JP2755414B2 - Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method - Google Patents

Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method

Info

Publication number
JP2755414B2
JP2755414B2 JP1063883A JP6388389A JP2755414B2 JP 2755414 B2 JP2755414 B2 JP 2755414B2 JP 1063883 A JP1063883 A JP 1063883A JP 6388389 A JP6388389 A JP 6388389A JP 2755414 B2 JP2755414 B2 JP 2755414B2
Authority
JP
Japan
Prior art keywords
hot
cold rolling
soluble
acid
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1063883A
Other languages
Japanese (ja)
Other versions
JPH028328A (en
Inventor
正三郎 中島
克郎 黒木
幸司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPH028328A publication Critical patent/JPH028328A/en
Application granted granted Critical
Publication of JP2755414B2 publication Critical patent/JP2755414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一段冷延法による製品磁気特性の優れた薄
手高磁束密度一方向性電磁鋼板の安定した製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for stably producing a thin high magnetic flux density unidirectional magnetic steel sheet having excellent product magnetic properties by a single-stage cold rolling method.

〔従来の技術〕[Conventional technology]

一方向性磁気鋼板は、軟磁性材料として主にトランス
その他の電気機器の磁芯材料として使用され、磁気特性
として、励磁特性と鉄損特性が良好でなくてはならな
い。
A grain-oriented magnetic steel sheet is mainly used as a soft magnetic material as a magnetic core material of transformers and other electric devices, and must have good magnetic characteristics such as excitation characteristics and iron loss characteristics.

磁気特性の優れた磁気鋼板を得るには、磁化容易軸で
ある<001>軸が、圧延方向に高度に揃うことが必要で
ある。その他に、板厚、結晶粒度、固有抵抗、表面被膜
等が、磁気特性に大きく影響する。
In order to obtain a magnetic steel sheet having excellent magnetic properties, it is necessary that the <001> axis, which is the axis of easy magnetization, be highly aligned in the rolling direction. In addition, the thickness, crystal grain size, specific resistance, surface coating, and the like greatly affect the magnetic properties.

電磁鋼板の方向性は、AIN,MnSをインヒビターとして
機能せしめる強圧下一段冷間圧延プロセスによって大き
く向上し、現在、磁束密度が理論値の96%程度のものま
で製造されるようになって来ている。
The directionality of electrical steel sheets has been greatly improved by the high-pressure single-stage cold rolling process that makes AIN and MnS function as inhibitors. Currently, magnetic flux densities are being manufactured to about 96% of the theoretical value. I have.

一方、近年、エネルギー価格の高騰を反映してトラン
スメーカーは、省エネルギー型トランス用素材として、
低鉄損磁性材料への指向を一段と強めている。
On the other hand, in recent years, reflecting the soaring energy prices, transformer manufacturers
The focus on low iron loss magnetic materials has been further strengthened.

低鉄損磁性材料として、アモルファス合金や6.5%Si
合金といった高Si材の開発も進められているが、トラン
ス用の材料としては、価格、加工性等の点で難点があ
る。
As low iron loss magnetic materials, amorphous alloys and 6.5% Si
The development of high Si materials such as alloys is also underway, but there are drawbacks in transformer materials such as price and workability.

他方、磁気鋼板の鉄損には、Si含有量の他に板厚が大
きく影響し、化学研摩等により製品の板厚を薄くする
と、鉄損が低下することが知られている。
On the other hand, it is known that the iron loss of the magnetic steel sheet is greatly affected by the thickness of the product in addition to the Si content, and the iron loss is reduced when the thickness of the product is reduced by chemical polishing or the like.

本発明者等は、先に、特開昭58−217630号公報におい
て、酸可溶性Al,N,Snを含有する珪素鋼スラブを出発材
料とし、熱延板焼鈍を伴う強圧下一段冷延法により、薄
手高磁束密度一方向性電磁鋼板を製造する方法を開示し
た。この方法により、鉄損の優れた薄手高磁束密度一方
向性電磁鋼板、就中、板厚0.225m/m迄の薄手材が、安価
に工業生産できるようになり、これを用いたトランスの
低鉄損化を通して、時代の課題である省エネ化に貢献で
きた。
The present inventors previously described in Japanese Patent Application Laid-Open No. 58-217630, a silicon steel slab containing acid-soluble Al, N, and Sn as a starting material, and a one-stage cold rolling method under high pressure accompanied by hot-rolled sheet annealing. And a method of manufacturing a thin high magnetic flux density unidirectional magnetic steel sheet. By this method, thin high magnetic flux density unidirectional magnetic steel sheets with excellent iron loss, especially thin materials with a thickness of up to 0.225 m / m, can be industrially produced at low cost. Through iron loss, we were able to contribute to energy conservation, a challenge for the times.

しかるに、その後、省エネ化に対する時代の要請は、
一段と強まり、トランス用素材である一方向性電磁鋼板
の一層の高性能化が必要となってきた。すなわち、板厚
0.225m/m材より更に鉄損の低い、板厚0.175m/m以下の薄
手高磁束密度一方向性電磁鋼板の安価で、且つ、安定し
た製造方法の確立が緊急の課題になってきた。
However, after that, the demands of the times for energy saving were
With further strengthening, it has become necessary to further improve the performance of the grain-oriented electrical steel sheet, which is a material for transformers. That is, the thickness
It has become an urgent issue to establish a low-cost and stable manufacturing method of a thin high-flux-density unidirectional magnetic steel sheet having a sheet thickness of 0.175 m / m or less, which has a lower core loss than 0.225 m / m material.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

特開昭58−217630号公報に開示した方法により0.175m
/m,0.150m/m材の製造は可能であるが、板厚が、0.175m/
m以下の場合、上記公報の第8表および第11表に示すご
とく、二次再結晶が完全ではなく、工業生産の場合、工
程歩留が低く、製品磁気特性のレベル及び安定性の点で
問題がある事が判明した。
0.175 m by the method disclosed in JP-A-58-217630.
/ m, 0.150m / m material can be manufactured, but the sheet thickness is 0.175m / m
m or less, as shown in Tables 8 and 11 of the above publication, secondary recrystallization is not complete, and in the case of industrial production, the process yield is low, and the level and stability of product magnetic characteristics are low. It turned out to be a problem.

