JPH02243721A - Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method - Google Patents

Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method

Info

Publication number
JPH02243721A
JPH02243721A JP6224389A JP6224389A JPH02243721A JP H02243721 A JPH02243721 A JP H02243721A JP 6224389 A JP6224389 A JP 6224389A JP 6224389 A JP6224389 A JP 6224389A JP H02243721 A JPH02243721 A JP H02243721A
Authority
JP
Japan
Prior art keywords
rolling
hot
rolled
content
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6224389A
Other languages
Japanese (ja)
Inventor
Shozaburo Nakajima
中島 正三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6224389A priority Critical patent/JPH02243721A/en
Publication of JPH02243721A publication Critical patent/JPH02243721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the silicon steel sheet in which secondary recrystallization is perfectly performed and which has superior magnetic properties of product by specifying respective contents of N and acid soluble Al in a slab of a steel with the prescribed composition and the number of rolling passes at specific draft in hot finish rolling and also controlling N, as Al content in the resulting hot rolled plate. CONSTITUTION:A steel slab has a composition consisting of, by weight, 0.060-0.120% C, 2.9-4.5% Si, 0.050-0.090% Mn, 0.020-0.060% S and/or Se, 0.05-0.25% Sn, and the balance acid soluble Al, N, inevitable impurities, and Fe. The content of N contained in this slab is regulated to 0.0050-0.0100% and also the content of acid soluble Al is regulated to a value between [(27/14)XN(%)+0.0035] and [(27/14)XN(%)+0.0100]%. Moreover, in hot finish rolling, rolling pass of >=20% draft is carried out six times or more and the thickness of hot rolled plate is regulated so that draft at the time of cold rolling becomes 85-92%, and further, the content of N, as Al in the above hot rolled plate is controlled to 0.0005-0.0020%, by which the desired thin grain-oriented silicon steel sheet having high magnetic flux density by a single-stage cold rolling method can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は、一段冷延法による製品磁気特性の優れた薄手
高磁束密度一方向性電磁鋼板の安定した製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for stably manufacturing a thin, high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by a one-stage cold rolling process.

〔従来の技術〕[Conventional technology]

一方向性電磁鋼板は、軟磁性+A料として主にトランス
その他の電気機器の磁芯材料として使用され、磁気特性
として、励磁特性と鉄損特性が良好でなくてはならない
Unidirectional electrical steel sheets are mainly used as soft magnetic +A materials as magnetic core materials for transformers and other electrical equipment, and as magnetic properties, they must have good excitation properties and iron loss properties.

磁気特性の優れた電磁鋼板を得るには、磁化容易軸であ
る<001>軸が、圧延方向に高度に揃うことが必要で
ある。その他に、板厚、結晶粒度、固有抵抗、表面被膜
等が、磁気特性に大きく影害する。
In order to obtain an electrical steel sheet with excellent magnetic properties, it is necessary that the <001> axis, which is the axis of easy magnetization, is highly aligned in the rolling direction. In addition, plate thickness, crystal grain size, resistivity, surface coating, etc. greatly affect magnetic properties.

電磁鋼板の方向性は、AIN 、 MnSをインヒビタ
ーとして機能せしめる強圧下一段冷間圧延プロセスによ
って大きく向上し、現在、磁束密度が理論値の96%程
度のものまで製造されるようになって来ている。
The directionality of electrical steel sheets has been greatly improved by the intense reduction single-stage cold rolling process in which AIN and MnS function as inhibitors, and now steel sheets with magnetic flux densities of approximately 96% of the theoretical value have been manufactured. There is.

一方、近年、エネルギー価格の高騰を反映してl・ラン
スメーカーは、省エネルギー型トランス用素材として、
低鉄損磁性材料への指向を一段と強めている。
On the other hand, in recent years, reflecting the soaring energy prices, lance manufacturers have started using materials for energy-saving transformers.
We are further increasing our focus on low iron loss magnetic materials.

低鉄tn (d性材料として、アモルファス合金や6.
5%31合金といった高Sl材の開発も進められている
が、I−ランス用の材料としては、価格、加工性等の点
で難点がある。
Low iron tn (as d material, amorphous alloy and 6.
Although the development of high-Sl materials such as 5% 31 alloys is progressing, they have drawbacks in terms of cost, workability, etc. as materials for I-lances.

他方、電磁鋼板の鉄損には、Si含有量の他に板厚が大
きく影害し、化学研摩等により製品の板厚を薄くすると
、鉄損が低下することが知られている。
On the other hand, it is known that the iron loss of electrical steel sheets is greatly influenced by the sheet thickness in addition to the Si content, and that reducing the thickness of the product by chemical polishing or the like reduces the iron loss.

本発明者等は、先に、特開昭58−217630号公報
において、酸可溶性Aff、N、Snを含有する珪素鋼
スラブを出発材料とし、熱延板焼鈍を伴う強圧下一段冷
延法により、薄手高磁束密度一方向性電磁鋼板を製造す
る方法を開示した。この方法により、鉄損の優れた薄手
高磁束密度一方向性電磁鋼板、就中、板厚0.225m
/m迄の薄手材が、安価に工業生産できるようになり、
これを用いたトランスの低鉄損化を通して、時代の課題
である省エネ化に貢献できた。
The present inventors previously reported in Japanese Patent Application Laid-Open No. 58-217630 that a silicon steel slab containing acid-soluble Aff, N, and Sn was used as a starting material, and a one-stage cold rolling process under intense pressure accompanied by hot-rolled plate annealing was carried out. disclosed a method for manufacturing a thin, high magnetic flux density unidirectional electrical steel sheet. By this method, a thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss, especially a sheet thickness of 0.225 m, is produced.
Thin materials up to
By using this material to reduce core loss in transformers, we were able to contribute to energy conservation, which is an issue of the times.

しかるに、その後、省エネ化に対する時代の要請は、−
段と強まり、トランス用素材である−・方向性電磁鋼板
の一層の高性能化が必要となってきた。すなわち、板厚
0.225m/m祠より更に鉄損の低い、板厚0.17
5m/m以下の薄手高磁束密度一方向性電磁鋼板の安価
で、且つ、安定した製造方法の確立が緊象、の課題にな
ってきた。
However, since then, the demands of the times for energy conservation have been -
This has led to the need for further improvements in the performance of grain-oriented electrical steel sheets, which are used as materials for transformers. In other words, the plate thickness is 0.17m, which has lower iron loss than the plate thickness of 0.225m/m.
Establishing an inexpensive and stable manufacturing method for thin, high magnetic flux density unidirectional electrical steel sheets of 5 m/m or less has become an urgent issue.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特開昭58−2]、7630−号公報に開示した方法に
より0.175m/m、0.150m/m材の製造は可
能であるが、板厚が、0.175m/m以下の場合、−
ト記公報の第8表および第11表に示すごとく、−次再
結晶が完全ではなく、工業生産の場合、工程歩留が低く
、製品磁気特性のレベル及び安定性の点で問題がある事
が判明した。
It is possible to manufacture 0.175 m/m and 0.150 m/m materials by the method disclosed in JP-A-58-2] and 7630-, but when the plate thickness is 0.175 m/m or less, −
As shown in Tables 8 and 11 of the above publication, -order recrystallization is not complete, and in the case of industrial production, the process yield is low and there are problems with the level and stability of product magnetic properties. There was found.

