JPH04292809A - Multicore superconductive wire - Google Patents

Multicore superconductive wire

Info

Publication number
JPH04292809A
JPH04292809A JP3056698A JP5669891A JPH04292809A JP H04292809 A JPH04292809 A JP H04292809A JP 3056698 A JP3056698 A JP 3056698A JP 5669891 A JP5669891 A JP 5669891A JP H04292809 A JPH04292809 A JP H04292809A
Authority
JP
Japan
Prior art keywords
wire
superconducting
superconductive
multicore
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3056698A
Other languages
Japanese (ja)
Other versions
JP3350935B2 (en
Inventor
Kenichi Sato
謙一 佐藤
Hideto Mukai
向井 英仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP05669891A priority Critical patent/JP3350935B2/en
Priority to CA002063282A priority patent/CA2063282C/en
Priority to EP92104807A priority patent/EP0504895B1/en
Priority to DE69217681T priority patent/DE69217681T2/en
Priority to AU13053/92A priority patent/AU654529B2/en
Publication of JPH04292809A publication Critical patent/JPH04292809A/en
Priority to US08/479,898 priority patent/US5869430A/en
Application granted granted Critical
Publication of JP3350935B2 publication Critical patent/JP3350935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a multicore superconductive wire with resistance to deterioration of superconductive properties even in the case bending stress is applied. CONSTITUTION:A multicore superconductive wire is a wire composed of a plurality of superconductive parts consisting of oxide superconductive materials and put in a stabilizing material and is prepared by a method wherein a metal sheath to become the stabilizing material is filled with raw materials to become the superconductive parts, the resulting body is formed into a wire, and the collective body of the wires are bundled in a metal sheath to give a superconductive wire, and the final cross-section surface area of the superconductive parts is <=10% of the whole cross-section surface area of the wire.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、酸化物高温超電導材
料を用いた多芯超電導線に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a multicore superconducting wire using an oxide high-temperature superconducting material.

【0002】0002

【従来の技術】近年、より高い臨界温度を示す超電導材
料として、セラミックス系すなわち、酸化物系の超電導
体が注目されている。中でもイットリウム系が90K、
ビスマス系が110K、タリウム系が120K程度の高
い臨界温度を有し、実用化が期待されている。
2. Description of the Related Art In recent years, ceramic-based, ie, oxide-based superconductors have attracted attention as superconducting materials exhibiting higher critical temperatures. Among them, yttrium is 90K,
The bismuth type has a high critical temperature of about 110K, and the thallium type has a high critical temperature of about 120K, and their practical use is expected.

【0003】これらの高温超電導材料は、ケーブル、ブ
スバー、パワーリードおよびコイルなどに応用すること
が考えられており、超電導線材の長尺化が検討されてい
る。また、従来の金属系および化合物系の超電導体と同
様に、これらの高温超電導体においても、多芯線を製造
することが検討されている。
[0003] These high-temperature superconducting materials are considered to be applied to cables, busbars, power leads, coils, etc., and efforts are being made to increase the length of superconducting wires. Furthermore, similar to conventional metal-based and compound-based superconductors, the production of multifilamentary wires for these high-temperature superconductors is also being considered.

【0004】0004

【発明が解決しようとする課題】しかしながら、酸化物
高温超電導材料を用いた多芯超電導線を、ケーブルおよ
びコイル等に応用しようとする場合、十分な曲げ特性が
得られないという問題があった。
[Problems to be Solved by the Invention] However, when a multicore superconducting wire using an oxide high-temperature superconducting material is applied to cables, coils, etc., there is a problem in that sufficient bending properties cannot be obtained.

【0005】この発明の目的は、このような曲げ特性に
優れた酸化物超電導材料からなる多芯超電導線を提供す
ることにある。
An object of the present invention is to provide a multicore superconducting wire made of an oxide superconducting material having excellent bending properties.