本発明は、酸可溶性Al,N,Snを含有する珪素鋼スラブ
を出発材料とし、熱延板焼鈍を伴う強圧下一段冷延法に
より、板厚0.12〜0.17m/mに冷延された製品磁気特性の
優れた薄手高磁束密度一方向性電磁鋼板を安定して製造
する方法を目指すものである。
The present invention uses a silicon steel slab containing acid-soluble Al, N, and Sn as a starting material, and a product that is cold-rolled to a sheet thickness of 0.12 to 0.17 m / m by a single-stage cold rolling method under high pressure accompanied by hot-rolled sheet annealing. The purpose of the present invention is to provide a method for stably producing a thin high magnetic flux density unidirectional magnetic steel sheet having excellent magnetic properties.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の特徴とするところは、酸可溶性Al,N,Snを含
有する珪素鋼スラブを出発材料とし、熱延板焼鈍を伴う
強圧下一段冷延法により、板厚0.12〜0.17m/mに冷延さ
れた薄手一方向性電磁鋼板を製造する方法において、ス
ラブの含有するNと酸可溶性Alについて、N:0.0050〜0.
0100%、酸可溶性Al:{(27/14)×N(%)+0.0035}
〜{(27/14)×N(%)+0.0100}%とし、且つ、冷
延圧下率が85〜92%となる熱延板の板厚とし、且つ、熱
延板中のNasAlN含有量を0.0005〜0.0020%に制御する熱
延を行うことにより、二次再結晶が完全で、製品磁気特
性の優れた薄手高磁束密度一方向性電磁鋼板の安定製造
を可能とする。
The feature of the present invention is that a silicon steel slab containing acid-soluble Al, N, Sn is used as a starting material, and the sheet thickness is reduced to 0.12 to 0.17 m / m by a one-stage cold rolling method under high pressure accompanied by hot rolling sheet annealing. In the method for producing a cold-rolled thin unidirectional magnetic steel sheet, the N and the acid-soluble Al contained in the slab, N: 0.0050-0.
0100%, acid soluble Al: {(27/14) × N (%) + 0.0035}
~ {(27/14) × N (%) + 0.0100}%, and the thickness of the hot-rolled sheet with a cold rolling reduction of 85-92%, and the content of NasAlN in the hot-rolled sheet Is controlled to 0.0005 to 0.0020%, thereby making it possible to stably produce a thin high magnetic flux density unidirectional magnetic steel sheet with perfect secondary recrystallization and excellent product magnetic properties.

〔作 用〕(Operation)

以下に本発明に至った経緯を実験結果に基づいて説明
する。
Hereinafter, the circumstances that led to the present invention will be described based on experimental results.

(実験I) C:0.080%、Si:3.25%、Mn:0.075%、S:0.025%、Sn:
0.13%、N:0.0040〜0.0120%、酸可溶性Al:0.0100〜0.0
500%、残部:実質的にFeからなる多数のスラブを1370
℃で60分間加熱し、加熱炉から抽出して、1.4m/mの板厚
に熱延した。熱延終了温度は1040〜1050℃であった。熱
延終了後約70℃/秒で550℃迄冷却し、その後大気中に
放冷した。熱延板の含有するNasAlNは0.0010〜0.0012%
であった。熱延板を1100℃で30秒間焼鈍し、次いで35℃
/秒で常温迄で冷却した。焼鈍後の板を酸洗し、板厚0.
15m/m迄冷延した。次いで、75%H2,25%N2、露点65℃の
雰囲気中で、850℃で150秒間の脱炭焼鈍を行った。次い
で、マグネシヤパウダーを主成分とする焼鈍分離剤を塗
布し、85%H2,15%N2雰囲気中で、25℃/時間の昇温速
度で1200℃まで加熱し、次いでH2雰囲気中で、1200℃で
20時間均熱した後冷却し、焼鈍分離剤を除去し、張力コ
ーティングを行って製品を得た。製品の磁束密度B8、鉄
損W15/50を測定した。次いで、コーティングおよびグラ
ス被膜を除去して、マクロ組織を観察した。スラブの
N、酸可溶性Al含有量と、二次再結晶状況、B8、W15/50
の関係を、各々、第1図、第2図、第3図に示す。
(Experiment I) C: 0.080%, Si: 3.25%, Mn: 0.075%, S: 0.025%, Sn:
0.13%, N: 0.0040-0.0120%, acid-soluble Al: 0.0100-0.0
500%, balance: 1370 multiple slabs consisting essentially of Fe
It heated at 60 degreeC for 60 minutes, extracted from the heating furnace, and hot rolled to the board thickness of 1.4 m / m. The hot rolling end temperature was 1,040 to 1,050 ° C. After the completion of hot rolling, the sample was cooled to 550 ° C. at a rate of about 70 ° C./sec, and then allowed to cool in the air. 0.0010-0.0012% of NasAlN contained in hot rolled sheet
Met. Anneal the hot rolled sheet at 1100 ° C for 30 seconds, then 35 ° C
/ Second at room temperature. Pickling the annealed plate to a thickness of 0.
Cold rolled to 15m / m. Next, decarburization annealing was performed at 850 ° C. for 150 seconds in an atmosphere of 75% H 2 , 25% N 2 and a dew point of 65 ° C. Next, an annealing separator containing magnesium powder as a main component is applied and heated to 1200 ° C. at a rate of 25 ° C./hour in an atmosphere of 85% H 2 and 15% N 2 , and then in an H 2 atmosphere. At 1200 ° C
After soaking for 20 hours, the product was cooled, the annealing separating agent was removed, and the product was obtained by performing tension coating. The magnetic flux density B8 and iron loss W15 / 50 of the product were measured. The coating and the glass coating were then removed and the macrostructure was observed. N and acid soluble Al content of slab and secondary recrystallization situation, B8, W15 / 50
Are shown in FIGS. 1, 2 and 3, respectively.