本発明は、酸可溶性A4.N、Snを含有する珪素鋼ス
ラブを出発材料とし、熱延板焼鈍を伴う強圧下一段冷延
法により、板厚0.12〜0.17m/mに冷延された
製品磁気特性の優れた薄手高磁束密度一方向性電磁鋼板
を安定して製造する方法を目指すものである。
The present invention provides acid-soluble A4. A silicon steel slab containing N and Sn is used as a starting material, and is cold-rolled to a thickness of 0.12 to 0.17 m/m by a single-stage cold rolling process under heavy reduction accompanied by hot-rolled plate annealing.The product has excellent magnetic properties. The aim is to develop a method for stably manufacturing thin, high magnetic flux density unidirectional electrical steel sheets.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の特徴とするところは、酸可溶性1! 。 The feature of the present invention is that the acid solubility is 1! .

N、Snを含有する珪素鋼スラブを出発材料とし、熱延
板焼鈍を伴う強圧下一段冷延法により、板厚0.12〜
0.17m/mに冷延された薄手一方向性電磁鋼板を製
造する方法において、スラブの含有するNと酸可溶性A
lについて、N : 0.0050〜0.0100%、
酸可溶性AN : 、((27/14)×N(χ)+0
.0035}〜{(27/24)  ×N(X) +0
.0100}%とし、且つ、熱間圧延における仕上圧延
で、圧下率20%以上の圧延を6バス以上行い、且つ、
冷延圧下率が85〜92%となる熱延板の板厚とし、且
つ、熱延板中のNa5A II N含有量を0.000
5〜0.0020%に制御する熱間圧延を行うことによ
り、二次再結晶が完全で、製品磁気特性の優れた薄手高
磁束密度一方向性電磁鋼板の安定製造を可能とする。
Using a silicon steel slab containing N and Sn as a starting material, a sheet thickness of 0.12~
In a method for manufacturing a thin unidirectional electrical steel sheet cold-rolled to 0.17 m/m, the N contained in the slab and the acid-soluble A
For l, N: 0.0050-0.0100%,
Acid-soluble AN: , ((27/14)×N(χ)+0
.. 0035}~{(27/24) ×N(X) +0
.. 0100}%, and rolling with a rolling reduction of 20% or more is performed for 6 or more baths in finish rolling during hot rolling, and
The thickness of the hot rolled sheet is such that the cold rolling reduction ratio is 85 to 92%, and the Na5A II N content in the hot rolled sheet is 0.000.
By performing hot rolling controlled at 5% to 0.0020%, secondary recrystallization is complete and it is possible to stably manufacture thin, high magnetic flux density unidirectional electrical steel sheets with excellent product magnetic properties.

〔作 用〕[For production]

以下に本発明に至った経緯を実験結果に基づいて説明す
る。
The circumstances leading to the present invention will be explained below based on experimental results.

(実験I) C:  0.080%、Si:3.25%、Mn: 0
.075%、S:0.025%、Sn:0.13%、N
 : 0.0040〜0.0120%、酸可溶性A# 
:0.0100〜0.0500%、残部:実質的にFe
からなる200m/’m厚の多数のスラブを1400℃
で4時間加熱し、加熱炉から抽出して、粗圧延を行い、
40m/m厚のバーとした。その後6バスの等圧下率圧
延で、板厚1.4m/mに仕上圧延を行った。仕上圧延
゛前後の温度は、それぞれ1230〜1250℃及び1
030〜1050″Cであった。又、仕上圧延に要した
時間は20秒以内であった。
(Experiment I) C: 0.080%, Si: 3.25%, Mn: 0
.. 075%, S: 0.025%, Sn: 0.13%, N
: 0.0040-0.0120%, acid soluble A#
:0.0100~0.0500%, remainder: substantially Fe
A large number of 200m/'m thick slabs consisting of
heated for 4 hours, extracted from the heating furnace, and roughly rolled.
The bar had a thickness of 40 m/m. Thereafter, finish rolling was performed to a plate thickness of 1.4 m/m by 6 baths of constant reduction rolling. The temperatures before and after finish rolling are 1230-1250℃ and 1
The temperature was 030 to 1050''C. Also, the time required for finish rolling was within 20 seconds.

仕上圧延終了後約70℃/秒で550℃迄冷却し、その
後大気中で放冷した。熱延板の含有するNa5A I 
Nは、0.0010〜0.0012%であった。熱延板
をN2雰囲気中で1100℃で30秒間焼鈍し、次いで
100’Cの水に浸漬して、冷却した。焼鈍後の板を酸
洗し、板厚0.15m/m迄冷延した。次いで、75%
N2.25%N2、露点65℃の雰囲気中で、850℃
で150秒間の脱炭焼鈍を行った。次いで、マグネシャ
パウダーを主成分とする焼鈍分離剤を塗布し、85%H
,,15%N2雰囲気中で、25℃/時間の昇温速度で
1200℃まで加熱し、次いでN2雰囲気中で、120
0℃で20時間均熱した後冷却し、焼鈍分離剤を除去し
、張力コーティングを行って製品を得た。製品の磁束密
度B8、鉄損W15150を測定した。次いで、コーテ
ィングおよびグラス被膜を除去して、マクロ組織を観察
した。スラブのN、酸可溶性Al含有量と、二次再結晶
状況、B8、W15150の関係を、各々、第1図、第
2図、第3図に示す。
After finish rolling, it was cooled to 550°C at a rate of about 70°C/sec, and then allowed to cool in the atmosphere. Na5A I contained in hot rolled sheet
N was 0.0010 to 0.0012%. The hot rolled sheets were annealed at 1100° C. for 30 seconds in a N2 atmosphere and then cooled by immersion in water at 100′C. The plate after annealing was pickled and cold rolled to a plate thickness of 0.15 m/m. Then 75%
850℃ in an atmosphere of N2.25%N2 and a dew point of 65℃
Decarburization annealing was performed for 150 seconds. Next, an annealing separator mainly composed of magnesia powder is applied, and 85% H
,, heated to 1200°C in a 15% N2 atmosphere at a heating rate of 25°C/hour, then heated to 1200°C in a N2 atmosphere.
After soaking at 0° C. for 20 hours, the product was cooled, the annealing separator was removed, and tension coating was performed to obtain a product. The magnetic flux density B8 and iron loss W15150 of the product were measured. Next, the coating and glass film were removed and the macrostructure was observed. The relationships between the N and acid-soluble Al contents of the slab, the secondary recrystallization state, B8, and W15150 are shown in FIGS. 1, 2, and 3, respectively.

第1図において、横軸はN含有量であり、縦軸は酸可溶
性Al含有量である。二次再結晶状況を0、Δ、×の符
号で示す。同図における、直線ab + bc + c
d + daで囲まれる領域で、二次再結晶が完全であ
った。直線abは次式で表わされる。
In FIG. 1, the horizontal axis is the N content, and the vertical axis is the acid-soluble Al content. The secondary recrystallization status is indicated by the symbols 0, Δ, and ×. In the same figure, straight line ab + bc + c
Secondary recrystallization was complete in the region surrounded by d + da. Straight line ab is expressed by the following equation.

直線ab;酸可溶性AMχ)= (27/14) ×N
(χ)+0.0100(χ)すなわち、N : 0.0
050〜0.0120%で、酸可溶性AA :0.01
00〜((27/14) ×N(χ)+0.0100}
%のときに、二次再結晶が完全であることが明らかにな
った。
Straight line ab; acid-soluble AMχ) = (27/14) ×N
(χ)+0.0100(χ), that is, N: 0.0
050-0.0120%, acid soluble AA: 0.01
00~((27/14) ×N(χ)+0.0100}
%, it was revealed that the secondary recrystallization was complete.