【0006】[0006]

【課題を解決するための手段】この発明の多芯超電導線
は、酸化物超電導材料からなる超電導体部を安定化材中
に複数配置した多芯超電導線であって、超電導体部とな
る原料を安定化材となる金属シースに充填し線材化した
後、この線材の集合体を金属シース中で束ねて線材化し
た超電導線であり、超電導体部の個々の厚さが、線材全
体の厚さの10%以下であることを特徴としている。
[Means for Solving the Problems] The multicore superconducting wire of the present invention is a multicore superconducting wire in which a plurality of superconducting parts made of an oxide superconducting material are arranged in a stabilizing material, and the raw material for the superconducting parts is This is a superconducting wire made by filling a metal sheath that serves as a stabilizing material and forming a wire rod, and then bundling this wire rod assembly in a metal sheath to form a wire rod, and the thickness of each superconductor part is equal to the total thickness of the wire rod. It is characterized by having a thickness of 10% or less.

【0007】この発明の多芯超電導線は、たとえば、酸
化物高温超電導体の粉末または前駆体の粉末を、銀など
の金属シースで被覆し、伸線加工により丸線を作り、さ
らにそれらを多数本集合して銀などの金属シースで被覆
し、伸線加工することにより得ることができる。必要に
応じて、その後圧延加工などの圧縮加工を施しテープ状
に加工したり、あるいは丸線の状態で熱処理・焼結して
もよい。
The multicore superconducting wire of the present invention can be produced by, for example, coating powder of an oxide high-temperature superconductor or powder of a precursor with a metal sheath such as silver, making a round wire by wire drawing, and then manufacturing a large number of them. This can be obtained by gathering the material, covering it with a metal sheath such as silver, and wire-drawing it. If necessary, the wire may then be processed into a tape by compression processing such as rolling, or heat treated and sintered in the form of a round wire.

【0008】[0008]

【発明の作用効果】超電導ケーブルおよびコイル、特に
超電導ケーブルでは、種々の工程や敷設の際に曲げ応力
を受ける。この発明の多芯超電導線では、超電導体部を
安定化材中に複数配置させたものであり、超電導体部の
個々の厚さが、線材全体の厚さの10%以下である。こ
のため、曲げの応力を受けたときにも、超電導特性の劣
化が少ない。
Effects of the Invention Superconducting cables and coils, particularly superconducting cables, are subjected to bending stress during various processes and during installation. In the multicore superconducting wire of the present invention, a plurality of superconducting portions are arranged in a stabilizing material, and the thickness of each superconducting portion is 10% or less of the thickness of the entire wire. Therefore, even when subjected to bending stress, there is little deterioration in superconducting properties.

【0009】この発明において、超電導体部の個々の厚
さを10%以下としているのは、10%を越えると所望
の曲げ特性を得ることができないからである。この発明
においては、さらに好ましくは、超電導体部の個々の厚
さが、5%以下である。5%以下とすることによりさら
に曲げの特性を向上させることができる。
In the present invention, the reason why the thickness of each superconductor portion is set to 10% or less is that if it exceeds 10%, desired bending characteristics cannot be obtained. In this invention, more preferably, the thickness of each superconductor portion is 5% or less. By setting it to 5% or less, the bending characteristics can be further improved.

【0010】この発明の多芯超電導線は、素線となる金
属被覆された酸化物超電導体の線材を1回だけ集合して
多芯超電導線としている。このため、超電導体部間の距
離が線材内においてほぼ均一であり、良好な臨界電流密
度を得ることができる。
In the multicore superconducting wire of the present invention, metal-coated oxide superconductor wires serving as strands are assembled only once to form a multicore superconducting wire. Therefore, the distance between the superconductor parts is substantially uniform within the wire, and a good critical current density can be obtained.

【0011】線材を集合体として束ねる本数としては、
通常の寸法で、しかも酸化物超電導体の割合を金属被覆
に比べあまり小さくすることなく製作するためには、3
0本以上が必要である。
[0011] The number of wire rods to be bundled as an aggregate is as follows:
In order to manufacture the oxide superconductor with normal dimensions and without making the proportion of oxide superconductor too small compared to the metal coating, 3.
0 or more is required.

【0012】さらに、この発明に従う多芯超電導線は、
種々の工程において、歪みを制御し、好ましくは0.3
%以下の歪み(歪み=線の厚み/曲げ直径)を与える状
態で、巻取および繰出しなどの工程で使用することが好
ましい。
Furthermore, the multicore superconducting wire according to the present invention is
In various steps, strain is controlled, preferably 0.3
% or less (strain=thickness of wire/bending diameter) is preferably used in processes such as winding and unwinding.

【0013】繰返し歪みを、0.3%以下の値に制御す
れば、超電導特性の劣化を防止することができる。
[0013] If the cyclic strain is controlled to a value of 0.3% or less, deterioration of superconducting properties can be prevented.

【0014】この発明の多芯超電導線は、たとえばテー
プ状線材の形をしており、熱処理後繰出されて、リール
またはドラムなどに巻取り、ケーブルまたはコイルとし
て用いることができる。この巻取る際においてもまた種
々の用途で用いる場合においても、歪みは0.3%以下
にすることが好ましい。
The multicore superconducting wire of the present invention is, for example, in the form of a tape-like wire, and after heat treatment, it is fed out, wound onto a reel or drum, and used as a cable or coil. It is preferable that the strain is 0.3% or less during winding and when used for various purposes.

【0015】この発明の多芯超電導線としては、金属被
覆されたものが、安定性の点から好ましい。金属の種類
としては、高温超電導体と反応せず、加工性が良好で安
定化材として機能するような比抵抗の小さなものがよく
、たとえば銀および銀合金が用いられる。
The multicore superconducting wire of the present invention is preferably coated with metal from the viewpoint of stability. As for the type of metal, a metal with a low specific resistance that does not react with the high-temperature superconductor, has good workability, and functions as a stabilizing material is preferable; for example, silver and silver alloys are used.

【0016】これらの金属被覆層は、中間層として用い
られる場合もある。中間層として用いられる場合には、
その上に別の金属、たとえば銅やアルミニウムまたはそ
れらの合金がさらに被覆される。
[0016] These metallization layers may also be used as intermediate layers. When used as an intermediate layer,
Another metal such as copper, aluminum or an alloy thereof is further coated thereon.

【0017】高温超電導体としては、たとえばイットリ
ウム系、ビスマス系、およびタリウム系のものが用いら
れる。臨界温度、臨界電流密度および毒性の少ないこと
ならびに希土類元素を必要としない点では、ビスマス系
の高温超電導体が好ましい。
[0017] As the high-temperature superconductor, for example, yttrium-based, bismuth-based, and thallium-based ones are used. Bismuth-based high-temperature superconductors are preferred because they have a low critical temperature, critical current density, low toxicity, and do not require rare earth elements.

【0018】この発明の多芯超電導線では、超電導体部
の個々の厚さが線材全体の厚さの10%以下である。こ
のため、超電導体部を微細なフィラメントとして均一に
加工することができる。たとえば、超電導体部を50か
ら数μm以下の微細なフィラメントにすることができる
。このため、曲げ特性に優れた多芯超電導線とすること
ができる。
In the multicore superconducting wire of the present invention, the thickness of each superconductor portion is 10% or less of the thickness of the entire wire. Therefore, the superconductor portion can be uniformly processed into fine filaments. For example, the superconductor portion can be made into a fine filament of 50 to several μm or less. Therefore, a multicore superconducting wire with excellent bending properties can be obtained.

【0019】また、この発明では、線材の集合体を金属
シース中で束ねて線材化する工程を1回だけにしている
ので、超電導線内部では、超電導体部間の距離が均一で
あり、均一に加工することができる。
Furthermore, in this invention, since the process of bundling the wire rod assembly in the metal sheath and forming the wire rod is performed only once, the distance between the superconducting parts is uniform inside the superconducting wire, and the distance between the superconducting parts is uniform. It can be processed into

【0020】[0020]

【実施例】実施例1 Bi:Pb:Sr:Ca:Cu=1.84:0.36:
0.99:2.18:3.00の組成を持つように、酸
化物または炭酸塩を混合した。この混合粉末を熱処理に
よって、超電導相として2212相が85%、2223
相が15%であり、(Ca,Sr)2 PbO4 およ
びCa2 CuO3 を主とする非超電導層からなる粉
末を準備した。この粉末を、10torrの減圧雰囲気
で700℃、12時間の脱ガス処理を行なった。
[Example] Example 1 Bi:Pb:Sr:Ca:Cu=1.84:0.36:
Oxides or carbonates were mixed to have a composition of 0.99:2.18:3.00. By heat treating this mixed powder, 85% of 2212 phase and 2223 phase as superconducting phase were obtained.
A powder having a phase content of 15% and consisting of a non-superconducting layer mainly composed of (Ca,Sr)2PbO4 and Ca2CuO3 was prepared. This powder was subjected to degassing treatment at 700° C. for 12 hours in a reduced pressure atmosphere of 10 torr.

【0021】これらの粉末は、外径12mm、内径9m
mの銀パイプで被覆し、直径1.3mmまで伸線加工し
た。この線材を60本さらに外径16.5mm、内径1
3.5mmの銀パイプに入れて、直径1.0mmまで伸
線加工した。その後、0.17mmの厚みで圧延加工し
た。
[0021] These powders have an outer diameter of 12 mm and an inner diameter of 9 m.
The wire was covered with a silver pipe of 1.3 mm in diameter and wire-drawn to a diameter of 1.3 mm. 60 of these wires are further divided into outer diameter 16.5mm and inner diameter 1
It was placed in a 3.5 mm silver pipe and wire-drawn to a diameter of 1.0 mm. Thereafter, it was rolled to a thickness of 0.17 mm.

【0022】この線材を、845℃、55時間熱処理し
、その後15%の加工度で圧延した。得られたテープ状
の線材を、外径50mmの円筒に巻付け、840℃、5
0時間熱処理した。
[0022] This wire rod was heat treated at 845°C for 55 hours and then rolled at a workability of 15%. The obtained tape-shaped wire rod was wound around a cylinder with an outer diameter of 50 mm, and heated at 840°C for 50 minutes.
Heat treatment was performed for 0 hours.

【0023】この後、この円筒から繰出し、直径50m
mのテフロンパイプにピッチ80mmで巻付けた。この
状態および半径100mmで曲げを200回繰返した後
、液体窒素の下で臨界電流密度を測定した。液体窒素の
下での臨界電流密度は、いずれも安定しており、14,
600〜15,700A/cm2 を示した。このよう
に、この実施例の線材は、焼結後およびその後の曲げ加
工後においても、良好な特性を示した。
[0023] After this, it is paid out from this cylinder and has a diameter of 50 m.
It was wrapped around a Teflon pipe with a pitch of 80 mm. After repeating the bending in this state and with a radius of 100 mm 200 times, the critical current density was measured under liquid nitrogen. The critical current densities under liquid nitrogen are all stable; 14,
600 to 15,700 A/cm2. Thus, the wire rod of this example showed good characteristics even after sintering and subsequent bending.

【0024】実施例2 Bi:Pb:Sr:Ca:Cu=1.80:0.38:
2.00:1.97:3.00の組成を持つように、酸
化物または炭酸塩を混合した。この混合粉末を、熱処理
により、超電導層としては2212相が88%であり、
2223相が12%であり、(Ca,Sr)2 PbO
4 およびCa2 CuO3 の非超電導層からなる粉
末を準備した。この粉末に対し、7torrの減圧雰囲
気で、700℃18時間の脱ガス処理を行なった。
Example 2 Bi:Pb:Sr:Ca:Cu=1.80:0.38:
Oxides or carbonates were mixed to have a composition of 2.00:1.97:3.00. This mixed powder was heat-treated to form a superconducting layer with 88% 2212 phase,
2223 phase is 12%, (Ca,Sr)2PbO
A powder consisting of a non-superconducting layer of Ca2CuO3 and Ca2CuO3 was prepared. This powder was subjected to degassing treatment at 700° C. for 18 hours in a reduced pressure atmosphere of 7 torr.

【0025】この粉末を、実施例1と同様の工程で加工
して線材化し、線材を90本集合させて多芯線を作製し
た。この多芯線を直径2mmまで伸線し、0.25mm
の厚みまで圧延加工した。この線材を845℃、45時
間熱処理し、その後22%の加工度で圧延した。このテ
ープ状の線材を840℃、50時間熱処理した。
[0025] This powder was processed into wire rods in the same process as in Example 1, and 90 wire rods were assembled to produce a multifilamentary wire. This multifilamentary wire is drawn to a diameter of 2mm and then 0.25mm.
It was rolled to a thickness of . This wire rod was heat treated at 845° C. for 45 hours, and then rolled at a workability of 22%. This tape-shaped wire rod was heat-treated at 840° C. for 50 hours.

【0026】得られた線材を、半径50mmの曲率で曲
げては直線状に戻す加工を20回与えた。その後、液体
窒素の下で臨界電流密度を測定した。曲げ加工前および
後のいずれにおいても、液体窒素の下での臨界電流密度
は12,000〜13,500A/cm2 の臨界電流
密度が得られた。
The obtained wire rod was bent 20 times with a radius of curvature of 50 mm and then returned to a straight shape. Then, the critical current density was measured under liquid nitrogen. Both before and after bending, a critical current density of 12,000 to 13,500 A/cm2 was obtained under liquid nitrogen.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化物超電導材料からなる超電導体部
を安定化材中に複数配置した多芯超電導線において、前
記超電導体部となる原料を前記安定化材となる金属シー
スに充填し線材化し、この線材の集合体を金属シース中
で束ねて線材化した超電導線であり、前記超電導体部の
個々の厚さが、線材全体の厚さの10%以下である、多
芯超電導線。
1. A multicore superconducting wire in which a plurality of superconductor parts made of an oxide superconducting material are arranged in a stabilizing material, in which a raw material for the superconducting parts is filled into a metal sheath serving as the stabilizing material to form a wire. A multicore superconducting wire, which is a superconducting wire obtained by bundling an assembly of wire rods into a wire rod in a metal sheath, and wherein the thickness of each of the superconductor parts is 10% or less of the thickness of the entire wire rod.
JP05669891A 1991-03-20 1991-03-20 Multi-core superconducting wire Expired - Lifetime JP3350935B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP05669891A JP3350935B2 (en) 1991-03-20 1991-03-20 Multi-core superconducting wire
CA002063282A CA2063282C (en) 1991-03-20 1992-03-18 High temperature superconducting wire using oxide superconductive material
EP92104807A EP0504895B1 (en) 1991-03-20 1992-03-19 Superconducting wire using oxide superconductive material
DE69217681T DE69217681T2 (en) 1991-03-20 1992-03-19 Superconducting wire with superconducting oxide material
AU13053/92A AU654529B2 (en) 1991-03-20 1992-03-19 High temperature superconducting wire using oxide superconductive material
US08/479,898 US5869430A (en) 1991-03-20 1995-06-07 High temperature superconducting wire using oxide superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05669891A JP3350935B2 (en) 1991-03-20 1991-03-20 Multi-core superconducting wire

Publications (2)

Publication Number Publication Date
JPH04292809A true JPH04292809A (en) 1992-10-16
JP3350935B2 JP3350935B2 (en) 2002-11-25

Family

ID=13034684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05669891A Expired - Lifetime JP3350935B2 (en) 1991-03-20 1991-03-20 Multi-core superconducting wire

Country Status (1)

Country Link
JP (1) JP3350935B2 (en)

Also Published As

Publication number Publication date
JP3350935B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP3474602B2 (en) Superconducting conductor
US6158106A (en) Oxide superconducting wire manufacturing method
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
US5869430A (en) High temperature superconducting wire using oxide superconductive material
JP3885358B2 (en) Oxide high-temperature superconducting wire and method for producing the same
JP3369225B2 (en) Method for producing oxide high-temperature superconducting wire
JP3534428B2 (en) Manufacturing method of oxide high temperature superconducting wire
JP3501828B2 (en) Manufacturing method of oxide superconducting conductor
JP3350935B2 (en) Multi-core superconducting wire
JP3520699B2 (en) Oxide superconducting wire and manufacturing method thereof
JP2861444B2 (en) Multi-core superconducting wire and its processing method
JP2951419B2 (en) Method for manufacturing large-capacity oxide superconducting conductor
JP3051867B2 (en) Manufacturing method of oxide superconducting wire
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP3513915B2 (en) Oxide superconducting wire, method for producing the same, and oxide superconducting conductor
JP3248190B2 (en) Oxide superconducting wire, its manufacturing method and its handling method
JP4709455B2 (en) Oxide high-temperature superconducting wire and manufacturing method
JP3042558B2 (en) Ceramic superconducting conductor
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH11185551A (en) Manufacture of oxide superconducting wire material
CA1338753C (en) Method of producing oxide superconducting wire and oxide superconducting wire produced by this method
JPH04292807A (en) High temperature superconductive wire
JPH04298914A (en) Compound superconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9