第1図において、横軸はN含有量であり、縦軸は酸可
溶性Al含有量である。二次再結晶状況を○,△,×の符
号で示す。同図における、直線ab,bc,cd,daで囲まれる
領域で、二次再結晶が完全であった。直線abは次式で表
わされる。
In FIG. 1, the horizontal axis is the N content, and the vertical axis is the acid-soluble Al content. The status of secondary recrystallization is indicated by the symbols ○, △, ×. In the region surrounded by the straight lines ab, bc, cd, and da in the figure, the secondary recrystallization was complete. The straight line ab is represented by the following equation.

直線ab:酸可溶性Al(%) =(27/14)×N(%)+0.0100(%) すなわち、N:0.0050〜0.0120%で、酸可溶性Al:0.010
0〜{(27/14)×N(%)+0.0100}%のときに、二次
再結晶が完全であることが明らかになった。
Linear ab: acid-soluble Al (%) = (27/14) × N (%) + 0.0100 (%) That is, N: 0.0050 to 0.0120%, and acid-soluble Al: 0.010
When 0 to {(27/14) × N (%) + 0.0100}%, the secondary recrystallization was found to be complete.

第2図において、横軸はN含有量であり、縦軸は酸可
溶性Al含有量である、B8の値を○,△,×の符合で示
す。同図における、直線ab,bc,cd,daで囲まれる領域
で、良好なB8が得られた。
In FIG. 2, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. In the region shown in the figure, good B8 was obtained in the region surrounded by the straight lines ab, bc, cd, and da.

直線ab,cdは、各々、次式で表わされる。 The straight lines ab and cd are respectively represented by the following equations.

直線ab:酸可溶性Al(%) =(27/14)×N(%)+0.0100(%) 直線cd:酸可溶性Al(%) =(27/14)×N(%)+0.0035(%) すなわち、N:0.0050〜0.0100%で、酸可溶性Al:{(2
7/14)×N(%)+0.0035}〜{(27/14)×N(%)
+0.0100}%のときに、良好なB8が得られることが明ら
かになった。
Linear ab: Acid-soluble Al (%) = (27/14) x N (%) + 0.0100 (%) Linear cd: Acid-soluble Al (%) = (27/14) x N (%) + 0.0035 ( %) That is, N: 0.0050 to 0.0100%, and acid-soluble Al: {(2
7/14) × N (%) + 0.0035} ~ {(27/14) × N (%)
At + 0.0100%, it was found that good B8 was obtained.

第3図において、横軸はN含有量であり、縦軸は酸可
溶性Al含有量である。W15/50の値を○,△,×の符号で
示す。同図における、直線ab,bc,cd,daで囲まれる領域
で、良好なW15/50が得られた。
In FIG. 3, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. The value of W15 / 50 is indicated by the symbols ○, △, ×. In the figure, in the region surrounded by the straight lines ab, bc, cd, and da, good W15 / 50 was obtained.

直線ab,cdは、各々、次式で表わされる。 The straight lines ab and cd are respectively represented by the following equations.

直線ab:酸可溶性Al(%) =(27/14)×N(%)+0.0100(%) 直線cd:酸可溶性Al(%) =(27/14)×N(%)+0.0035(%) すなわち、N:0.0050〜0.0100%で、酸可溶性Al:{(2
7/14)×N(%)+0.0035}〜{(27/14)×N(%)
+0.0100}%のときに良好なW15/50が得られることが明
らかになった。
Linear ab: Acid-soluble Al (%) = (27/14) x N (%) + 0.0100 (%) Linear cd: Acid-soluble Al (%) = (27/14) x N (%) + 0.0035 ( %) That is, N: 0.0050 to 0.0100%, and acid-soluble Al: {(2
7/14) × N (%) + 0.0035} ~ {(27/14) × N (%)
It became clear that good W15 / 50 was obtained at + 0.0100%.

第1図、第2図、第3図の結果から、N:0.0050〜0.01
00%で、酸可溶性Al:{(27/14)×N(%)+0.0035}
〜{(27/14)×N(%)+0.0100}%のときに二次再
結晶が完全で、B8,W15/50共良好な製品が得られること
が得られることが明らかになった。
From the results of FIGS. 1, 2 and 3, N: 0.0050 to 0.01
At 00%, acid soluble Al: {(27/14) × N (%) + 0.0035}
When {(27/14) × N (%) + 0.0100}%, secondary recrystallization is complete, and it is clear that good products can be obtained for both B8 and W15 / 50. .

二次再結晶が完全であるにもかからわず、W15/50が不
良の領域では、B8が低くなっている。すなわち、低Al、
高Nサイドでは、二次再結晶は安定であるが、方向性が
劣り、良好な鉄損値が得られにくい傾向を示している。
Although the secondary recrystallization is complete, B8 is low in the region where W15 / 50 is defective. That is, low Al,
On the high N side, the secondary recrystallization is stable, but the directionality is poor, and it is difficult to obtain a good iron loss value.

ここに、(27/14)×N(%)は、鋼に含有するNが
すべてAlNとなる場合に必要なAl含有量に相当する。AlN
を主インヒビターとして活用する本法において、製品の
磁束密度、鉄損値を左右する二次再結晶現象が、(27/1
4)×N(%)をベースとする酸可溶性Al含有量により
強い影響を受けているものと理解される。
Here, (27/14) × N (%) corresponds to the Al content necessary when all the N contained in the steel is AlN. AlN
In the present method, which utilizes as a main inhibitor, the secondary recrystallization phenomenon that affects the magnetic flux density and iron loss
4) It is understood that it is strongly influenced by the acid-soluble Al content based on xN (%).

(実験II) C:0.082%、Si:3.25%、Mn:0.070%、S:0.025%、Sn:
0.14%、N:0.0085%、酸可溶性Al:0.0240%、残部:実
質的にFeからなる多数のスラブを1370℃で60分間加熱
し、加熱炉から抽出して、0.75〜3.0m/mの各種板厚に熱
延した。この場合、圧延前、圧延中及び圧延後の冷却条
件を種々変更し、熱延板のNasAlNの量を0.0001〜0.0036
%迄変化させた。ここにAlNは、板全厚の分析値であ
り、分析方法は、臭素メタノール法を用いた(本発明に
関するAlNの分析はすべて臭素メタノール法による)。
これ等の熱延板を実験Iと同様な方法で処理し、製品を
得た。
(Experiment II) C: 0.082%, Si: 3.25%, Mn: 0.070%, S: 0.025%, Sn:
0.14%, N: 0.0085%, acid-soluble Al: 0.0240%, balance: A large number of slabs consisting essentially of Fe are heated at 1370 ° C for 60 minutes, extracted from the heating furnace, and various types of 0.75-3.0m / m It was hot rolled to the thickness. In this case, before the rolling, during the rolling and after the rolling, various cooling conditions were changed, and the amount of NasAlN in the hot-rolled sheet was 0.0001 to 0.0036.
%. Here, AlN is an analysis value of the total thickness of the plate, and the analysis method was a bromine methanol method (all analysis of AlN according to the present invention was by a bromine methanol method).
These hot rolled sheets were treated in the same manner as in Experiment I to obtain products.

次いで、製品の磁束密度B8、鉄損W15/50を測定した。
次いで、コーティングおよびグラス被膜を除去して、マ
クロ組織を観察した。熱延板のNasAlN、冷延圧下率と二
次再結晶状況、B8,W15/50の関係を各々、第4図、第5
図、第6図に示す。
Next, the magnetic flux density B8 and the iron loss W15 / 50 of the product were measured.
The coating and the glass coating were then removed and the macrostructure was observed. Fig. 4 and Fig. 5 show the relationship between NasAlN of hot-rolled sheet, cold rolling reduction and secondary recrystallization, and B8 and W15 / 50, respectively.
FIG. 6 and FIG.

第4図において、横軸はNasAlN含有量であり、縦軸は
冷延圧下率である。二次再結晶状況を○,△,×の符号
で示す。同図における、直線ab,bc,cd,daで囲まれる領
域で、二次再結晶が完全であった。すなわち、NasAlN:
0.0001〜0.0020%、冷延圧下率:80〜92%のときに、二
次再結晶が完全であることが明らかになった。
In FIG. 4, the horizontal axis is the NasAlN content, and the vertical axis is the cold rolling reduction. The status of secondary recrystallization is indicated by the symbols ○, △, ×. In the region surrounded by the straight lines ab, bc, cd, and da in the figure, the secondary recrystallization was complete. That is, NasAlN:
It was found that the secondary recrystallization was complete when the rolling reduction was 0.0001 to 0.0020% and the rolling reduction was 80 to 92%.

第5図において、横軸はNasAlN含有量であり、縦軸は
冷延圧下率である。B8の値を○,△,×の符号で示す。
同図における、ab,bc,cd,daで囲まれる領域で、良好なB
8が得られた。すなわち、NasAlN:0.0005〜0.0020%、冷
延圧下率:85〜92%のときに、良好なB8が得られること
が明らかになった。
In FIG. 5, the horizontal axis represents NasAlN content, and the vertical axis represents cold rolling reduction. The value of B8 is indicated by the symbols ○, Δ, ×.
In the area surrounded by ab, bc, cd, and da in FIG.
8 was obtained. That is, it became clear that good B8 was obtained when NasAlN: 0.0005 to 0.0020% and the rolling reduction was 85 to 92%.

第6図において、横軸はNasAlN含有量であり、縦軸は
冷延圧下率である。W15/50の値を○,△,×の符号で示
す。同図における、ab,bc,cd,daで囲まれる領域で、良
好なW15/50が得られた。すなわち、NasAlN:0.0005〜0.0
020%、冷延圧下率85〜92%のときに、良好なW15/50が
得られることが明らかになった。
In FIG. 6, the horizontal axis is the NasAlN content, and the vertical axis is the cold rolling reduction. The value of W15 / 50 is indicated by the symbols ○, △, ×. Good W15 / 50 was obtained in the area surrounded by ab, bc, cd, and da in FIG. That is, NasAlN: 0.0005-0.0
It was found that good W15 / 50 was obtained when the rolling reduction was 020% and the rolling reduction was 85 to 92%.

第4図、第5図、第6図の結果から、NasAlN:0.0005
〜0.0020%、冷延圧下率:85〜92%のとき二次再結晶が
完全で、B8,W15/50共良好な製品が得られることが明ら
かになった。
From the results of FIGS. 4, 5 and 6, NasAlN: 0.0005
When the rolling reduction was 85-92% and the rolling reduction was 85-92%, it was clarified that the secondary recrystallization was complete and that both B8 and W15 / 50 gave good products.

二次再結晶が完全であるにもかかわらず、W15/50が不
良の領域では、B8が低くなっている。
In the region where W15 / 50 is bad, B8 is low even though the secondary recrystallization is complete.

実験I、実験IIの結果から、酸可溶性Al,N,Snを含有
する珪素鋼スラブを出発材料とし、熱延板焼鈍を伴う強
圧下一段冷延法により、板厚0.12〜0.17m/mに冷延され
た薄手一方向性電磁鋼板を製造する方法において、スラ
ブの含有するNと酸可溶性AlについてN:0.0050〜0.0100
%、酸可溶性Al:{(27/14)×N(%)+0.0035}〜
{(27/14)×N(%)+0.0100}%とし、且つ、冷延
圧下率が85〜92%となる熱延板の板厚とし、且つ、熱延
板中のNasAlN含有量を0.0005〜0.0020%に制御する熱延
を行うことにより、二次再結晶が完全で、製品磁気特性
の優れた薄手高磁束密度一方向性電磁鋼板の安定製造が
可能になることが明らかになった。
From the results of Experiment I and Experiment II, using a silicon steel slab containing acid-soluble Al, N, and Sn as a starting material, the sheet thickness was reduced to 0.12 to 0.17 m / m by a one-stage cold rolling method under high pressure accompanied by hot-rolled sheet annealing. In the method of manufacturing a cold-rolled thin unidirectional magnetic steel sheet, N: 0.0050 to 0.0100 for N and acid-soluble Al contained in the slab.
%, Acid soluble Al: {(27/14) × N (%) + 0.0035} ~
{(27/14) × N (%) + 0.0100}%, and the thickness of the hot-rolled sheet with a cold rolling reduction of 85 to 92%, and the content of NasAlN in the hot-rolled sheet By conducting hot rolling at 0.0005 to 0.0020%, it became clear that secondary recrystallization is complete and stable production of thin high magnetic flux density unidirectional electrical steel sheets with excellent product magnetic properties is possible. .

熱延板中のNasAlN含有量を0.0005〜0.0020%に制御す
る熱延を行うことにより、二次再結晶が良好で、且つ、
磁気特性を優れた製品が得られる理由については、必ず
しも明確ではない。
By performing hot rolling to control the NasAlN content in the hot rolled sheet to 0.0005 to 0.0020%, secondary recrystallization is good, and
It is not always clear why a product with excellent magnetic properties can be obtained.

冷延板厚0.17m/m以下の薄手高磁束密度一方向性電磁
鋼板を一段冷延法で製造する場合には、厚手製品を製造
する場合、又は多段冷延法で製造する場合にくらべ、熱
延板焼鈍後の組織及び析出物の状況が製品特性に対し、
より強い影響を及ぼすことが考えられる。一方、熱延板
中のNasAlN含有量は、熱延板焼鈍における鋼板の組織変
化及び析出物の挙動に微妙に影響を及ぼすことが考えら
れ、熱延板中のNasAlN含有量が、0.0005〜0.0020%の場
合に、製品特性に対して最も有利な熱延板焼鈍後の鋼板
の性状が得られるものであろう。
When manufacturing a thin high magnetic flux density unidirectional magnetic steel sheet with a cold-rolled sheet thickness of 0.17 m / m or less by a single-stage cold rolling method, compared with a case of manufacturing a thick product or a case of manufacturing by a multi-stage cold rolling method, The condition of the microstructure and precipitates after annealing of hot-rolled sheet
It may have a stronger effect. On the other hand, the NasAlN content in the hot-rolled sheet is considered to have a delicate effect on the structural change of the steel sheet and the behavior of precipitates during hot-rolled sheet annealing, and the NasAlN content in the hot-rolled sheet is 0.0005 to 0.0020. %, The most advantageous properties of the steel sheet after hot-rolled sheet annealing will be obtained with respect to the product properties.

なお、熱延板中のNasAlN含有量を0.0005〜0.0020%に
制御する方法としては、スラブ加熱条件、粗圧延条件、
仕上圧延条件、仕上圧延後の冷却条件等があるが、その
何れでもよい。
The method for controlling the NasAlN content in the hot-rolled sheet to 0.0005 to 0.0020% includes slab heating conditions, rough rolling conditions,
There are finish rolling conditions, cooling conditions after finish rolling, and the like, and any of them may be used.

実験I、実験IIで示す材料成分にCu又はSbの何れか一
方又は双方を添加した場合について、実験I、実験IIと
同様の実験を行い同様の結果を得た。
When either or both of Cu and Sb were added to the material components shown in Experiments I and II, experiments similar to Experiments I and II were performed, and similar results were obtained.

(実験III) C:0.083%、Si:3.25%、Mn:0.076%、S:0.025%、Sn:
0.14%、N:0.0085%、酸可溶性Al:0.0235%、Cu:無添加
および0.01〜0.20%、残部:実質的にFeからなる多数の
スラブについて、熱延以降工程を実験Iと同様の方法で
処理し、製品を得た。Cu含有量と鉄損の関係を第7図に
示す。第7図から明らかな如く、Cu:0.03〜0.08%の範
囲で鉄損特性の向上が認められた。
(Experiment III) C: 0.083%, Si: 3.25%, Mn: 0.076%, S: 0.025%, Sn:
0.14%, N: 0.0085%, acid-soluble Al: 0.0235%, Cu: no added and 0.01 to 0.20%, balance: For many slabs substantially consisting of Fe, the steps after hot rolling were performed in the same manner as in Experiment I. Processed and obtained the product. FIG. 7 shows the relationship between the Cu content and iron loss. As is clear from FIG. 7, improvement in iron loss characteristics was observed in the range of Cu: 0.03 to 0.08%.

C:0.080%、Si:3.23%、Mn:0.075%、S:0.025%、Sn:
0.13%、N:0.0085%、酸可溶性Al:0.0230%、Sb:無添加
および0.001〜0.050%、残部:実質的にFeからなる多数
のスラブについて、熱延以降工程を実験Iと同様の方法
で処理し、製品を得た。Sb含有量と鉄損の関係を第8図
に示す。第8図から明らかな如く、Sb:0.005〜0.035%
の範囲で鉄損特性の向上が認められた。
C: 0.080%, Si: 3.23%, Mn: 0.075%, S: 0.025%, Sn:
0.13%, N: 0.0085%, acid-soluble Al: 0.0230%, Sb: no additive and 0.001 to 0.050%, balance: For many slabs substantially composed of Fe, the steps after hot rolling were performed in the same manner as in Experiment I. Processed and obtained the product. FIG. 8 shows the relationship between the Sb content and iron loss. As is clear from FIG. 8, Sb: 0.005 to 0.035%
In the range, the iron loss characteristics were improved.

次に、本発明における、スラブの成分及び製造工程の
処理条件の限定理由について述べる。
Next, the reasons for limiting the components of the slab and the processing conditions in the manufacturing process in the present invention will be described.

Cは、0.060〜0.120%が好ましい。0.060%未満、あ
るいは、0.120%を超えると、二次再結晶が不安定にな
る。
C is preferably 0.060 to 0.120%. If it is less than 0.060% or exceeds 0.120%, the secondary recrystallization becomes unstable.

Siは、2.9〜4.5%が好ましい。2.9未満では良好な
(低い)鉄損が得られず、4.5%を超えると、加工性
(冷間圧延のし易さ)が劣化する。
Si is preferably 2.9 to 4.5%. If it is less than 2.9, good (low) iron loss cannot be obtained, and if it exceeds 4.5%, workability (easiness of cold rolling) is deteriorated.

Mnは、0.050〜0.090%が好ましい。0.050%未満、あ
るいは、0.090%を超えると、二次再結晶が不安定にな
る。
Mn is preferably 0.050 to 0.090%. If it is less than 0.050% or exceeds 0.090%, the secondary recrystallization becomes unstable.

S又はSeの何れか一方か又は双方は、0.020〜0.060%
が好ましい。0.020%未満では、二次再結晶が不安定と
なり、0.060%を超えると、鉄損が不良になる。
Either or both of S and Se are 0.020 to 0.060%
Is preferred. If it is less than 0.020%, secondary recrystallization becomes unstable, and if it exceeds 0.060%, iron loss becomes poor.

Snは0.05〜0.25%が好ましい。0.05%未満では、二次
再結晶が不安定となり、0.25%を超えると、加工性が劣
化する。
Sn is preferably 0.05 to 0.25%. If it is less than 0.05%, the secondary recrystallization becomes unstable, and if it exceeds 0.25%, the workability deteriorates.

スラブ加熱において、硫化物、窒化物を十分に固溶さ
せるため高温加熱が必要であり、好ましくは1300℃以上
での加熱が望ましい。
In slab heating, high-temperature heating is required to sufficiently dissolve sulfides and nitrides, and heating at 1300 ° C. or more is desirable.

熱延板を1030〜1200℃で10分間以内焼鈍することが好
ましい。1030℃未満では、良好な製品磁気特性が得られ
ず、1200℃を超えると、二次再結晶が不安定になる。10
分間を超えて焼鈍しても製品特性の向上は期待できず、
経済的に不利である。焼鈍後200℃迄を10℃/秒〜60℃
/秒で冷却することが好ましい。10℃/秒未満では、良
好な製品磁気特性が得られず、60℃/秒を超えると、二
次再結晶が不安定となる。一段冷延法は、二段冷延法よ
り製造コストが著しく易く、好ましい。冷延後の板厚は
0.12〜0.17m/mが好ましい。0.12m/m未満では、二次再結
晶が不安定になり安く、0.17m/mを超えると期待する鉄
損値が得られない。なお、冷間圧延の途中で、200〜300
℃で1〜5分間保定することは製品磁気特性の向上に有
効である。高温仕上焼鈍の昇温途中少くとも1000℃迄、
窒素を含む雰囲気を用いることが好ましい。窒素を含ま
ない場合、二次再結晶が不安定になる。
It is preferable to anneal the hot-rolled sheet at 1030 to 1200 ° C. within 10 minutes. If it is lower than 1030 ° C, good product magnetic properties cannot be obtained, and if it exceeds 1200 ° C, secondary recrystallization becomes unstable. Ten
No improvement in product properties can be expected even after annealing for more than a minute.
Economically disadvantaged. 10 ° C / sec to 60 ° C up to 200 ° C after annealing
/ Sec. At less than 10 ° C./sec, good product magnetic properties cannot be obtained, and at more than 60 ° C./sec, secondary recrystallization becomes unstable. The one-stage cold rolling method is preferable because the production cost is significantly easier than the two-stage cold rolling method. The sheet thickness after cold rolling is
0.12 to 0.17 m / m is preferred. If it is less than 0.12 m / m, the secondary recrystallization becomes unstable and inexpensive, and if it exceeds 0.17 m / m, the expected iron loss value cannot be obtained. During cold rolling, 200-300
Holding at 1 ° C. for 1 to 5 minutes is effective for improving product magnetic properties. During the high-temperature finish annealing, up to at least 1000 ° C
It is preferable to use an atmosphere containing nitrogen. Without nitrogen, secondary recrystallization becomes unstable.

〔実施例〕〔Example〕

C:0.080%、Si:3.25%、Mn:0.076%、S:無添加、0.01
5,0.025%、Se:無添加、0.015,0.025%、Sn:0.13%、N:
0.0045,0.0085,0.0110%、酸可溶性Al:0.0150,0.0170,
0.0230,0.0260,0.0300%、Cu:無添加、0.07%、Sb無添
加、0.020%、残部:実質的にFeからなる多数のスラブ
を1360℃で60分間加熱し、加熱炉から抽出し、0.92,1.0
0,1.31,2.43m/mの各板厚に熱延した。この場合、圧延
前、圧延中及び圧延後の冷却条件を種々変更した。熱延
板のNasAlN含有量は0.0002〜0.0035%であった。
C: 0.080%, Si: 3.25%, Mn: 0.076%, S: not added, 0.01
5,0.025%, Se: not added, 0.015,0.025%, Sn: 0.13%, N:
0.0045,0.0085,0.0110%, acid soluble Al: 0.0150,0.0170,
0.0230, 0.0260, 0.0300%, Cu: no added, 0.07%, Sb added, 0.020%, balance: A large number of slabs substantially consisting of Fe were heated at 1360 ° C. for 60 minutes, extracted from the heating furnace, 1.0
It was hot rolled to a thickness of 0, 1.31, 2.43 m / m. In this case, the cooling conditions before, during, and after the rolling were variously changed. The NasAlN content of the hot rolled sheet was 0.0002 to 0.0035%.

熱延板を1120℃で60秒間焼鈍し、次いで約35℃/秒で
常温迄冷却した。焼鈍後の板を酸洗し板厚0.12m/mと0.1
7m/mに冷延した。次いで、75%H2,25%N2、露点65℃の
雰囲気中で、850℃で150秒間の脱炭焼鈍を行った。次い
で、マグネシヤパウダーを主成分とする焼鈍分離剤を塗
布し、85%H2,15%N2雰囲気中で、25℃/時間の昇温速
度で1200℃まで加熱し、次いでH2雰囲気中で、1200℃で
20時間均熱した後冷却し、焼鈍分離剤を除去し、張力コ
ーティングを行って製品を得た。製品の磁束密度B8、鉄
損W15/50を測定した。次いで、コーティングおよびグラ
ス被膜を除去して、マクロ組織を観察した。その結果を
第1表に示す。第1表から明らかなように、スラブの
N、酸可溶性Al含有量、熱延板のNasAlN含有量及び冷延
圧下率が本発明の条件であるときのみ、二次再結晶が完
全で、B8,W15/50共優れた製品が得られた。
The hot rolled sheet was annealed at 1120 ° C. for 60 seconds, and then cooled to room temperature at about 35 ° C./second. Pickling of the annealed plate and plate thickness 0.12m / m and 0.1
Cold rolled to 7m / m. Next, decarburization annealing was performed at 850 ° C. for 150 seconds in an atmosphere of 75% H 2 , 25% N 2 and a dew point of 65 ° C. Next, an annealing separator containing magnesium powder as a main component is applied and heated to 1200 ° C. at a rate of 25 ° C./hour in an atmosphere of 85% H 2 and 15% N 2 , and then in an H 2 atmosphere. At 1200 ° C
After soaking for 20 hours, the product was cooled, the annealing separating agent was removed, and the product was obtained by performing tension coating. The magnetic flux density B8 and iron loss W15 / 50 of the product were measured. The coating and the glass coating were then removed and the macrostructure was observed. Table 1 shows the results. As is evident from Table 1, only when the N of the slab, the acid-soluble Al content, the NasAlN content of the hot-rolled sheet and the cold-rolling reduction were the conditions of the present invention, the secondary recrystallization was complete and B8 Excellent product was obtained for both W15 / 50.