第2図において、横軸はN含有量であり、縦軸は酸可溶
性Al含有量である。B8の値を○、△、×の符号で示
す。同図における、直線ab 、 be 、 cd 。
In FIG. 2, the horizontal axis is the N content, and the vertical axis is the acid-soluble Al content. The value of B8 is indicated by the symbols ◯, △, and ×. Straight lines ab, be, and cd in the same figure.

daで囲まれる領域で、良好なり8が得られた。In the area surrounded by da, a score of 8 was obtained.

直線ab 、 cdは、各々、次式で表わされる。Straight lines ab and cd are each expressed by the following equations.

直線ab:酸可溶性Alχ) = (27/14)  xN(χ)  +0.0100
(χ)直線Cd:酸可溶性AIり = (27/14) ×N(χ) +0.0035(χ
)すなわち、N : 0.0050〜0゜0100%で
、酸可溶性A# :  ((27/14)×N(χ) 
+0.0035}〜{(27/14) ×N(χ) +
0.0100}%のときに、良好なり8が得られること
が明らかになった。
Straight line ab: acid-soluble Alχ) = (27/14) xN(χ) +0.0100
(χ) Straight line Cd: Acid-soluble AI = (27/14) ×N(χ) +0.0035(χ
) That is, N: 0.0050-0°0100%, acid-soluble A#: ((27/14)×N(χ)
+0.0035}~{(27/14) ×N(χ) +
It was found that a score of 8, which is better than 8, can be obtained when the content is 0.0100%.

第3図において、横軸はN含有量であり、縦軸は酸可溶
性Al含有量である。W15150の値を○、Δ、×の
符号で示す。同図における、直線ab 、 bc 。
In FIG. 3, the horizontal axis is the N content, and the vertical axis is the acid-soluble Al content. The value of W15150 is indicated by the symbols ○, Δ, and ×. Straight lines ab and bc in the same figure.

cd 、 daで囲まれる領域で、良好なW15150
が得られた。
Good W15150 in the area surrounded by cd, da
was gotten.

直線ab 、 cdは、各々、次式で表わされる。Straight lines ab and cd are each expressed by the following equations.

(lO) 直線ab:酸可溶性Al(χ) = (27/14) ×N(χ) +0.0100(χ
)直線cd;酸可溶性AI(z) = (27/14)  ×N(χ)  +0.0035
(χ)すなわち、N : 0.0050〜0.0100
%で、酸可溶性AI2 :  ((27/14)×N(
χ) +0.00351〜((27/14)  ×N(
X)−1−0,0100}%のときに、良好なW151
50が得られることが明らかになった。
(lO) Straight line ab: Acid-soluble Al(χ) = (27/14) ×N(χ) +0.0100(χ
) straight line cd; acid-soluble AI (z) = (27/14) ×N (χ) +0.0035
(χ) That is, N: 0.0050 to 0.0100
%, acid-soluble AI2: ((27/14)×N(
χ) +0.00351~((27/14) ×N(
Good W151 when X) -1-0,0100}%
It turned out that 50 was obtained.

第1図、第2図、第3図の結果から、N : 0.00
50〜0.0100%で、酸可溶性1! : ((27
/14)×N(χ)十0.00351〜((27/14
)  xN(χ>  +0.0100}%のときに二次
再結晶が完全で、B8、W15150共良好な製品が得
られることが明らかになった。
From the results in Figures 1, 2, and 3, N: 0.00
50-0.0100%, acid soluble 1! : ((27
/14)×N(χ)10.00351~((27/14
) It was revealed that when xN(χ>+0.0100}%, the secondary recrystallization was complete and good products were obtained for both B8 and W15150.

二次再結晶が完全であるにもかかわらず、W15150
が不良の領域では、B8が低くなっている。
Despite the complete secondary recrystallization, W15150
In the region where B8 is defective, B8 is low.

すなわち、低Al、高Nサイドでは、二次再結晶は安定
であるが、方向性が劣り、良好な鉄損値が得られにくい
傾向を示している。
That is, on the low Al and high N side, secondary recrystallization is stable, but the directionality is poor and it is difficult to obtain a good iron loss value.

ここに、(27/1.4) ×N(χ)は、鋼に含有す
るNがすべてΔffNとなる場合に必要なA7!含有量
に相当する。AρNを主インヒビターとして活用する末
法において、製品の磁束密度、鉄損値を左右する二次再
結晶現象が、(27/14) ×N(χ)をヘースとす
る酸可溶性へ〇含有量により強い影響を受けているもの
と理解される。
Here, (27/1.4) ×N(χ) is the A7! required when all the N contained in the steel is ΔffN! Corresponds to the content. In the final method that uses AρN as the main inhibitor, the secondary recrystallization phenomenon that affects the magnetic flux density and iron loss value of the product is stronger due to the acid-soluble 〇 content with (27/14) × N (χ) as the base. understood to be affected.

(実験■) C:  0.082%、Si:3.25%、Mn: 0
.070%、S:0.025%、Sn:0.14%、N
 : 0.0085%、酸可溶性Al: 0.0240
%、残部:実質的にFeからなる200m/m厚の多数
のスラブを1400℃で4時間加熱し、加熱炉から抽出
して、粗圧延を行い、厚み40 m / mのバーとし
た。その後、6バスの等圧下率圧延で、0.75〜3.
0 m / mの各種板厚に仕上圧延した。仕上圧延に
要した時間は30秒以内であった。この場合、圧延前、
圧延中及び圧延後の冷却条件を種々変更し、熱延板のN
a5A I Nの量を0.0001〜0.0036%迄
変化させた。ここに八INは、板全厚の分析値であり、
分析方法は、臭素メタノール法を用いた。(本発明に関
するAiの分析はすべて臭素メタノール法による)。こ
れ等の熱延板を実験Iと同様な方法で処理し、製品を得
た。
(Experiment ■) C: 0.082%, Si: 3.25%, Mn: 0
.. 070%, S: 0.025%, Sn: 0.14%, N
: 0.0085%, acid soluble Al: 0.0240
%, remainder: A number of slabs of 200 m/m thick consisting essentially of Fe were heated at 1400° C. for 4 hours, extracted from the heating furnace, and rough rolled into bars with a thickness of 40 m/m. After that, it was rolled with a constant reduction ratio of 0.75 to 3.
Finish rolling was performed to various thicknesses of 0 m/m. The time required for finish rolling was within 30 seconds. In this case, before rolling,
By variously changing the cooling conditions during and after rolling, the N
The amount of a5A IN was varied from 0.0001 to 0.0036%. Here, 8IN is the analytical value of the total plate thickness,
The analysis method used the bromine methanol method. (All analyzes of Ai related to the present invention are by the bromine methanol method). These hot rolled sheets were treated in the same manner as in Experiment I to obtain a product.

次いで、製品の磁束密度B8、鉄損W15150を測定
した。次いで、コーティングおよびグラス被膜を除去し
て、マクロ組織を観察した。熱延板のNa5A i、 
N 、冷延圧下率と二次再結晶状況、B8、W1515
0の関係を各々、第4図、第5図、第6図に示す。
Next, the magnetic flux density B8 and iron loss W15150 of the product were measured. Next, the coating and glass film were removed and the macrostructure was observed. Hot rolled plate Na5A i,
N, cold rolling reduction and secondary recrystallization status, B8, W1515
0 relationships are shown in FIGS. 4, 5, and 6, respectively.

