producing multi-core oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP3052309B2 (en)

Also Published As

Publication number Publication date
JP3052309B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
EP0282286B1 (en) Superconducting wire and method of manufacturing the same
DE69026659T2 (en) Ceramic superconducting wire and process for its manufacture
JP2685751B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPS6331884B2 (en)
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JPH02250221A (en) Manufacture of multi-conductor oxide superconducting wire
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JPH05334921A (en) Ceramic superconductor
JP2547209B2 (en) Superconducting wire manufacturing method
JPH0773757A (en) Manufacture of oxide superconductor
JP3513915B2 (en) Oxide superconducting wire, method for producing the same, and oxide superconducting conductor
JP2951423B2 (en) Manufacturing method of ceramic superconducting conductor
JP3154239B2 (en) Manufacturing method of ceramic superconducting conductor
JPH05266726A (en) Oxide superconducting wire
JPH04337213A (en) Manufacture of multi-layer ceramic superconductor
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JP2979547B2 (en) Manufacturing method of oxide superconducting coil
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH05101722A (en) Manufacture of multi-conductor ceramics superconductor
JPH0589727A (en) Multilayer ceramics superconductor
JPH04292809A (en) Multicore superconductive wire
JPS63225410A (en) Compound superconductive wire and its manufacture
JPH04292807A (en) High temperature superconductive wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees