JP2762095B2 - Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method - Google Patents

Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method

Info

Publication number
JP2762095B2
JP2762095B2 JP3247089A JP3247089A JP2762095B2 JP 2762095 B2 JP2762095 B2 JP 2762095B2 JP 3247089 A JP3247089 A JP 3247089A JP 3247089 A JP3247089 A JP 3247089A JP 2762095 B2 JP2762095 B2 JP 2762095B2
Authority
JP
Japan
Prior art keywords
hot
soluble
cold rolling
acid
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3247089A
Other languages
Japanese (ja)
Other versions
JPH02209427A (en
Inventor
正三郎 中島
仁 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3247089A priority Critical patent/JP2762095B2/en
Publication of JPH02209427A publication Critical patent/JPH02209427A/en
Application granted granted Critical
Publication of JP2762095B2 publication Critical patent/JP2762095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一段冷延法による製品磁気特性の優れた薄
手高磁束密度一方向性電磁綱板の安定した製造方法に関
する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a thin, high magnetic flux density, unidirectional electromagnetic steel sheet excellent in product magnetic properties by a single-stage cold rolling method.

〔従来の技術〕[Conventional technology]

一方向性電磁綱板は、軟磁性材料として主にトランス
その他の電気機器の磁芯材料として使用され、磁気特性
として、励磁特性と鉄損特性が良好でなくてはならな
い。
The unidirectional electromagnetic steel plate is mainly used as a soft magnetic material as a magnetic core material of transformers and other electric devices, and must have good magnetic characteristics such as excitation characteristics and iron loss characteristics.

磁気特性の優れた綱板を得るには、磁化容易軸である
<001>軸が、圧延方向に高度に揃うことが必要であ
る。その他に、板厚、結晶粒度、固有抵抗、表面被膜等
が、磁気特性に大きく影響する。
In order to obtain a steel sheet having excellent magnetic properties, it is necessary that the <001> axis, which is the axis of easy magnetization, be highly aligned in the rolling direction. In addition, the thickness, crystal grain size, specific resistance, surface coating, and the like greatly affect the magnetic properties.

電磁綱板の方向性はAlN,MnSをインヒビターとして機
能せしめる強圧下一段冷間圧延プロセスによって大きく
向上し、現在、磁束密度が理論値の96%程度のものまで
製造されるようになって来ている。
The directionality of electromagnetic steel sheets has been greatly improved by the high-pressure single-stage cold-rolling process that makes AlN and MnS function as inhibitors, and the magnetic flux density is now being manufactured to about 96% of the theoretical value. I have.

一方、近年、エネルギー価格の高騰を反映してトラン
スメーカーは、省エネルギー型トランス用素材として、
低鉄損磁性材料への指向を一段と強めている。
On the other hand, in recent years, reflecting the soaring energy prices, transformer manufacturers
The focus on low iron loss magnetic materials has been further strengthened.

低鉄損磁性材料として、アモルファス合金や6.5%Si
合金といった高Si材の開発も進められているが、トラン
ス用の材料としては、価格、加工性等の点で難点があ
る。
As low iron loss magnetic materials, amorphous alloys and 6.5% Si
The development of high Si materials such as alloys is also underway, but there are drawbacks in transformer materials such as price and workability.

他方、電磁綱板の鉄損には、Si含有量の他に板厚が大
きく影響し、化学研摩等により製品の板厚を薄くする
と、鉄損が低下することが知られている。
On the other hand, it is known that the iron thickness of the electromagnetic steel sheet is greatly affected by the sheet thickness in addition to the Si content, and the iron loss is reduced when the sheet thickness of the product is reduced by chemical polishing or the like.

本発明者等は先に特開昭58−217630号公報において、
酸可溶性Al,N,Snを含有する珪素綱スラブを出発材料と
し、熱延板焼鈍を伴う強圧下一段冷延法により、薄手高
磁束密度一方向性電磁鋼板を製造する方法を提案した。
この方法により鉄損の優れた薄手高磁束密度一方向性電
磁鋼板、就中板厚0.225mm迄の薄手材が、安価に工業生
産できるようになり、これを用いたトランスの低鉄損化
を通して時代の課題である省エネルギー化に貢献でき
た。
The present inventors have previously described in JP-A-58-217630,
A method for producing thin high magnetic flux density unidirectional electrical steel sheets by using a silicon steel slab containing acid-soluble Al, N, and Sn as a starting material by a one-stage cold rolling method under high pressure accompanied by hot-rolled sheet annealing was proposed.
With this method, thin high magnetic flux density unidirectional magnetic steel sheets with excellent iron loss, especially thin materials up to 0.225 mm in thickness, can be industrially manufactured at low cost. We were able to contribute to energy conservation, a challenge of the times.

しかるに、その後省エネルギー化に対する時代の要請
は一段と強まり、トランス用素材である一方向性電磁綱
板の一層の高性能化が必要となってきた。すなわち、板
厚0.225mm材より更に鉄損の低い、板厚0.175mm以下の薄
手高磁束密度一方向性電磁鋼板の安価で、且つ、安定し
た製造方法の確立が緊急の課題になってきた。
However, the demands of the era for energy saving have been further strengthened since then, and it has become necessary to further improve the performance of the unidirectional electromagnetic steel plate, which is a material for transformers. In other words, it has become an urgent task to establish a low-cost and stable manufacturing method of a thin high-flux-density unidirectional electrical steel sheet having a sheet thickness of 0.175 mm or less, which has a lower iron loss than a sheet thickness of 0.225 mm.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

特開昭58−217630号公報記載の方法により0.175mm,0.
150mm材の製造は可能であるが、板厚が0.175mm以下の場
合、上記公報の第8表および第11表に示す如く、二次再
結晶が完全ではなく、工業生産の場合、工程歩留が低
く、製品磁気特性のレベル及び安定性の点で問題がある
ことが判明した。
According to the method described in JP-A-58-217630, 0.175 mm, 0.
Although it is possible to produce 150 mm material, if the plate thickness is 0.175 mm or less, as shown in Tables 8 and 11 of the above publication, secondary recrystallization is not complete, and in the case of industrial production, the process yield , And there was a problem in terms of the level and stability of the product magnetic properties.

本発明は、酸可溶性Al,N,Snを含有する珪素綱スラブ
を出発材料とし、熱延板焼鈍を伴う強圧下一段冷延法に
より、板厚0.12〜0.17mmに冷延された製品磁気特性の優
れた薄手高磁束密度一方向性電磁綱板を安定して製造す
る方法の提供を課題とするものである。
The present invention uses a silicon steel slab containing acid-soluble Al, N, Sn as a starting material, and a product magnetic property cold-rolled to a sheet thickness of 0.12 to 0.17 mm by a one-stage cold rolling method under high pressure accompanied by hot-rolled sheet annealing. It is an object of the present invention to provide a method for stably producing a thin high magnetic flux density unidirectional electromagnetic steel sheet excellent in the above.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の骨子とするところは、酸可溶性Al,N,Snを含
有する珪素綱スラブを出発材料とし、熱延板焼鈍を伴う
強圧下一段冷延法により、板厚0.12〜0.17mmに冷延され
た薄手一方向性電磁綱板を製造する方法において、スラ
ブの含有するNと酸可溶性Alについて、N:0.0050〜0.01
00%,酸可溶性Al:{(27/14)×N(%)+0.0035}〜
{(27/14)×N(%)+0.0100}%とし、且つ、冷延
圧下率が85〜92%となる熱延板の板厚とし、且つ、熱延
板中のN as AlN含有量を0.0005〜0.0020%に制御する熱
延を行い、且つ、焼鈍分離剤中のマグネシアの水和水分
率を0.5〜3.0%に制御することにより、二次再結晶が完
全で、製品磁気特性の優れた薄手高磁束密度一方向性電
磁綱板の安定製造を可能とするにある。
The gist of the present invention is that a silicon steel slab containing acid-soluble Al, N, Sn is used as a starting material, and is cold-rolled to a sheet thickness of 0.12 to 0.17 mm by a one-stage cold rolling method under high pressure accompanied by hot-rolled sheet annealing. In the method for producing a thin unidirectional electromagnetic steel sheet, the slab containing N and acid-soluble Al, N: 0.0050 to 0.01
00%, acid soluble Al: {(27/14) × N (%) + 0.0035} ~
27 (27/14) × N (%) + 0.0100}%, and the thickness of the hot-rolled sheet with a cold rolling reduction of 85 to 92%, and contains NasAlN in the hot-rolled sheet By performing hot rolling to control the amount to 0.0005 to 0.0020% and controlling the hydrated water percentage of magnesia in the annealing separator to 0.5 to 3.0%, the secondary recrystallization is complete and the product magnetic properties An object of the present invention is to enable stable production of an excellent thin high magnetic flux density unidirectional electromagnetic steel plate.

〔作用〕[Action]

以下に本発明に至った経緯を実験結果に基づいて説明
する。
Hereinafter, the circumstances that led to the present invention will be described based on experimental results.

(実験I) C:0.080%,Si:3.25%,Mn:0.075%,S:0.025%、Sn:0.1
3%、N:0.0040〜0.0120%、酸可溶性Al:0.0100〜0.0500
%,残部:実質的にFeからなる多数のスラブを1370℃で
60分間加熱し、加熱炉から抽出して、1.4mmの板厚に熱
延した。熱延終了温度は1040〜1050℃であった。熱延終
了後約70℃/秒で550℃迄冷却し、その後大気中に放冷
した。熱延板の含有するN as AlNは0.0010〜0.0012%で
あった。熱延板を1100℃で30秒間焼鈍し、次いで100℃
の水に浸漬して冷却した。
(Experiment I) C: 0.080%, Si: 3.25%, Mn: 0.075%, S: 0.025%, Sn: 0.1
3%, N: 0.0040-0.0120%, acid-soluble Al: 0.0100-0.0500
%, Balance: Many slabs consisting essentially of Fe at 1370 ° C
It was heated for 60 minutes, extracted from the heating furnace, and hot rolled to a thickness of 1.4 mm. The hot rolling end temperature was 1,040 to 1,050 ° C. After the completion of hot rolling, the sample was cooled to 550 ° C. at a rate of about 70 ° C./sec, and then allowed to cool in the air. The N as AlN contained in the hot rolled sheet was 0.0010 to 0.0012%. Anneal the hot rolled sheet at 1100 ° C for 30 seconds, then 100 ° C
In water for cooling.

焼鈍後の板を酸洗し、板厚0.15mm迄冷延した。次い
で、75%H2,25%N2,露点65℃の雰囲気中で、850℃で150
秒間の脱炭焼鈍を行った。次いで、マグネシアを主成分
とする焼鈍分離剤を水に混ぜ、撹拌してスラリー状に
し、スラリー中のマグネシアの水和水分率を1.5%と
し、スラリーを鋼板に塗布し、板温200℃で乾燥した。
(なお、水和水分率の測定は、フリー水分を除去した後
の粉の重量(m1)と、更に1000℃で1時間加熱した後の
粉の重量(m2)から、次式で求めた。
The annealed plate was pickled and cold rolled to a plate thickness of 0.15 mm. Then, in an atmosphere of 75% H 2 , 25% N 2 and a dew point of 65 ° C., at 850 ° C. for 150 hours.
A decarburization annealing for 2 seconds was performed. Next, annealed separating agent mainly composed of magnesia is mixed with water, stirred to form a slurry, the hydrated water content of magnesia in the slurry is set to 1.5%, the slurry is applied to a steel plate, and dried at a plate temperature of 200 ° C. did.
(Note that the hydration moisture content is measured by the following equation from the weight of powder after removing free water (m 1 ) and the weight of powder after further heating at 1000 ° C. for 1 hour (m 2 ). Was.

本発明にかゝわる水和水分率は、すべてこの方法によ
り測定するものとする。) 次いで、85%H2,15%N2雰囲気中で、25℃/時間の昇
温速度で1200℃まで加熱し、次いでH2雰囲気中で、1200
℃で20時間均熱した後冷却し、焼鈍分離剤を除去し、張
力コーティングを行って製品を得た。製品の磁束密度
B8,鉄損W15/50を測定した。次いで、コーティングおよ
びグラス被膜を除去してマクロ組織を観察した。スラブ
のN,酸可溶性Al含有量と二次再結晶状況,B8,W15/50の関
係を、各々、第1図,第2図,第3図に示す。
The hydrated water percentage according to the present invention is all measured by this method. ) Then, in 85% H 2, 15% N 2 atmosphere and heated to 1200 ° C. at a heating rate of 25 ° C. / time, then with H 2 atmosphere, 1200
After soaking at 20 ° C. for 20 hours, the mixture was cooled, the annealing separating agent was removed, and the product was obtained by performing tension coating. Product magnetic flux density
B 8 and iron loss W 15/50 were measured. Next, the coating and the glass coating were removed, and the macrostructure was observed. The relationship between the content of N and acid-soluble Al in the slab and the state of secondary recrystallization, B 8 and W 15/50 is shown in FIGS. 1, 2 and 3, respectively.

第1図において、横軸はN含有量であり、縦軸は酸可
溶性Al含有量である。二次再結晶状況を○,△,×の符
号を示す。同図における、直線ab,bc,cd,daで囲まれる
領域で、二次再結晶が完全であった。直線abは次式で表
わされる。
In FIG. 1, the horizontal axis is the N content, and the vertical axis is the acid-soluble Al content. The secondary recrystallization status is indicated by the symbols ○, △, ×. In the region surrounded by the straight lines ab, bc, cd, and da in the figure, the secondary recrystallization was complete. The straight line ab is represented by the following equation.

直線ab:酸可溶性Al(%)=(27/14)×N(%) +0.0100(%) すなわち、N:0.0050〜0.0120%で、酸可溶性Al:0.010
0〜{(27/14)×N(%)+0.0100}%のときに、二次
再結晶が完全であることが明らかになった。
Linear ab: acid-soluble Al (%) = (27/14) × N (%) + 0.0100 (%) That is, N: 0.0050 to 0.0120%, and acid-soluble Al: 0.010
When 0 to {(27/14) × N (%) + 0.0100}%, the secondary recrystallization was found to be complete.

第2図において、横軸はN含有量であり、縦軸は酸可
溶性Al含有量である。B8の値を○,△,×の符号で示
す。同図における、直線ab,bc,cd,daで囲まれる領域
で、良好なB8が得られた。
In FIG. 2, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. The values of B 8 ○, △, indicating the sign of ×. In the figure, the straight line ab, bc, cd, the area defined by da, good B 8 were obtained.

直線ab,cdは、各々、次式で表わされる。 The straight lines ab and cd are respectively represented by the following equations.

直線ab:酸可溶性Al(%)=(27/14)×N(%) +0.0100(%) 直線cd:酸可溶性Al(%)=(27/14)×N(%) +0.0035(%) すなわち、N:0.0050〜0.0100%で、酸可溶性Al:{(2
7/14)×N(%)+0.0035}〜{(27/14)×N(%)
+0.0100}%のときに、良好なB8が得られることが明ら
かになった。
Linear ab: Acid-soluble Al (%) = (27/14) × N (%) + 0.0100 (%) Linear cd: Acid-soluble Al (%) = (27/14) × N (%) + 0.0035 ( %) That is, N: 0.0050 to 0.0100%, and acid-soluble Al: {(2
7/14) × N (%) + 0.0035} ~ {(27/14) × N (%)
When the Tasu0.0100}%, good B 8 was found to be obtained.

第3図において、横軸はN含有量であり、縦軸は酸可
溶性Al含有量である。W15/50の値を○,△,×の符号
で示す。同図における、直線ab,bc,cd,daで囲まれる領
域で、良好なW15/50が得られた。
In FIG. 3, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. The value of W 15/50 is indicated by the symbols ○, Δ, ×. In the region surrounded by the straight lines ab, bc, cd, and da in the figure, good W15 / 50 was obtained.

直線ab,cdは、各々、次式で表わされる。 The straight lines ab and cd are respectively represented by the following equations.

直線ab:酸可溶性Al(%)=(27/14)×N(%) +0.0100(%) 直線cd:酸可溶性Al(%)=(27/14)×N(%) +0.0035(%) すなわち、N:0.0050〜0.0100%で、酸可溶性Al:{(2
7/14)×N(%)+0.0035}〜{(27/14)×N(%)
+0.0100}%のときに、良好なW15/50が得られること
が明らかになった。
Linear ab: Acid-soluble Al (%) = (27/14) × N (%) + 0.0100 (%) Linear cd: Acid-soluble Al (%) = (27/14) × N (%) + 0.0035 ( %) That is, N: 0.0050 to 0.0100%, and acid-soluble Al: {(2
7/14) × N (%) + 0.0035} ~ {(27/14) × N (%)
It was found that good W 15/50 was obtained at + 0.0100%.

第1図,第2図,第3図の結果から、N:0.0050〜0.01
00%で、酸可溶性Al:{(27/14)×N(%)+0.0035}
〜{(27/14)×N(%)+0.0100}%のときに二次再
結晶が完全で、B8,W15/50共良好な製品が得られること
が明らかになった。
From the results of FIGS. 1, 2 and 3, N: 0.0050 to 0.01
At 00%, acid soluble Al: {(27/14) × N (%) + 0.0035}
When 明 ら か に (27/14) × N (%) + 0.0100%, the secondary recrystallization was complete, and it was found that both B 8 and W 15/50 gave good products.

二次再結晶が完全であるにも拘らず、W15/50が不良
の領域ではB8が低くなっている。すなわち、低Al,高N
サイドでは二次再結晶は安定であるが、方向性が劣り良
好な鉄損値が得られにくい傾向を示している。
Although the secondary recrystallization is complete, B 8 is low in the region where W 15/50 is defective. That is, low Al, high N
On the side, secondary recrystallization is stable, but the directionality is poor and a good iron loss value is hardly obtained.

ここに、(27/14)×N(%)は鋼に含有するNが総
てAlNとなる場合に必要なAl含有量に相当する。AlNを主
インヒビターとして活用する本法において、製品の磁束
密度,鉄損値を左右する二次再結晶現象が、(27/14)
×N(%)をベースとする酸可溶性Al含有量により強い
影響を受けているものと理解される。
Here, (27/14) × N (%) corresponds to the Al content required when all the N contained in the steel becomes AlN. In this method, which utilizes AlN as the main inhibitor, the secondary recrystallization phenomenon that affects the magnetic flux density and iron loss value of the product is (27/14)
It is understood that it is strongly influenced by the acid-soluble Al content based on × N (%).

(実験II) C:0.082%,Si:3.25%,Mn:0.070%,S:0.025%,Sn:0.14
%,N:0.0085%,酸可溶性Al:0.0240%、残部:実質的に
Feからなる多数の珪素鋼スラブを1370℃で60分間加熱
し、加熱炉から抽出し、0.75〜3.0mmの各種板厚に熱延
した。この場合、圧延前、圧延中及び圧延後の冷却条件
を種々変更し、熱延板のN as AlNの量を0.0001〜0.0036
%迄変化させた。ここにAlNは板全厚の分析値であり、
分析方法は臭素メタノール法を用いた(本発明に関する
AlNの分析はすべて臭素メタノール法による)。これ等
の熱延板を実験Iと同様な方法で処理し製品を得た。
(Experiment II) C: 0.082%, Si: 3.25%, Mn: 0.070%, S: 0.025%, Sn: 0.14
%, N: 0.0085%, acid soluble Al: 0.0240%, balance: substantially
Many silicon steel slabs made of Fe were heated at 1370 ° C. for 60 minutes, extracted from a heating furnace, and hot rolled to various sheet thicknesses of 0.75 to 3.0 mm. In this case, before the rolling, during the rolling and after the rolling, various cooling conditions were changed, and the amount of N as AlN of the hot-rolled sheet was 0.0001 to 0.0036.
%. Here, AlN is the analytical value of the total thickness of the plate,
The analysis method used the bromine methanol method (related to the present invention).
All analysis of AlN is by bromine methanol method). These hot rolled sheets were treated in the same manner as in Experiment I to obtain products.

次いで、製品の磁束密度B8,鉄損W15/50を測定した。
次いで、コーティングおよびグラス被膜を除去してマク
ロ組織を観察した。熱延板のN as AlN,冷延圧下率と二
次再結晶状況,B8,W15/50の関係を各々、第4図,第5
図,第6図に示す。
Next, the magnetic flux density B 8 and the iron loss W 15/50 of the product were measured.
Next, the coating and the glass coating were removed, and the macrostructure was observed. The relationship between the N as AlN of the hot rolled sheet, the reduction ratio of the cold rolling and the secondary recrystallization condition, B 8 and W 15/50 are shown in FIGS. 4 and 5, respectively.
FIG. 6 and FIG.

第4図において、横軸はN as AlN含有量であり、縦軸
は冷延圧下率である。二次再結晶状況を○,△,×の符
号で示す。同図における、直線ab,bc,cd,daで囲まれる
領域で、二次再結晶が完全であった。すなわち、N as A
lN:0.0001〜0.0020%,冷延圧下率:80〜92%のときに、
二次再結晶が完全であることが明らかになった。
In FIG. 4, the horizontal axis represents the Na as AlN content, and the vertical axis represents the cold rolling reduction. The status of secondary recrystallization is indicated by the symbols ○, △, ×. In the region surrounded by the straight lines ab, bc, cd, and da in the figure, the secondary recrystallization was complete. That is, N as A
lN: 0.0001 to 0.0020%, cold rolling reduction: 80 to 92%
The secondary recrystallization proved to be complete.

第5図において、横軸はN as AlN含有量であり、縦軸
は冷延圧下率である。B8の値を○,△,×の符号で示
す。同図におけるab,bc,cd,daで囲まれる領域で良好なB
8が得られた。すなわち、N as AlN:0.0005〜0.0020%,
冷延圧下率:85〜92%のときに良好なB8が得られること
が明らかになった。
In FIG. 5, the horizontal axis represents the Na as AlN content, and the vertical axis represents the cold rolling reduction. The values of B 8 ○, △, indicating the sign of ×. Good B in the area surrounded by ab, bc, cd, and da in FIG.
8 was obtained. That is, N as AlN: 0.0005 to 0.0020%,
Cold rolling reduction ratio: good B 8 at 85% -92% that is obtained revealed.

第6図において、横軸はN as AlN含有量であり、縦軸
は冷延圧下率である。W15/50の値を○,△,×の符号
で示す。同図における、ab,bc,cd,daで囲まれる領域
で、良好なW15/50が得られた、すなわちN as AlN:0.00
05〜0.0020%,冷延圧下率85〜92%のときに良好なW
15/50が得られることが明らかになった。
In FIG. 6, the horizontal axis represents the Na as AlN content, and the vertical axis represents the cold rolling reduction. The value of W 15/50 is indicated by the symbols ○, Δ, ×. In the figure, in a region surrounded by ab, bc, cd, and da, good W 15/50 was obtained, that is, N as AlN: 0.00
Good W when 05-0.0020%, cold rolling reduction 85-92%
It became clear that 15/50 could be obtained.

第4図,第5図,第6図の結果からN as AlN:0.0005
〜0.0020%,冷延圧下率85〜92%のとき二次再結晶が完
全で、B8,W15/50共良好な製品が得られることが明らか
になった。
From the results of FIGS. 4, 5 and 6, N as AlN: 0.0005
~0.0020%, secondary recrystallization when the cold rolling reduction ratio 85% -92% is perfect, B 8, W 15/50 both good product was found to be obtained.

二次再結晶が完全であるにも拘らず、W15/50が不良
の領域ではB8が低くなっている。
Although the secondary recrystallization is complete, B 8 is low in the region where W 15/50 is defective.

実験I,実験IIの結果から、酸可溶性Al,N,Snを含有す
る珪素鋼スラブを出発材料とし、熱延板焼鈍を伴う強圧
下一段冷延法により、板厚0.12〜0.17mmに冷延された薄
手一方向性電磁鋼板を製造する方法において、スラブの
含有するNと酸可溶性Alについて、N:0.0050〜0.0100
%,酸可溶性Al:{(27/14)×N(%)+0.0035}〜
{(27/14)×N(%)+0.0100}%とし、且つ、冷延
圧下率が85〜92%となる熱延板の板厚とし、且つ、熱延
板中のN as AlN含有量を0.0005〜0.0020%に制御する熱
延を行うことにより、二次再結晶が完全で製品磁気特性
の優れた薄手高磁束密度一方向性電磁鋼板の安定製造が
可能になることが明らかになった。
From the results of Experiments I and II, silicon steel slabs containing acid-soluble Al, N, and Sn were used as starting materials, and were cold rolled to a sheet thickness of 0.12 to 0.17 mm by one-stage cold rolling under high pressure with hot-rolled sheet annealing. In the method of manufacturing a thin unidirectional magnetic steel sheet, the slab containing N and acid-soluble Al, N: 0.0050 to 0.0100
%, Acid soluble Al: {(27/14) × N (%) + 0.0035} ~
27 (27/14) × N (%) + 0.0100}%, and the thickness of the hot-rolled sheet with a cold rolling reduction of 85 to 92%, and contains NasAlN in the hot-rolled sheet By conducting hot rolling to control the amount to 0.0005% to 0.0020%, it becomes clear that stable production of thin high magnetic flux density unidirectional electrical steel sheets with perfect secondary recrystallization and excellent product magnetic properties is possible. Was.

熱延板中のN as AlN含有量を0.0005〜0.0020%に制御
する熱延を行うことにより、二次再結晶が良好で、且
つ、磁気特性の優れた製品が得られる理由については必
ずしも明確ではない。
It is not always clear why secondary recrystallization is good and a product with excellent magnetic properties can be obtained by performing hot rolling in which the N as AlN content in the hot rolled sheet is controlled to 0.0005 to 0.0020%. Absent.

冷延板厚0.17mm以下の薄手高磁束密度一方向電磁鋼板
を一段冷延法で製造する場合には、厚手製品を製造する
場合、又は多段冷延法で製造する場合に比べ、熱延板焼
鈍後の組織及び析出物の状況が製品特性に対し、より強
い影響を及ぼすことが考えられる。
When manufacturing a thin high magnetic flux density unidirectional magnetic steel sheet with a cold-rolled sheet thickness of 0.17 mm or less by the single-stage cold rolling method, compared to the case of manufacturing a thick product or multi-stage cold rolling method, the hot-rolled sheet It is conceivable that the structure and the state of precipitates after annealing have a stronger influence on the product properties.

一方、熱延板中のN as AlN含有量は、熱延板焼鈍にお
ける鋼板の組織変化及び析出物の挙動に微妙に影響を及
ぼすことが考えられ、熱延板中のN as AlN含有量が0.00
05〜0.0020%の場合に、製品特性に対して最も有利な熱
延板焼鈍後の鋼板の性状が得られるものであろう。
On the other hand, the N as AlN content in the hot-rolled sheet is considered to have a slight effect on the structural change of the steel sheet and the behavior of precipitates during hot-rolled sheet annealing, and the N as AlN content in the hot-rolled sheet is 0.00
In the case of 05 to 0.0020%, the properties of the steel sheet after hot-rolled sheet annealing, which is the most advantageous for the product properties, will be obtained.

なお、熱延板中のN as AlN含有量を0.0005〜0.0020%
に制御する方法としては、スラブ加熱条件,粗圧延条
件,仕上圧延条件,仕上圧延後の冷却条件等があるが、
その何れでもよい。
The content of NasAlN in the hot-rolled sheet was 0.0005-0.0020%
There are slab heating conditions, rough rolling conditions, finish rolling conditions, cooling conditions after finish rolling, etc.
Any of them may be used.

(実験III) C:0.075%,Si:3.25%,Mn:0.070%,S:0.026%,酸可溶
性Al:0.0255%,N:0.0085%,Sn:0.15%,残部:実質的に
Feからなる珪素鋼スラブを、焼鈍分離剤の条件以外は実
験Iと同様の方法で処理して製品を得た。
(Experiment III) C: 0.075%, Si: 3.25%, Mn: 0.070%, S: 0.026%, acid-soluble Al: 0.0255%, N: 0.0085%, Sn: 0.15%, balance: substantially
A silicon steel slab made of Fe was treated in the same manner as in Experiment I except for the condition of the annealing separator to obtain a product.

焼鈍分離剤については、マグネシアの種類,水との撹
拌条件を種々変化させ、スラリー中のマグネシアの水和
水分率を0.1〜6.0%とした。
Regarding the annealing separator, the type of magnesia and stirring conditions with water were variously changed, and the hydrated water content of magnesia in the slurry was 0.1 to 6.0%.

製品の鉄損値と磁束密度を測定した。 The iron loss value and magnetic flux density of the product were measured.

水和水分率と鉄損値及び磁束密度の関係を第7図に示
す。第7図において横軸はスラリー中のマグネシアの水
和水分率であり、縦軸は鉄損値と磁束密度である。
FIG. 7 shows the relationship between the hydrated water percentage, the iron loss value and the magnetic flux density. In FIG. 7, the horizontal axis represents the hydrated water content of magnesia in the slurry, and the vertical axis represents the iron loss value and the magnetic flux density.

第7図から明らかなように、水和水分率0.5〜3.0%の
範囲で良好な鉄損値と磁束密度が得られた。
As is clear from FIG. 7, good iron loss values and magnetic flux densities were obtained in the range of the hydrated water content of 0.5 to 3.0%.

なお、本実験における試料のグラス被膜は何れも良好
であった。
The glass coatings of the samples in this experiment were all good.

実験I,実験II,実験IIIで示す材料成分にCu又はSbの何
れか一方又は双方を添加した場合について、実験I,実験
II,実験IIIと同様の実験を行い同様の結果を得た。
Experiments I and II were conducted when either or both of Cu and Sb were added to the material components shown in Experiments I, II and III.
Experiments similar to II and Experiment III were performed and similar results were obtained.

(実験IV) C:0.083%,Si:3.25%,Mn:0.076%,S:0.025%,Sn:0.14
%,N:0.0085%,酸可溶性Al:0.0235%,Cu:無添加および
0.01〜0.20%、残部:実質的にFeからなる多数の珪素鋼
スラブについて、熱延以降工程を実験Iと同様の方法で
処理し製品を得た。Cu含有量と鉄損値の関係を第8図に
示す。第8図から明らかな如く、Cu:0.03〜0.08%の範
囲で鉄損特性の向上が認められた。
(Experiment IV) C: 0.083%, Si: 3.25%, Mn: 0.076%, S: 0.025%, Sn: 0.14
%, N: 0.0085%, acid-soluble Al: 0.0235%, Cu: no additive and
0.01 to 0.20%, balance: Many silicon steel slabs substantially made of Fe were subjected to hot rolling and subsequent steps in the same manner as in Experiment I to obtain products. FIG. 8 shows the relationship between the Cu content and the iron loss value. As is clear from FIG. 8, improvement in iron loss characteristics was observed in the range of Cu: 0.03 to 0.08%.

(実験V) C:0.080%,Si:3.23%,Mn:0.075%,S:0.025%,Sn:0.13
%,N:0.0085%,酸可溶性Al:0.0230%,Sb:無添加および
0.001〜0.050%,残部:実質的にFeからなる多数の珪素
鋼スラブについて、熱延以降工程を実験Iと同様の方法
で処理し製品を得た。Sb含有量と鉄損の関係を第9図に
示す。第9図から明らかな如く、Sb:0.005〜0.035%の
範囲で鉄損特性の向上が認められた。
(Experiment V) C: 0.080%, Si: 3.23%, Mn: 0.075%, S: 0.025%, Sn: 0.13
%, N: 0.0085%, acid-soluble Al: 0.0230%, Sb: no additive and
0.001 to 0.050%, balance: For many silicon steel slabs substantially composed of Fe, the processes after hot rolling were processed in the same manner as in Experiment I to obtain products. FIG. 9 shows the relationship between the Sb content and iron loss. As is evident from FIG. 9, improvement in iron loss characteristics was observed in the range of Sb: 0.005 to 0.035%.

次に、本発明における珪素鋼スラブの成分及び製造工
程の処理条件の限定理由について述べる。
Next, the reasons for limiting the components of the silicon steel slab and the processing conditions in the manufacturing process in the present invention will be described.

Cは0.060〜0.120%とする。0.060%未満、あるいは
0.120%を越えると二次再結晶が不安定になる。
C is 0.060 to 0.120%. Less than 0.060%, or
If it exceeds 0.120%, secondary recrystallization becomes unstable.

Siは2.9〜4.5%とする。2.9%未満では良好な(低
い)鉄損値が得られず、4.5%を超えると加工性(冷間
圧延のし易さ)が劣化する。
Si is 2.9-4.5%. If it is less than 2.9%, a good (low) iron loss value cannot be obtained, and if it exceeds 4.5%, workability (easiness of cold rolling) deteriorates.

Mnは0.050〜0.090%とする。0.050%未満、あるいは
0.090%を超えると二次再結晶が不安定になる。
Mn is set to 0.050 to 0.090%. Less than 0.050%, or
If it exceeds 0.090%, secondary recrystallization becomes unstable.

S又はSeの何れか一方又は双方は0.020〜0.060%とす
る。0.020%未満では二次再結晶が不安定となり、0.060
%を超えると鉄損値が不良になる。
One or both of S and Se is set to 0.020 to 0.060%. If less than 0.020%, secondary recrystallization becomes unstable, and 0.060%
%, The iron loss value becomes poor.

又、SとSeを複合添加した場合に、特に優れた製品磁
気特性が得られる。
In addition, when S and Se are added in combination, particularly excellent product magnetic properties can be obtained.

Snは0.05〜0.25%とする。0.05%未満では二次再結晶
が不安定となり、0.25%を超えると加工性が劣化する。
Sn is 0.05 to 0.25%. If it is less than 0.05%, the secondary recrystallization becomes unstable, and if it exceeds 0.25%, the workability deteriorates.

スラブ加熱において、硫化物,窒化物を十分に固溶さ
せるため高温加熱が必要であり、好ましくは1300℃以上
での加熱が望ましい。
In slab heating, high-temperature heating is necessary to sufficiently dissolve sulfides and nitrides, and heating at 1300 ° C. or more is desirable.

熱延板を1030〜1200℃で10分間以内焼鈍する理由は、
1030℃未満では良好な製品磁気特性が得られず、1200℃
を超えると、二次再結晶が不安定になり、10分間を超え
て焼鈍しても製品磁気特性の向上は期待できず、経済的
に不利であるからである。
The reason for annealing the hot rolled sheet at 1030 to 1200 ° C within 10 minutes is as follows.
Good product magnetic properties cannot be obtained below 1030 ° C, 1200 ° C
If more than 2, secondary recrystallization becomes unstable, and even if annealing is performed for more than 10 minutes, improvement in product magnetic properties cannot be expected, which is economically disadvantageous.

焼鈍後は急冷する。急冷しないと良好な製品磁気特性
が得られない。
Rapid cooling after annealing. Good product magnetic properties cannot be obtained unless quenched.

一段冷延法は、二段冷延法より製造コストが著しく安
く、好ましい。
The one-stage cold rolling method is preferable because the production cost is significantly lower than the two-stage cold rolling method.

冷延後の板厚は0.12〜0.17mmとする。0.12mm未満では
二次再結晶が不安定になり易く、0.17mmを超えると期待
する鉄損値が得られない。
The sheet thickness after cold rolling is 0.12 to 0.17 mm. If it is less than 0.12 mm, the secondary recrystallization tends to be unstable, and if it exceeds 0.17 mm, the expected iron loss value cannot be obtained.

なお、冷間圧延の途中で、200〜300℃で1〜5分間保
定することは製品磁気特性の向上に有効である。
In addition, holding at 200 to 300 ° C. for 1 to 5 minutes during the cold rolling is effective for improving the product magnetic properties.

高温仕上焼鈍に際しては、昇温途中少くとも1000℃
迄、窒素を含む雰囲気を用いる。窒素を含まない場合、
二次再結晶が不安定になる。
During high temperature finish annealing, at least 1000 ° C during heating
Until then, an atmosphere containing nitrogen is used. If it does not contain nitrogen,
Secondary recrystallization becomes unstable.

〔実施例〕〔Example〕

実施例1 C:0.080%,Si:3.25%,Mn:0.076%,S:無添加,0.015%,
0.025%,Se:無添加,0.015%,0.025%,Sn:0.13%,N:0.00
45%,0.0085%,0.0110%,酸可溶性Al:0.0150%,0.0170
%,0.0230%,0.0260%,0.0300%、Cu:無添加,0.07%,S
b:無添加,0.020%、残部:実質的にFeからなる多数の珪
素鋼スラブを1360℃で60分間加熱し、加熱炉から抽出
し、0.92mm,1.00mm,1.31mm,2.43mmの各板厚に熱延し
た。この場合、圧延前、圧延中及び圧延後の冷却条件を
種々変更した。熱延板のN as AlN含有量は0.0002〜0.00
35%であった。
Example 1 C: 0.080%, Si: 3.25%, Mn: 0.076%, S: no additive, 0.015%,
0.025%, Se: not added, 0.015%, 0.025%, Sn: 0.13%, N: 0.00
45%, 0.0085%, 0.0110%, acid-soluble Al: 0.0150%, 0.0170
%, 0.0230%, 0.0260%, 0.0300%, Cu: No additive, 0.07%, S
b: No addition, 0.020%, balance: Many silicon steel slabs substantially consisting of Fe were heated at 1360 ° C for 60 minutes, extracted from the heating furnace, and each plate of 0.92mm, 1.00mm, 1.31mm, 2.43mm It was hot rolled thick. In this case, the cooling conditions before, during, and after the rolling were variously changed. The N as AlN content of the hot rolled sheet is 0.0002 to 0.00
35%.

熱延板を1120℃で60秒間焼鈍し、次いで風冷と100℃
の水への浸漬により冷却した。焼鈍後の板を酸洗し板厚
0.12mmと0.17mmに冷延した。次いで、75%H2,25%N2,露
点65℃の雰囲気中で、850℃で150秒間の脱炭焼鈍を行っ
た。次いで、マグネシアを主成分とする焼鈍分離剤をマ
グネシアの水和水分率を1.5%として塗布し、85%H2,15
%N2雰囲気中で、25℃/時間の昇温速度で1200℃まで加
熱し、次いでH2雰囲気中で、1200℃で20時間均熱した後
冷却し、焼鈍分離剤を除去し、張力コーティングを行っ
て製品を得た。製品の磁束密度B8,鉄損W15/50を測定し
た。次いで、コーティングおよびグラス被膜を除去して
マクロ組織を観察した。その結果を第1表に示す。第1
表から明らかなように、スラブのN,酸可溶性Al含有量、
熱延板のN as AlN含有量及び冷延圧下率が本発明の条件
であるときのみ、二次再結晶が完全で、B8,W15/50共優
れた製品が得られた。
Anneal the hot rolled sheet at 1120 ° C for 60 seconds, then air cool and 100 ° C
Was cooled by immersion in water. Pickling the plate after annealing
Cold rolled to 0.12mm and 0.17mm. Next, decarburization annealing was performed at 850 ° C. for 150 seconds in an atmosphere of 75% H 2 , 25% N 2 and a dew point of 65 ° C. Next, an annealing separator containing magnesia as a main component was applied with the hydrated water content of magnesia being 1.5%, and 85% H 2 , 15
% N 2 atmosphere, heated to 1200 ° C. at a temperature rise rate of 25 ° C./hour, then, in H 2 atmosphere, soaked at 1200 ° C. for 20 hours, then cooled, the annealing separating agent was removed, and tension coating was performed. To obtain the product. The magnetic flux density B 8 and iron loss W 15/50 of the product were measured. Next, the coating and the glass coating were removed, and the macrostructure was observed. Table 1 shows the results. First
As is clear from the table, N of the slab, acid-soluble Al content,
Only when the N as AlN content and the cold rolling reduction of the hot-rolled sheet were the conditions of the present invention, a product in which secondary recrystallization was perfect and B 8 and W 15/50 were excellent was obtained.

また、Cu,Sbの含有量が本発明領域にあるとき、更に
優れた製品磁気特性が得られた。
Further, when the contents of Cu and Sb were in the range of the present invention, more excellent product magnetic properties were obtained.

実施例2 第2表に示す、A,B,C,D4種の成分の珪素鋼スラブをマ
グネシアの水和水分率以外は、実施例1と同様の方法で
処理し製品を得た。マグネシアの水和水分率を0.2%,1.
8%,5.0%とした。
Example 2 Silicon steel slabs of the four components A, B, C and D shown in Table 2 were treated in the same manner as in Example 1 except for the hydrated water content of magnesia to obtain a product. Hydration of magnesia is 0.2%, 1.
8% and 5.0%.

製品の鉄損値(W15/50)と磁束密度(B8)を測定し
た。その結果を第3表に示す。第3表から明らかなよう
に、マグネシアの水和水分率が本発明の領域にあるとき
のみ、優れた(低い)鉄損値と優れた(高い)磁束密度
を示している。
It was measured product iron loss value (W 15/50) and flux density (B 8). Table 3 shows the results. As is evident from Table 3, excellent (low) iron loss values and excellent (high) magnetic flux density are exhibited only when the hydrated water content of magnesia is in the range of the present invention.

〔発明の効果〕 本発明は、以上述べたように構成したから、酸可溶性
Al,N,Snを含有する珪素鋼スラブを出発材料とし、熱延
板焼鈍を伴う強圧下一段冷延法により、板厚0.12〜0.17
mmに冷延された薄手一方向性電磁鋼板を製造する方法に
おいて、二次再結晶が完全で、製品磁気特性の優れた薄
手高磁束密度一方向性電磁鋼板が安定して製造できるよ
うになった。
[Effect of the Invention] Since the present invention is configured as described above, it is acid-soluble.
Using a silicon steel slab containing Al, N and Sn as a starting material, a sheet thickness of 0.12 to 0.17
In the method of manufacturing thin unidirectional electrical steel sheets cold rolled to a thickness of 0.2 mm, secondary recrystallization is complete and thin high magnetic flux density unidirectional electrical steel sheets with excellent product magnetic properties can be manufactured stably. Was.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と二次再結晶状況(○,×等で表示)の関
係を示す図である。 第2図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と製品の磁束密度B8(○,×等で表示)の
関係を示す図である。 第3図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と製品の鉄損W15/50(○,×等で表示)
の関係を示す図である。 第4図は、熱延板のN as AlN含有量(横軸)及び冷延圧
下率(縦軸)と二次再結晶状況(○,×等で表示)の関
係を示す図である。 第5図は、熱延板のN as AlN含有量(横軸)及び冷延圧
下率(縦軸)と製品の磁束密度B8(○,×等で表示)の
関係を示す図である。 第6図は、熱延板のN as AlN(横軸)及び冷延圧下率
(縦軸)と製品の鉄損W15/50(○,×等で表示)の関
係を示す図である。 第7図は焼鈍分離剤中のマグネシアの水和水分率(横
軸)と製品の鉄損値及び磁束密度(縦軸)の関係を示す
図である。 第8図は、スラブのCu含有量(横軸)とCu添加による製
品の鉄損W15/50の変化量(縦軸)の関係を示す図であ
る。 第9図は、スラブのSb含有量(横軸)とSb添加による製
品の鉄損W15/50の変化量(縦軸)の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of a slab and the state of secondary recrystallization (indicated by ,, ×, etc.). FIG. 2 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the magnetic flux density B 8 (indicated by ,, ×, etc.) of the product. Fig. 3 shows the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the iron loss W 15/50 of the product (indicated by ○, ×, etc.).
FIG. FIG. 4 is a diagram showing the relationship between the N as AlN content (horizontal axis) and the cold rolling reduction (vertical axis) of the hot rolled sheet and the state of secondary recrystallization (indicated by ○, ×, etc.). FIG. 5 is a diagram showing the relationship between the N as AlN content (horizontal axis) and the cold rolling reduction (vertical axis) of the hot-rolled sheet and the magnetic flux density B 8 (indicated by ,, ×, etc.) of the product. FIG. 6 is a diagram showing the relationship between N as AlN (horizontal axis) and cold rolling reduction (vertical axis) of a hot-rolled sheet and iron loss W 15/50 (indicated by ○, ×, etc.) of a product. FIG. 7 is a graph showing the relationship between the hydrated water content of magnesia in the annealing separator (horizontal axis), the iron loss value of the product, and the magnetic flux density (vertical axis). FIG. 8 is a diagram showing the relationship between the Cu content of the slab (horizontal axis) and the amount of change in iron loss W 15/50 of the product due to the addition of Cu (vertical axis). FIG. 9 is a diagram showing the relationship between the Sb content of the slab (horizontal axis) and the amount of change in the iron loss W 15/50 of the product due to the addition of Sb (vertical axis).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%でC:0.060〜0.120%,Si:2.9〜4.5
%,Mn:0.050〜0.090%,S又はSeの何れか一方又は双方:
0.020〜0.060%,Sn:0.05〜0.25%並びに酸可溶性Al,Nを
含み、残部Feおよび不可避的不純物からなる珪素綱スラ
ブを高温加熱し、熱間圧延し、熱延板を1030〜1200℃の
温度範囲で10分間以内焼鈍し、焼鈍後急冷し、次いで冷
間圧延し、冷間圧延後の板厚を0.12〜0.17mmとし、水素
を含む湿潤雰囲気中で脱炭焼鈍を行い、マグネシアを主
とする焼鈍分離剤を塗布し、昇温途中少くとも1000℃
迄、窒素を含む雰囲気を用いる高温仕上焼鈍を行い、張
力コーティングを行う薄手一方向性電磁鋼板の製造方法
において、前記珪素綱スラブの含有するNと酸可溶性Al
について、N:0.0050〜0.0100%,酸可溶性Al:{(27/1
4)×N(%)+0.0035}〜{(27/14)×N(%)+0.
0100}%とし、且つ、冷延圧下率が85〜92%となる熱延
板の板厚とし、且つ、熱延板中のN as AlN含有量を0.00
05〜0.0020%に制御する熱延を行い、且つ、焼鈍分離剤
中のマグネシアの水和水分率を0.5〜3.0%に制御するこ
とを特徴とする一段冷延法による製品磁気特性の優れた
薄手高磁束密度一方向性電磁綱板の製造方法。
(1) C: 0.060 to 0.120%, Si: 2.9 to 4.5% by weight
%, Mn: 0.050 to 0.090%, either or both of S and Se:
A silicon steel slab containing 0.020-0.060%, Sn: 0.05-0.25% and acid-soluble Al, N, the balance being Fe and unavoidable impurities is heated at a high temperature, hot-rolled, and the hot-rolled sheet is heated to 1030-1200 ° C. Annealed within a temperature range within 10 minutes, quenched after annealing, then cold rolled, the thickness after cold rolling was set to 0.12 to 0.17 mm, decarburized annealing in a humid atmosphere containing hydrogen, mainly magnesia At least 1000 ° C during the temperature rise
Until then, a high-temperature finish annealing using an atmosphere containing nitrogen, and a method of manufacturing a thin unidirectional electrical steel sheet to be subjected to tension coating, wherein the silicon steel slab contains N and acid-soluble Al
About, N: 0.0050-0.0100%, acid-soluble Al: {(27/1
4) × N (%) + 0.0035} ~ {(27/14) × N (%) + 0.
0100% and the thickness of the hot-rolled sheet having a cold rolling reduction of 85 to 92%, and the content of NasAlN in the hot-rolled sheet is 0.00
Thin and excellent product magnetic properties by single-stage cold-rolling, characterized in that hot rolling is controlled to 05-0.0020% and hydrated moisture of magnesia in the annealing separator is controlled to 0.5-3.0%. A method for producing a high magnetic flux density unidirectional electromagnetic steel plate.
【請求項2】重量%でC:0.060〜0.120%,Si:2.9〜4.5
%,Mn:0.050〜0.090%,S又はSeの何れか一方又は双方:
0.020〜0.060%,Sn:0.05〜0.25%,Cu:0.03〜0.08%又は
Sb:0.005〜0.035%の何れか一方又は双方並びに酸可溶
性Al,Nを含み、残部Feおよび不可避的不純物からなる珪
素綱スラブを高温加熱し、熱間圧延し、熱延板を1030〜
1200℃の温度範囲で10分間以内焼鈍し、焼鈍後急冷し、
次いで冷間圧延し、冷間圧延後の板厚を0.12〜0.17mmと
し、水素を含む湿潤雰囲気中で脱炭焼鈍を行い、マグネ
シアを主とする焼鈍分離剤を塗布し、昇温途中少くとも
1000℃迄、窒素を含む雰囲気を用いる高温仕上焼鈍を行
い、張力コーティングを行う薄手一方向性電磁綱板の製
造方法において、前記珪素綱スラブの含有するNと酸可
溶性Alについて、N:0.0050〜0.0100%,酸可溶性Al:
{(27/14)×N(%)+0.0035}〜{(27/14)×N
(%)+0.0100}%とし、且つ、冷延圧下率が85〜92%
となる熱延板の板厚とし、且つ、熱延板中のN as AlN含
有量を0.0005〜0.0020%に制御する熱延を行い、且つ、
焼鈍分離剤中のマグネシアの水和水分率を0.5〜3.0%に
制御することを特徴とする一段冷延法による製品磁気特
性の優れた薄手高磁束密度一方向性電磁綱板の製造方
法。
2. C: 0.060 to 0.120% by weight, Si: 2.9 to 4.5% by weight
%, Mn: 0.050 to 0.090%, either or both of S and Se:
0.020 to 0.060%, Sn: 0.05 to 0.25%, Cu: 0.03 to 0.08% or
Sb: One or both of 0.005 to 0.035% and an acid-soluble Al, N, and a silicon steel slab comprising the balance Fe and unavoidable impurities is heated at a high temperature, hot-rolled, and the hot-rolled sheet is heated to 1030 to
Annealed within a temperature range of 1200 ° C within 10 minutes, quenched after annealing,
Next, cold rolling, the thickness after cold rolling to 0.12 to 0.17 mm, decarburizing annealing in a humid atmosphere containing hydrogen, applying an annealing separator mainly composed of magnesia, at least during the temperature rise
Up to 1000 ° C., perform high-temperature finish annealing using an atmosphere containing nitrogen, and in a method for producing a thin unidirectional electromagnetic steel sheet for performing tension coating, the N and acid-soluble Al contained in the silicon steel slab, N: 0.0050 to 0.0100%, acid soluble Al:
{(27/14) × N (%) + 0.0035} ~ {(27/14) × N
(%) + 0.0100%, and cold rolling reduction is 85-92%
The hot-rolled sheet has a thickness, and the hot-rolled sheet is subjected to hot-rolling to control the N as AlN content to 0.0005 to 0.0020%, and
A method for producing a thin high magnetic flux density unidirectional electromagnetic steel sheet having excellent magnetic properties of a product by a one-stage cold rolling method, wherein a hydrated water content of magnesia in an annealing separator is controlled to 0.5 to 3.0%.
JP3247089A 1989-02-10 1989-02-10 Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method Expired - Lifetime JP2762095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3247089A JP2762095B2 (en) 1989-02-10 1989-02-10 Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3247089A JP2762095B2 (en) 1989-02-10 1989-02-10 Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method

Publications (2)

Publication Number Publication Date
JPH02209427A JPH02209427A (en) 1990-08-20
JP2762095B2 true JP2762095B2 (en) 1998-06-04

Family

ID=12359860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3247089A Expired - Lifetime JP2762095B2 (en) 1989-02-10 1989-02-10 Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method

Country Status (1)

Country Link
JP (1) JP2762095B2 (en)

Also Published As

Publication number Publication date
JPH02209427A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
CN106702260A (en) High-magnetic-inductivity low-iron-loss non-oriented silicon steel and production method thereof
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JPH0213009B2 (en)
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JPS6256923B2 (en)
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2762095B2 (en) Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method
US4992114A (en) Process for producing grain-oriented thin electrical steel sheet having high magnetic flux density by one-stage cold-rolling method
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
JP2755414B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH083699A (en) Nonoriented silicon steel sheet excellent in iron loss after stress relief annealing and its production
JPH0717954B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method
CN113272457B (en) Method for producing unidirectional electromagnetic steel sheet
JP2525721B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH07113120A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS63186823A (en) Production of electromagnetic steel plate having excellent magnetic characteristic
JPH0372025A (en) Production of thin grain-oriented silicon steel sheet with high magnetic flux density by single-stage cold rolling method
JP2525722B2 (en) Method for producing high magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties
JPH0672267B2 (en) Method for producing grain-oriented silicon steel sheet with less iron loss deterioration due to stress relief annealing
JPH02243721A (en) Production of thin grain-oriented silicon steel sheet having high magnetic flux density by single-stage cold rolling method
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080327

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090327

Year of fee payment: 11

EXPY Cancellation because of completion of term