第4図において、横軸はNa5A I N含有量であり
、縦軸は冷延圧下率である。二次再結晶状況を○、△、
×の符号で示す。同図における、直線ab 、 bcc
d 、 daで囲まれる領域で、二次再結晶が完全であ
った。すなわち、Na5A Q N  : 0.000
1〜0.0020%、冷延圧下率=80〜92%のとき
に、二次再結晶が完全であることが明らかになった。
In FIG. 4, the horizontal axis is the Na5A I N content, and the vertical axis is the cold rolling reduction. Secondary recrystallization status is ○, △,
Indicated by × sign. In the same figure, straight lines ab and bcc
Secondary recrystallization was complete in the region surrounded by d and da. That is, Na5A QN: 0.000
It became clear that the secondary recrystallization was complete when the cold rolling reduction ratio was 1 to 0.0020% and 80 to 92%.

第5図において、横軸はNa5A I2.N含有量であ
り、縦軸は冷延圧下率である。B8の値を○、△、×の
符号で示す。同図における、ab 、 bc 、 cd
 、 daで囲まれる領域で、良好なり8が得られた。
In FIG. 5, the horizontal axis is Na5A I2. It is the N content, and the vertical axis is the cold rolling reduction ratio. The value of B8 is indicated by the symbols ◯, △, and ×. In the same figure, ab, bc, cd
, a score of 8 was obtained in the region surrounded by da.

すなわち、Na5A I N  : 0.0005〜0
.0020%、冷延圧下率:85〜92%のときに、良
好なり8が得られることが明らかになった。
That is, Na5A I N : 0.0005-0
.. It was revealed that a score of 8, which is good, can be obtained when the cold rolling reduction ratio is 85 to 92%.

第6図において、横軸はNa5llp、tJ含有量であ
り、縦軸は冷延圧下率である。W 15150の値を○
、△、×の符号で示す。同図における、ab 、 be
 、 cd 、 daで囲まれる領域で、良好なW15
150が得られた。
In FIG. 6, the horizontal axis is Na5llp, tJ content, and the vertical axis is cold rolling reduction. W 15150 value ○
, △, and ×. In the same figure, ab, be
Good W15 in the region surrounded by , cd, da
150 was obtained.

ずなわち、Na5A I N  : 0.0005〜0
.0020%、冷延圧下率85〜92%のときに、良好
なW15150が得られることが明らかになった。
That is, Na5A I N : 0.0005-0
.. It has become clear that good W15150 can be obtained when the cold rolling reduction is 85 to 92%.

第4図、第5図、第6図の結果から、Na5A I N
:0.0005〜0.0020%、冷延圧下率85〜9
2%のとき、−成否結晶が完全で、B8、W15150
共良好な製品が得られることが明らかになった。
From the results shown in Figures 4, 5, and 6, Na5A I N
:0.0005-0.0020%, cold rolling reduction rate 85-9
When it is 2%, - success or failure crystal is complete, B8, W15150
It has become clear that good products can be obtained.

二次再結晶が完全であるにもかかわらず、W15150
が不良の領域では、B8が低くなっている。
Despite the complete secondary recrystallization, W15150
In the region where B8 is defective, B8 is low.

実験■、実験■の結果から、酸可溶性AI2.NSnを
含有する珪素鋼スラブを出発材料とし、熱延板焼鈍を伴
う強圧下一段冷延法により、板厚0.12〜0.17m
/mに冷延された薄手一方向性電磁鋼板を製造する方法
において、スラブの含有するNと酸可溶性Aj2につい
て、N : 0.0050〜0.0100%、酸可溶性
Ae :  ((27/14)xN(Z)+0.003
5}〜{(27/14)  ×N(χ) +o、oto
o}%とし、且つ、冷延圧下率が85〜92%となる熱
延板の板厚とし、且つ、熱延板中のNa5A i、 N
含有量を0.0005〜0.0020%に制御する熱延
を行うことにより、二次再結晶が完全で、製品磁気特性
の優れた薄手高磁束密度一方向性電磁S+板の安定製造
が可能になることが明らかになった。
From the results of Experiments ■ and Experiment ■, acid-soluble AI2. A silicon steel slab containing NSN is used as a starting material, and a plate thickness of 0.12 to 0.17 m is produced by a single-stage cold rolling process under heavy reduction accompanied by hot-rolled plate annealing.
/m cold-rolled thin unidirectional electrical steel sheet, N contained in the slab and acid-soluble Aj2 are: N: 0.0050 to 0.0100%, acid-soluble Ae: ((27/14 )xN(Z)+0.003
5}〜{(27/14) ×N(χ) +o, oto
o}%, and the thickness of the hot rolled sheet is such that the cold rolling reduction ratio is 85 to 92%, and the Na5A i, N in the hot rolled sheet is
By performing hot rolling to control the content to 0.0005-0.0020%, secondary recrystallization is complete and it is possible to stably manufacture thin, high magnetic flux density unidirectional electromagnetic S+ plates with excellent product magnetic properties. It became clear that it would be.

熱延板中のNa5A I N含有量を0.0005〜0
.0020%に制御する熱延を行うことにより、二次再
結晶が良好で、且つ、磁気特性の優れた製品が得られる
理由については、必ずしも明確ではない。
The Na5A IN content in the hot rolled sheet is 0.0005 to 0.
.. It is not necessarily clear why a product with good secondary recrystallization and excellent magnetic properties can be obtained by performing hot rolling controlled at 0.020%.

冷延板厚0.17m/m以下の薄手高磁束密度一方向性
電磁鋼板を一段冷延法で製造する場合には、厚手製品を
製造する場合、又は多段冷延法で製造する場合にくらべ
、熱延板焼鈍後の組織及び析出物の状況が製品特性に対
し、より強い影響を及ぼすことが考えられる。一方、熱
延板中のNa5A 12 N含有量は、熱延板焼鈍にお
ける鋼板の組織変化及び析出物の挙動に微妙に影響を及
ぼすことが考えラレ、熱延板中(DNasAIN含有量
が、o、ooos〜0.0020%の場合に、製品特性
に対して最も有利な熱延板焼鈍後の鋼板の性状が得られ
るものであろう。
When manufacturing a thin, high magnetic flux density unidirectional electrical steel sheet with a cold-rolled plate thickness of 0.17 m/m or less using the single-stage cold rolling method, it is easier to manufacture a thick product than when manufacturing a thick product using the multi-stage cold rolling method. It is thought that the structure and the state of precipitates after hot-rolled sheet annealing have a stronger influence on the product properties. On the other hand, it is thought that the Na5A 12 N content in the hot-rolled sheet has a subtle effect on the structural changes of the steel sheet and the behavior of precipitates during hot-rolled sheet annealing. , ooos to 0.0020%, the most advantageous properties of the steel sheet after hot-rolled sheet annealing with respect to product properties will be obtained.

なお、熱延板中のNa5A 42 N含有量を0.00
05〜0.0020%に制御する方法としては、スラブ
加熱条件、粗圧延条件、仕上圧延条件、仕上圧延後の冷
却条件等があるが、その何れでもよい。
In addition, the Na5A 42 N content in the hot rolled sheet was set to 0.00.
Methods for controlling the amount to 0.05 to 0.0020% include slab heating conditions, rough rolling conditions, finish rolling conditions, and cooling conditions after finish rolling, and any of these may be used.

(実験■) C: 0.075%、Si:3.25%、Mn: 0.
070%、S:0.025%、酸可溶性Aj2 :0.
0255%、N、 : 0.0085%、Sn:0.1
5%、残部:実質的にFeからなる200m/m厚の多
数のスラブを、熱間圧延における粗圧延後のバーの厚み
及び仕上圧延のパス回数と各パスでの圧下率を種々変更
して、1.4 m / m厚の熱延板とした。仕上圧延
前後の温度は、それぞれ1230〜1250℃及び10
30〜1050℃とし、仕上圧延に要する時間は20秒
以内であった。上記以外の熱間圧延条件及び、その他の
条件については、実験Iと同様の方法で処理し製品を得
、製品の鉄積値を測定した。
(Experiment ■) C: 0.075%, Si: 3.25%, Mn: 0.
070%, S: 0.025%, acid soluble Aj2: 0.
0255%, N: 0.0085%, Sn: 0.1
5%, remainder: A large number of 200 m/m thick slabs made essentially of Fe were hot rolled by varying the bar thickness after rough rolling, the number of passes of finish rolling, and the reduction rate in each pass. , a hot-rolled sheet with a thickness of 1.4 m/m. The temperatures before and after finish rolling are 1230-1250°C and 10°C, respectively.
The temperature was 30 to 1050°C, and the time required for finish rolling was within 20 seconds. Regarding hot rolling conditions other than those mentioned above and other conditions, products were obtained by processing in the same manner as in Experiment I, and the iron product values of the products were measured.

熱間圧延における仕上圧延のパス回数及び各パスでの圧
下率と製品の鉄損値の関係を第7図及び第8図に示す。
FIGS. 7 and 8 show the relationship between the number of passes of finish rolling in hot rolling, the rolling reduction in each pass, and the iron loss value of the product.

第7図は、等圧下率圧延の場合である。横軸は圧延パス
回数、縦軸は圧下率である。鉄損値を○、△、×等の符
号で示す。第7図より明らかなように、圧下率が20%
以上で、圧延パス回数が6回以上の場合に、良好な鉄損
値が得られることが判明した。
FIG. 7 shows the case of constant reduction rolling. The horizontal axis is the number of rolling passes, and the vertical axis is the rolling reduction ratio. The iron loss value is indicated by a symbol such as ○, △, or ×. As is clear from Figure 7, the reduction rate is 20%.
As described above, it has been found that a good iron loss value can be obtained when the number of rolling passes is 6 or more.

第8図は、各パスで圧下率が異なる場合である。FIG. 8 shows a case where the rolling reduction ratio is different in each pass.

横軸は、圧下率20%以上の圧延パス回数であり、縦軸
は、鉄損である。
The horizontal axis is the number of rolling passes with a rolling reduction of 20% or more, and the vertical axis is the iron loss.

第8図から明らかなように、圧下率20%以上の圧延パ
ス回数が、6回以上の時、良好な鉄損が得られることが
判明した。
As is clear from FIG. 8, it has been found that good iron loss can be obtained when the number of rolling passes with a rolling reduction of 20% or more is 6 or more.

製品板厚が、薄くなる程、高温仕上焼鈍において、板厚
全体に対する界面反応の影響が相対的に大きくなり、理
想的な二次再結晶を発現させ、良好な製品磁気特性を得
るためには、インヒビター集合組織両面に関して、前工
程での厳密な造り込みが必要である。インヒビター、集
合組織のあるべき状態について、定量的に議論すること
は、現在の段階では、なお、難かしい。
As the product plate thickness becomes thinner, the influence of the interfacial reaction on the entire plate thickness becomes relatively larger during high-temperature finish annealing. , it is necessary to precisely build up both sides of the inhibitor texture in the previous process. At the current stage, it is still difficult to quantitatively discuss the ideal state of inhibitors and collective tissues.

上記の如く、熱間圧延の仕上圧延において、圧下率20
%以上の圧延パス回数を6回以上とする時に、強圧下−
回冷延法による薄手高磁束密度一方向性電磁鋼板の鉄損
値が良好となるのは、多分、主として集合組織面におい
て有利になったためと考えられる。
As mentioned above, in the finish rolling of hot rolling, the reduction rate is 20
% or more, when the number of rolling passes is 6 or more, strong rolling -
The reason why the thin, high magnetic flux density, unidirectional electrical steel sheet produced by the re-cold rolling process has a good iron loss value is probably due to the fact that it has become advantageous mainly in terms of texture.

実験I、実験■、実験■で示す材料成分にCu又はsb
の何れか一方又は双方を添加した場合について、実験I
、実験■、実験■と同様の実験を行い同様の結果を得た
Cu or sb was added to the material components shown in Experiment I, Experiment ■, and Experiment ■.
Experiment I for the case where either one or both of
, Experiment ① and Experiment ② were conducted and similar results were obtained.

(実験■) C:  0.083%、Si:3.25%、Mn: 0
.076%、S:0.025%、Sn:0.14%、N
 : 0.0085%、酸可溶性AIl:0.0235
%、Cu:無添加および0.01〜0.20%、残部:
実質的にFeからなる200m/m厚の多数のスラブに
ついて、熱延以降工程を実験Iと同様の方法で処理し、
製品を得た。Cu含有量と鉄損値の関係を第9図に示す
。第9図から明らかな如(、Cu:0.03〜0.08
%の範囲で鉄損特性の向上が認められた。
(Experiment ■) C: 0.083%, Si: 3.25%, Mn: 0
.. 076%, S: 0.025%, Sn: 0.14%, N
: 0.0085%, acid soluble AIl: 0.0235
%, Cu: no addition and 0.01 to 0.20%, remainder:
A large number of 200 m/m thick slabs substantially made of Fe were processed in the same manner as in Experiment I, including hot rolling and subsequent steps.
Got the product. FIG. 9 shows the relationship between Cu content and iron loss value. As is clear from Fig. 9 (Cu: 0.03-0.08
An improvement in iron loss characteristics was observed within the range of %.

(実験■) C:  0.080%、Si:3.23%、Mn: 0
.075%、S二0.025%、Sn:0.13%、N
 : 0.0085%、酸可溶性Al:o、0230%
、Sb:無添加および0.001〜0.050%、残部
:実質的にFeからなる200m/m厚の多数のスラブ
について、熱延以降工程を実験Iと同様の方法で処理し
、製品を得た。sb含有量と鉄損の関係を第10図に示
す。第10図から明らかな如く、3b: 0.005〜
0.035%の範囲で鉄損特性の向上が認められた。
(Experiment ■) C: 0.080%, Si: 3.23%, Mn: 0
.. 075%, S2 0.025%, Sn: 0.13%, N
: 0.0085%, acid soluble Al: o, 0230%
, Sb: no additive and 0.001 to 0.050%, remainder: substantially Fe, and a number of slabs with a thickness of 200 m/m were processed in the same manner as in Experiment I, and the products were Obtained. Figure 10 shows the relationship between sb content and iron loss. As is clear from Fig. 10, 3b: 0.005~
Improvement in iron loss characteristics was observed within a range of 0.035%.

次に、本発明における、スラブの成分及び製造工程の処
理条件の限定理由について述べる。
Next, the reasons for limiting the components of the slab and the processing conditions of the manufacturing process in the present invention will be described.

Cは、0.060〜0.120%が好ましい。0.06
0%未満、あるいは、0.120%を超えると、二次再
結晶が不安定になる。
C is preferably 0.060 to 0.120%. 0.06
If it is less than 0% or more than 0.120%, secondary recrystallization becomes unstable.

Si は、2.9〜4.5%が好ましい。2.9未満で
は良好な(低い)鉄損値が得られず、4.5%を超える
と、加工性(冷間圧延のし易さ)が劣化する。
Si is preferably 2.9 to 4.5%. If it is less than 2.9, a good (low) iron loss value cannot be obtained, and if it exceeds 4.5%, workability (ease of cold rolling) deteriorates.

Mnは、0.050〜0.090%が好ましい。0.0
50%未満、あるいは、0.090%を超えると、二次
再結晶が不安定になる。
Mn is preferably 0.050 to 0.090%. 0.0
If it is less than 50% or more than 0.090%, secondary recrystallization becomes unstable.

S又はSeの何れか一方か又は双方は、0.020〜0
.060%が好ましい。0.020%未満では、二次再
結晶が不安定となり、0.060%を超えると鉄損値が
不良になる。
Either one or both of S and Se is 0.020 to 0.
.. 060% is preferred. If it is less than 0.020%, secondary recrystallization becomes unstable, and if it exceeds 0.060%, the iron loss value becomes poor.

又、SとSeを複合添加した場合に、特に優れた製品磁
気特性が得られる。
Furthermore, particularly excellent product magnetic properties can be obtained when S and Se are added in combination.

Snは0.05〜0.25%が好ましい。0.05%未
満では、二次再結晶が不安定となり、0.25%を超え
ると加工性が劣化する。
Sn is preferably 0.05 to 0.25%. If it is less than 0.05%, secondary recrystallization becomes unstable, and if it exceeds 0.25%, workability deteriorates.

スラブ加熱において、硫化物、窒化物を十分に固溶させ
るため高温加熱が必要であり、好ましくは1300“C
以上での加熱が望ましい。
In slab heating, high temperature heating is required to sufficiently dissolve sulfides and nitrides, preferably at 1300"C.
Heating above is desirable.

熱延板を1030〜1200℃で10分間以内焼鈍する
ことが好ましい。1030℃未満では、良好な製品磁気
特性が得られず、1200℃を超えると、二次再結晶が
不安定になる。10分間を超えて焼鈍しても製品磁気特
性の向上は期待できず、経済的に不利である。なお、焼
鈍の途中で、50〜250ppm脱炭することは、製品
磁気特性の向上に有効である。焼鈍後急冷することが好
ましい。急冷しないと、良好な製品特性が得られない。
Preferably, the hot rolled sheet is annealed at 1030 to 1200°C for 10 minutes or less. If the temperature is less than 1030°C, good product magnetic properties cannot be obtained, and if it exceeds 1200°C, secondary recrystallization becomes unstable. Even if the product is annealed for more than 10 minutes, no improvement in the magnetic properties of the product can be expected, which is economically disadvantageous. Note that decarburizing 50 to 250 ppm during annealing is effective in improving the magnetic properties of the product. It is preferable to rapidly cool the material after annealing. Good product properties cannot be obtained without rapid cooling.

一段冷延法は、二段冷延法より製造コストが著しく安く
、好ましい。冷延後の板厚は0.12〜0.17m /
 mが好ましい。0.12m/m未満では、二次再結晶
が不安定になり易<、0.17m/mを超えると期待す
る鉄損値が得られない。なお、冷間圧延の途中で、20
0〜300℃で1〜5分間保定することは製品磁気特性
の向上に有効である。高温仕上焼鈍の昇温途中少くとも
1000℃迄、窒素を含む雰囲気を用いることが好まし
い。窒素を含まない場合、二次再結晶が不安定になる。
The one-stage cold rolling method is preferable because the production cost is significantly lower than the two-stage cold rolling method. The plate thickness after cold rolling is 0.12~0.17m/
m is preferred. If it is less than 0.12 m/m, secondary recrystallization tends to become unstable, and if it exceeds 0.17 m/m, the expected iron loss value cannot be obtained. In addition, during the cold rolling, 20
Maintaining the temperature at 0 to 300°C for 1 to 5 minutes is effective in improving the magnetic properties of the product. It is preferable to use an atmosphere containing nitrogen during the heating up to at least 1000°C during high-temperature finish annealing. If nitrogen is not included, secondary recrystallization becomes unstable.

〔実施例〕〔Example〕

実施例I C:  0.080%、Si:3.25%、Mn: 0
.076%、S:無添加、0.015. 0.025%
、Se:無添加、0.0150.025%、Sn:0.
13%、N : 0.0045.0.00850.01
10%、酸可溶性Ajl! : 0.0150 、0.
01700.0230 、0.0260 、0.030
0%、Cu:無添加、0.07%、Sb:無添加、0.
020%、残部:実質的にFeからなる200m/m厚
の多数のスラブを1400℃で4時間加熱し、加熱炉か
ら抽出して、粗圧延を行い、40rn/m厚のバーとし
た。その後6バスの等圧下率圧延で0.92 、1.0
0 、1.31 、2.43m/ mの各板厚に熱延し
た。仕上圧延に要した時間は30秒以内であった。この
場合、仕上圧延前、圧延中及び圧延後の冷却条件を種々
変更した。熱延板のNa5A 42 N含有量は0.0
002〜0.0035%であった。
Example I C: 0.080%, Si: 3.25%, Mn: 0
.. 076%, S: no additive, 0.015. 0.025%
, Se: no addition, 0.0150.025%, Sn: 0.
13%, N: 0.0045.0.00850.01
10%, acid soluble Ajl! : 0.0150, 0.
01700.0230, 0.0260, 0.030
0%, Cu: no addition, 0.07%, Sb: no addition, 0.
020%, remainder: A large number of slabs with a thickness of 200 m/m consisting essentially of Fe were heated at 1400° C. for 4 hours, extracted from the heating furnace, and rough rolled into bars with a thickness of 40 rn/m. After that, 0.92 and 1.0 were rolled with 6 baths with equal reduction ratio.
The sheets were hot-rolled to thicknesses of 0, 1.31, and 2.43 m/m. The time required for finish rolling was within 30 seconds. In this case, the cooling conditions before finish rolling, during rolling, and after rolling were variously changed. The Na5A 42 N content of the hot rolled sheet is 0.0
It was 0.002% to 0.0035%.

熱延板を1120℃で60秒間焼鈍し、次いで風冷と1
00’Cの水への浸漬により冷却した。
The hot rolled sheet was annealed at 1120°C for 60 seconds, then air cooled and
Cooled by immersion in water at 00'C.

焼鈍後の板を酸洗し板厚0.12m/mと0.17m/
mに冷延した。
After annealing, the plate is pickled and the plate thickness is 0.12m/m and 0.17m/m.
It was cold rolled to m.

次いで、75%N2.25%N2、露点65℃の雰囲気
中で、850℃で150秒間の脱炭焼鈍を行った。次い
で、マグネシャを主成分とする焼鈍骨離削を塗布し、8
5%H,,15%N2雰囲気中で、25℃/時間の昇温
速度で1200℃まで加熱し、次いでH2雰囲気中で、
1200℃で20時間均熱した後冷却し、焼鈍分離剤を
除去し、張力コーティングを行って製品を得た。製品の
磁束密度B8、鉄損W15150を測定した。次い、で
、コーティングおよびグラス被膜を除去して、マクロ組
織を観察した。その結果を第1表に示す。第1表から明
らかなように、スラブのN、酸可溶性AI!含有量、熱
延板のNa5A I N含有量及び冷延圧下率が本発明
の条件であるときのみ、二次再結晶が完全で、B8、W
15150共優れた製品が得られた。
Next, decarburization annealing was performed at 850° C. for 150 seconds in an atmosphere of 75% N2.25% N2 and a dew point of 65° C. Next, an annealing bone removal agent containing magnesia as a main component is applied, and 8
Heating to 1200 °C at a heating rate of 25 °C/h in a 5% H, 15% N2 atmosphere, then in a H2 atmosphere.
After soaking at 1200° C. for 20 hours, the product was cooled, the annealing separator was removed, and tension coating was performed to obtain a product. The magnetic flux density B8 and iron loss W15150 of the product were measured. Next, the coating and glass film were removed and the macrostructure was observed. The results are shown in Table 1. As is clear from Table 1, the slab's N, acid-soluble AI! The secondary recrystallization is complete and B8, W
Both excellent products were obtained.

また、Cu、Sbの含有量が本発明領域にあるとき、更
に優れた製品磁気特性が得られた。
Furthermore, when the contents of Cu and Sb were within the range of the present invention, even better magnetic properties of the product were obtained.

実施例2 第2表に示す、A、B、C,D4種の成分の200m/
m厚の多数のスラブを熱間圧延における粗圧延後のバー
の厚み及び仕上圧延のパス回数と各パスでの圧下率を種
々変更して、1.4 m / m厚の熱延板とした。上
記以外の熱間圧延条件及びその他の条件については、実
験Iと同様の方法で処理し、製品を得、鉄損値を測定し
た。仕上圧延のパス回数、各パスでの圧下率及び製品の
鉄損値を第3表に示す。
Example 2 200m/200m of the four types of components A, B, C, and D shown in Table 2
A large number of slabs with a thickness of 1.4 m/m were made into hot rolled plates with a thickness of 1.4 m/m by variously changing the bar thickness after rough rolling in hot rolling, the number of passes of finish rolling, and the reduction rate in each pass. . Regarding the hot rolling conditions and other conditions other than those mentioned above, the process was carried out in the same manner as in Experiment I, a product was obtained, and the iron loss value was measured. Table 3 shows the number of passes of finish rolling, the reduction ratio in each pass, and the iron loss value of the product.

第3表から明らかなように、熱間圧延における仕上圧延
で圧下率20%以上の圧延パス回数が6回以上の場合に
優れた鉄損値が得られた。
As is clear from Table 3, excellent iron loss values were obtained when the number of rolling passes with a rolling reduction of 20% or more was 6 or more in finish rolling during hot rolling.

第 表 〔発明の効果] この発明は、以上述べたように構成したから、酸可溶性
Al 、N 、Snを含有する珪素鋼スラブを出発材料
とし、熱延板焼鈍を伴う強圧下一段冷延法により、板厚
0.12〜0.17m/mに冷延された薄手一方向性電
磁鋼板を製造する方法において、−次頁結晶が完全で、
製品磁気特性の優れた薄手高磁束密度一方向性電磁鋼板
が安定して製造できるようになった。
Table [Effects of the Invention] Since the present invention is configured as described above, the silicon steel slab containing acid-soluble Al, N, and Sn is used as a starting material, and a one-stage cold rolling process under heavy reduction accompanied by hot-rolled plate annealing is applied. In the method of manufacturing a thin unidirectional electrical steel sheet cold-rolled to a thickness of 0.12 to 0.17 m/m, the crystals are perfect,
It is now possible to stably manufacture thin, high magnetic flux density, unidirectional electrical steel sheets with excellent product magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、スラブのN含有量(横軸)及び酸可溶性Aj
2含有量(縦軸)と二次再結晶状況(○、X等で表示)
の関係を示す図である。 第2図は、スラブのN含有量(横軸)及び酸可溶性AA
含有量(縦軸)と製品の磁束密度B8(○、X等で表示
)の関係を示す図である。 第3図は、スラブのN含有量(横軸)及び酸可溶性A7
!含有量(縦軸)と製品の鉄損W1.5150(○、×
等で表示)の関係を示す図である。 第4図は、熱延板のNa5A I N含有量(横軸)及
び冷延圧下率(縦軸)と二次再結晶状況(○、×等で表
示)の関係を示す図である。 第5図は、熱延板のNa5A I N含有量(横軸)及
び冷延圧下率(縦軸)と製品の磁束密度B8(○、×等
で表示)の関係を示す図である。 第6図は、熱延板のNa5A j2N  (横軸)及び
冷延圧下率(縦軸)と製品の鉄損W15150 (○、
X等で表示)の関係を示す図である。 第7図は、熱間圧延における、等圧下率仕上圧延のパス
回数及び各パスでの圧下率と製品の鉄損値(○、×等で
表示)の関係を示す図である。 第8図は、熱間圧延における、仕上圧延の圧延率20%
以上のパス回数と製品の鉄損値の関係を示す図である。 第9図は、スラブのCu含有量(横軸)とCu添加によ
る製品の鉄損W15150の変化量(縦軸)の関係を示
す図である。 第10図は、スラブのsb含有量(横軸)とsb添加に
よる製品の鉄損W15150の変化量(縦軸)の関係を
示す図である。
Figure 1 shows the N content (horizontal axis) and acid-soluble Aj of the slab.
2 content (vertical axis) and secondary recrystallization status (indicated by ○, X, etc.)
FIG. Figure 2 shows the N content (horizontal axis) and acid-soluble AA of the slab.
It is a diagram showing the relationship between the content (vertical axis) and the magnetic flux density B8 of the product (indicated by ◯, X, etc.). Figure 3 shows the N content of the slab (horizontal axis) and the acid-soluble A7
! Content (vertical axis) and product iron loss W1.5150 (○, ×
FIG. FIG. 4 is a diagram showing the relationship between the Na5A I N content (horizontal axis) and cold rolling reduction (vertical axis) of the hot-rolled sheet and the secondary recrystallization status (indicated by ○, ×, etc.). FIG. 5 is a diagram showing the relationship between the Na5A I N content (horizontal axis) and cold rolling reduction (vertical axis) of the hot-rolled sheet and the magnetic flux density B8 (indicated by ○, ×, etc.) of the product. Figure 6 shows the Na5A j2N (horizontal axis) and cold rolling reduction (vertical axis) of the hot rolled sheet and the iron loss W15150 (○,
FIG. FIG. 7 is a diagram showing the relationship between the number of passes of uniform reduction rate finish rolling, the reduction rate in each pass, and the iron loss value of the product (indicated by ◯, ×, etc.) in hot rolling. Figure 8 shows a finishing rolling ratio of 20% in hot rolling.
FIG. 3 is a diagram showing the relationship between the number of passes described above and the core loss value of the product. FIG. 9 is a diagram showing the relationship between the Cu content of the slab (horizontal axis) and the amount of change in iron loss W15150 of the product due to Cu addition (vertical axis). FIG. 10 is a diagram showing the relationship between the sb content of the slab (horizontal axis) and the amount of change in iron loss W15150 of the product due to sb addition (vertical axis).

Claims (1)

【特許請求の範囲】 1、重量%でC:0.060〜0.120%、Si:2
.9〜4.5%、Mn:0.050〜0.090%、S
又はSeの何れか一方か又は双方:0.020〜0.0
60%、Sn:0.05〜0.25%、残部:酸可溶性
Al、N、Feおよび不可避的不純物からなるスラブを
高温加熱し、熱間圧延し、熱延板を1030〜1200
℃の温度範囲で10分間以内焼鈍し、急冷し、次いで冷
間圧延し、冷間圧延後の板厚を0.12〜0.17m/
mとし、水素を含む湿潤雰囲気中で脱炭焼鈍を行い、マ
グネシアを主成分とする焼鈍分離剤を塗布し、昇温途中
少くとも1000℃迄、窒素を含む雰囲気を用いる高温
仕上焼鈍を行い、張力コーティングを行う薄手一方向性
電磁鋼板の製造方法において、スラブの含有するNと酸
可溶性Alについて、N:0.0050〜0.0100
%、酸可溶性Al:{(27/14)×N(%)+0.
0035}〜{(27/14)×N(%)+0.010
0}%とし、 且つ、熱間圧延における仕上圧延において、圧下率20
%以上の圧延を6パス以上行い、且つ、冷延圧下率が8
5〜92%となる熱延板の板厚とし、更に、熱延板中の
NasAlN含有量を0.0005〜0.0020%に
制御する熱間圧延を行うことを特徴とする、一段冷延法
による製品磁気特性の優れた薄手高磁束密度一方向性電
磁鋼板の製造方法。 2、重量%でC:0.060〜0.120%、Si:2
.9〜4.5%、Mn:0.050〜0.090%、S
又はSeの何れか一方か又は双方:0.020〜0.0
60%、Sn:0.05〜0.25%、Cu:0.03
〜0.08%又はSb:0.005〜0.035%の何
れか一方又は双方、残部:酸可溶性Al、N、Feおよ
び不可避的不純物からなるスラブを高温加熱し、熱間圧
延し、熱延板を1030〜1200℃の温度範囲で10
分間以内焼鈍し、焼鈍後急冷し、次いで冷間圧延し、冷
間圧延後の板厚を0.12〜0.17m/mとし、水素
を含む湿潤雰囲気中で脱炭焼鈍を行い、マグネシアを主
成分とする焼鈍分離剤を塗布し、昇温途中少くとも10
00℃迄、窒素を含む雰囲気を用いる高温仕上焼鈍を行
い、張力コーティングを行う薄手一方向性電磁鋼板の製
造方法において、スラブの含有するNと酸可溶性Alに
ついて、N:0.0050〜0.0100%、酸可溶性
Al:{(27/14)×N(%)+0.0035}〜
{(27/14)×N(%)+0.0100}%とし、
且つ、熱間圧延における仕上圧延で、圧下率20%以上
の圧延を6パス以上行い、且つ、冷延圧下率が85〜9
2%となる熱延板の板厚とし、更に、熱延板中のNas
AlN含有量を0.0005〜0.0020%に制御す
る熱間圧延を行うこと特徴とする、一段冷延法による製
品磁気特性の優れた薄手高磁束密度一方向性電磁綱板の
製造方法。
[Claims] 1. C: 0.060 to 0.120% by weight, Si: 2
.. 9-4.5%, Mn: 0.050-0.090%, S
or Se or both: 0.020 to 0.0
A slab consisting of 60%, Sn: 0.05-0.25%, remainder: acid-soluble Al, N, Fe and unavoidable impurities is heated at high temperature and hot-rolled to obtain a hot-rolled plate of 1030-1200%.
Annealed within 10 minutes at a temperature range of ℃, rapidly cooled, and then cold rolled to a plate thickness of 0.12 to 0.17 m/cm after cold rolling.
m, perform decarburization annealing in a humid atmosphere containing hydrogen, apply an annealing separator mainly composed of magnesia, and perform high-temperature finish annealing using an atmosphere containing nitrogen to at least 1000 ° C during heating, In the method for manufacturing a thin unidirectional electrical steel sheet that is subjected to tension coating, the N and acid-soluble Al contained in the slab are N: 0.0050 to 0.0100.
%, acid-soluble Al: {(27/14)×N(%)+0.
0035}~{(27/14)×N(%)+0.010
0}%, and the rolling reduction rate is 20 in finish rolling during hot rolling.
% or more rolling for 6 passes or more, and the cold rolling reduction ratio is 8
One-stage cold rolling, characterized in that the thickness of the hot-rolled sheet is 5 to 92%, and further hot rolling is performed to control the NasAlN content in the hot-rolled sheet to 0.0005 to 0.0020%. A method for producing thin, high magnetic flux density, unidirectional electrical steel sheets with excellent magnetic properties. 2. C: 0.060-0.120%, Si: 2 in weight%
.. 9-4.5%, Mn: 0.050-0.090%, S
or Se or both: 0.020 to 0.0
60%, Sn: 0.05-0.25%, Cu: 0.03
~0.08% or Sb: 0.005~0.035%, or both, the remainder: A slab consisting of acid-soluble Al, N, Fe, and inevitable impurities is heated at high temperature, hot rolled, and hot rolled. The rolled plate is heated in the temperature range of 1030 to 1200℃ for 10
Annealed within 1 minute, rapidly cooled after annealing, then cold rolled, with a plate thickness of 0.12 to 0.17 m/m after cold rolling, decarburized annealed in a humid atmosphere containing hydrogen, and magnesia Apply the annealing separator, which is the main component, and at least 10
In a method for producing a thin grain-oriented electrical steel sheet in which high-temperature finish annealing is performed in an atmosphere containing nitrogen up to 0.00°C and tension coating is applied, the N content of the slab and acid-soluble Al are N: 0.0050 to 0.000°C. 0100%, acid-soluble Al: {(27/14) x N (%) + 0.0035} ~
{(27/14)×N(%)+0.0100}%,
In addition, in finishing rolling in hot rolling, rolling with a rolling reduction of 20% or more is performed for 6 passes or more, and the cold rolling reduction is 85 to 9.
The thickness of the hot-rolled sheet is 2%, and the Nas content in the hot-rolled sheet is
A method for producing a thin, high magnetic flux density unidirectional electromagnetic steel sheet with excellent product magnetic properties by a one-stage cold rolling process, characterized in that hot rolling is carried out to control the AlN content to 0.0005 to 0.0020%.
JP6224389A 1989-03-16 1989-03-16 Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method Pending JPH02243721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6224389A JPH02243721A (en) 1989-03-16 1989-03-16 Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6224389A JPH02243721A (en) 1989-03-16 1989-03-16 Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method

Publications (1)

Publication Number Publication Date
JPH02243721A true JPH02243721A (en) 1990-09-27

Family

ID=13194504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6224389A Pending JPH02243721A (en) 1989-03-16 1989-03-16 Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method

Country Status (1)

Country Link
JP (1) JPH02243721A (en)

Similar Documents

Publication Publication Date Title
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH0277524A (en) Production of thin high-flux-density grain-oriented electrical steel sheet having excellent iron loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH02298219A (en) Production of thin grain-oriented silicon steel sheet having high magnetic flux density and excellent in iron loss
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH02243721A (en) Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method
JPH0949022A (en) Production of grain oriented silicon steel sheet with low iron loss and high magnetic flux density
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2755414B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method
JP2525721B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH02209426A (en) Production of thin grain-oriented silicon sheet with high magnetic flux density excellent in magnetic property of product by single-stage cold rolling method
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2762095B2 (en) Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method
JPH07113120A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH05230534A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JP2525722B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH0372025A (en) Production of thin grain-oriented silicon steel sheet with high magnetic flux density by single-stage cold rolling method
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH02213419A (en) Production of thin grain-oriented silicon sheet excellent in iron loss and having high magnetic flux density
JPH03294425A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2000178648A (en) Production of grain oriented silicon steel sheet excellent in magnetic property