また、Cu,Sbの含有量が本発明領域にあるとき、更に
優れた製品特性が得られた。
Further, when the content of Cu and Sb was in the range of the present invention, more excellent product characteristics were obtained.

〔発明の効果〕 この発明は、以上述べたように構成したから、酸可溶
性Al,N,Snを含有する珪素鋼スラブを出発材料とし、熱
延板焼鈍を伴う強圧下一段冷延法により、板厚0.12〜0.
17m/mに冷延された薄手一方向性電磁鋼板を製造する方
法において、二次再結晶が完全で、製品磁気特性の優れ
た薄手高磁束密度一方向性電磁鋼板が安定して製造でき
るようになった。
(Effect of the Invention) Since the present invention is configured as described above, a silicon steel slab containing acid-soluble Al, N, Sn is used as a starting material, and a one-stage cold-rolling method under high pressure accompanied by hot-rolled sheet annealing is used. Board thickness 0.12-0.
In the method of manufacturing thin unidirectional electrical steel sheet cold-rolled to 17m / m, secondary recrystallization is complete and thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties can be manufactured stably. Became.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と二次再結晶状況(○,×等で表示)の関
係を示す図である。 第2図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と製品の磁束密度B8(○,×等で表示)の
関係を示す図である。 第3図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と製品の鉄損W15/50(○,×等で表示)の
関係を示す図である。 第4図は、熱延板のNasAlN含有量(横軸)及び冷延圧下
率(縦軸)の二次再結晶状況(○,×等で表示)の関係
を示す図である。 第5図は、熱延板のNasAlN(横軸)含有量及び冷延圧下
率(縦軸)と製品の磁束密度B8(○,×等で表示)の関
係を示す図である。 第6図は、熱延板のNasAlN(横軸)及び冷延圧下率(縦
軸)と製品の鉄損W15/50(○,×等で表示)の関係を示
す図である。 第7図は、スラブのCu含有量(横軸)とCu添加による製
品の鉄損W15/50の変化量(縦軸)の関係を示す図であ
る。 第8図は、スラブのSb含有量(横軸)とSb添加による製
品の鉄損W15/50の変化量(縦軸)の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of a slab and the state of secondary recrystallization (indicated by ,, ×, etc.). FIG. 2 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the magnetic flux density B8 (indicated by ,, ×, etc.) of the product. FIG. 3 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the iron loss W15 / 50 (indicated by ,, ×, etc.) of the product. FIG. 4 is a diagram showing the relationship between the NasAlN content (horizontal axis) and the cold rolling reduction (vertical axis) of the hot-rolled sheet in the state of secondary recrystallization (indicated by ,, ×, etc.). FIG. 5 is a diagram showing the relationship between the content of NasAlN (horizontal axis) and the rolling reduction of the cold rolling (vertical axis) of the hot-rolled sheet and the magnetic flux density B8 (indicated by ○, ×, etc.) of the product. FIG. 6 is a diagram showing the relationship between NasAlN (horizontal axis) and cold rolling reduction (vertical axis) of a hot-rolled sheet and iron loss W15 / 50 (indicated by ,, ×, etc.) of a product. FIG. 7 is a diagram showing the relationship between the Cu content of the slab (horizontal axis) and the amount of change in the iron loss W15 / 50 of the product due to the addition of Cu (vertical axis). FIG. 8 is a diagram showing the relationship between the Sb content of the slab (horizontal axis) and the amount of change in the iron loss W15 / 50 of the product due to the addition of Sb (vertical axis).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でC:0.060〜0.120%、Si:2.9〜4.5
%、Mn:0.050〜0.090%、S又はSeの何れか一方か又は
双方:0.020〜0.060%、Sn:0.05〜0.25%、残部:酸可溶
性Al,N,Feおよび不可避的不純物からなるスラブを高温
加熱し、熱間圧延し、熱延板を1030〜1200℃の温度範囲
で10分間以内焼鈍し、焼鈍後200℃迄を10℃/秒〜60℃
/秒の冷却速度で冷却し、次いで冷間圧延し、冷間圧延
後の板厚を0.12〜0.17m/mとし、水素を含む湿潤雰囲気
中で脱炭焼鈍を行い、マグネシヤパウダーを主とする焼
鈍分離剤を塗布し、昇温途中少くとも1000℃迄、窒素を
含む雰囲気を用いる高温仕上焼鈍を行い、張力コーティ
ングを行う薄手一方向性電磁鋼板の製造方法において、
スラブの含有するNと酸可溶性Alについて、N:0.0050〜
0.0100%、酸可溶性Al:{(27/14)×N(%)+0.003
5}〜{(27/14)×N(%)+0.0100}%とし、且つ、
冷延圧下率が85〜92%となる熱延板の板厚とし、且つ、
熱延板中のNasAlN含有量を0.0005〜0.0020%に制御する
熱延を行うことを特徴とする、一段冷延法による製品磁
気特性の優れた薄手高磁束密度一方向性電磁鋼板の製造
方法。
(1) C: 0.060 to 0.120% by weight, Si: 2.9 to 4.5% by weight
%, Mn: 0.050-0.090%, S or Se, or both: 0.020-0.060%, Sn: 0.05-0.25%, balance: acid-soluble slab consisting of Al, N, Fe and unavoidable impurities Heated, hot rolled, and annealed the hot rolled sheet within a temperature range of 1030 to 1200 ° C within 10 minutes, and after annealing up to 200 ° C at 10 ° C / sec to 60 ° C
/ Cold rolling at a cooling rate of / second, then cold rolling, the thickness after cold rolling to 0.12 ~ 0.17m / m, decarburizing annealing in a humid atmosphere containing hydrogen, mainly magnesium powder In the method of producing a thin unidirectional electrical steel sheet, performing a high-temperature finish annealing using an atmosphere containing nitrogen, applying an annealing separator to be applied, and raising the temperature to at least 1000 ° C.
N and acid-soluble Al contained in the slab, N: 0.0050 ~
0.0100%, acid soluble Al: {(27/14) × N (%) + 0.003
5}-{(27/14) × N (%) + 0.0100}%, and
The thickness of the hot-rolled sheet with a cold rolling reduction of 85 to 92%, and
A method for producing a thin high magnetic flux density unidirectional magnetic steel sheet having excellent product magnetic properties by a single-stage cold rolling method, wherein hot rolling is performed to control the NasAlN content in a hot rolled sheet to 0.0005 to 0.0020%.
【請求項2】重量%でC:0.060〜0.120%、Si:2.9〜4.5
%、Mn:0.050〜0.090%、S又はSeの何れか一方か又は
双方:0.020〜0.060%、Sn:0.05〜0.25%、Cu:0.03〜0.0
8%又はSb:0.005〜0.035%の何れか一方又は双方、残
部:酸可溶性Al,N,Feおよび不可避的不純物からなるス
ラブを高温加熱し、熱間圧延し、熱延板を1030〜1200℃
の温度範囲で10分間以内焼鈍し、焼鈍後200℃迄を10℃
/秒〜60℃/秒の冷却速度で冷却し、次いで冷間圧延
し、冷間圧延後の板厚を0.12〜0.17m/mとし、水素を含
む湿潤雰囲気中で脱炭焼鈍を行い、マグネシヤパウダー
を主とする焼鈍分離剤を塗布し、昇温途中少くとも1000
℃迄、窒素を含む雰囲気を用いる高温仕上焼鈍を行い、
張力コーティングを行う薄手一方向性電磁鋼板の製造方
法において、スラブの含有するNと酸可溶性Alについ
て、N:0.0050〜0.0100%、酸可溶性Al:{(27/14)×N
(%)+0.0035}〜{(27/14)×N(%)+0.0100}
%とし、且つ、冷延圧下率が85〜92%となる熱延板の板
厚とし、且つ、熱延板中のNasAlN含有量を0.0005〜0.00
20%に制御する熱延を行うことを特徴とする、一段冷延
法による製品磁気特性の優れた薄手高磁束密度一方向性
電磁鋼板の製造方法。
2. C: 0.060 to 0.120% by weight, Si: 2.9 to 4.5% by weight
%, Mn: 0.050 to 0.090%, either or both of S and Se: 0.020 to 0.060%, Sn: 0.05 to 0.25%, Cu: 0.03 to 0.0
Either 8% or Sb: 0.005 to 0.035% or both, and the balance: A slab composed of acid-soluble Al, N, Fe and unavoidable impurities is heated at a high temperature, hot-rolled, and the hot-rolled sheet is heated to 1030 to 1200 ° C.
Anneal within 10 minutes within the temperature range of
At a cooling rate of 60 ° C./sec to 60 ° C./sec, and then cold-rolled to a thickness of 0.12 to 0.17 m / m after cold rolling, decarburizing annealing in a humid atmosphere containing hydrogen, Apply an annealing separating agent mainly composed of shear powder.
Perform high-temperature finish annealing using an atmosphere containing nitrogen up to ℃
In the method for producing a thin unidirectional magnetic steel sheet subjected to tension coating, in the slab containing N and acid-soluble Al, N: 0.0050 to 0.0100%, acid-soluble Al: {(27/14) × N
(%) + 0.0035}-{(27/14) × N (%) + 0.0100}
%, And the thickness of the hot-rolled sheet having a cold-rolling reduction ratio of 85 to 92%, and the NasAlN content in the hot-rolled sheet is 0.0005 to 0.00%.
A method for producing a thin, high magnetic flux density, unidirectional magnetic steel sheet having excellent product magnetic properties by a single-stage cold rolling method, characterized by performing hot rolling at a control of 20%.
JP1063883A 1988-03-18 1989-03-17 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method Expired - Lifetime JP2755414B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6365188 1988-03-18
JP63-63651 1988-03-18

Publications (2)

Publication Number Publication Date
JPH028328A JPH028328A (en) 1990-01-11
JP2755414B2 true JP2755414B2 (en) 1998-05-20

Family

ID=13235468

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2395589A Pending JPH01316421A (en) 1988-03-18 1989-02-03 Production of thin high-magnetic flux density grain-oriented magnetic steel sheet by single-stage cold rolling
JP1063883A Expired - Lifetime JP2755414B2 (en) 1988-03-18 1989-03-17 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2395589A Pending JPH01316421A (en) 1988-03-18 1989-02-03 Production of thin high-magnetic flux density grain-oriented magnetic steel sheet by single-stage cold rolling

Country Status (1)

Country Link
JP (2) JPH01316421A (en)

Also Published As

Publication number Publication date
JPH028328A (en) 1990-01-11
JPH01316421A (en) 1989-12-21

Similar Documents

Publication Publication Date Title
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0213009B2 (en)
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US5261972A (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2755414B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method
US4992114A (en) Process for producing grain-oriented thin electrical steel sheet having high magnetic flux density by one-stage cold-rolling method
JPH055126A (en) Production of nonoriented silicon steel sheet
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
JP2762095B2 (en) Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
JP2525721B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH08269561A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH02209426A (en) Production of thin grain-oriented silicon sheet with high magnetic flux density excellent in magnetic property of product by single-stage cold rolling method
JPH07113120A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2525722B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH0372025A (en) Production of thin grain-oriented silicon steel sheet with high magnetic flux density by single-stage cold rolling method
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2008156693A (en) Method for manufacturing grain-oriented electromagnetic steel sheet excellent in magnetic characteristic having good film
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH02243721A (en) Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method
JP2002069532A (en) Method for producing bidirectionally oriented silicon steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12