JPH0717954B2 - Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method - Google Patents

Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method

Info

Publication number
JPH0717954B2
JPH0717954B2 JP3246989A JP3246989A JPH0717954B2 JP H0717954 B2 JPH0717954 B2 JP H0717954B2 JP 3246989 A JP3246989 A JP 3246989A JP 3246989 A JP3246989 A JP 3246989A JP H0717954 B2 JPH0717954 B2 JP H0717954B2
Authority
JP
Japan
Prior art keywords
annealing
hot
cold rolling
soluble
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3246989A
Other languages
Japanese (ja)
Other versions
JPH02209426A (en
Inventor
正三郎 中島
仁 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3246989A priority Critical patent/JPH0717954B2/en
Publication of JPH02209426A publication Critical patent/JPH02209426A/en
Publication of JPH0717954B2 publication Critical patent/JPH0717954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一段冷延法による製品磁気特性の優れた薄手高
磁束密度一方向性電磁鋼板の安定した製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a stable production method of a thin high magnetic flux density unidirectional electrical steel sheet having excellent product magnetic characteristics by a one-step cold rolling method.

〔従来の技術〕[Conventional technology]

一方向性電磁鋼板は軟磁性材料として主にトランスその
他の電気機器の磁芯材料として使用され、磁気特性とし
て励磁特性と鉄損特性が良好でなくてはならない。
The unidirectional electrical steel sheet is mainly used as a soft magnetic material as a magnetic core material for transformers and other electric devices, and it must have good magnetic excitation characteristics and iron loss characteristics.

磁気特性の優れた鋼板を得るには磁化容易軸である〈00
1〉軸が圧延方向に高度に揃うことが必要である。その
他に、板厚,結晶粒度,固有抵抗,表面被膜等が磁気特
性に大きく影響する。
In order to obtain a steel sheet with excellent magnetic properties, the easy axis of magnetization <00
The 1> axis must be highly aligned in the rolling direction. In addition, the plate thickness, grain size, specific resistance, surface coating, etc. have a great influence on the magnetic properties.

電磁鋼板の方向性はAlN,MnSをインヒビターとして機能
せしめる強圧下一段冷間圧延プロセスによって大きく向
上し、現在、磁束密度が理論値の96%程度のものまで製
造されるようになって来ている。
The directionality of electrical steel sheets has been greatly improved by the high-pressure single-stage cold rolling process that causes AlN and MnS to function as inhibitors, and at present, magnetic flux densities up to about 96% of the theoretical value are being manufactured. .

一方、近年、エネルギー価格の高騰を反映してトランス
メーカーは省エネルギー型トランス用素材として、低鉄
損磁性材料への指向を一段と強めている。
On the other hand, in recent years, the transformer manufacturers have been increasingly oriented to low iron loss magnetic materials as materials for energy-saving transformers, reflecting the sharp rise in energy prices.

低鉄損磁性材料としてアモルファス合金や6.5%Si合金
といった高Si材の開発も進められているが、トランス用
の材料としては、価格,加工性等の点で難点がある。
High Si materials such as amorphous alloys and 6.5% Si alloys are under development as low iron loss magnetic materials, but there are drawbacks in terms of price and workability as materials for transformers.

他方、電磁鋼板の鉄損にはSi含有量の他に板厚が大きく
影響し、化学研摩等により製品の板厚を薄くすると鉄損
が低下することが知られている。
On the other hand, it is known that the iron loss of the electromagnetic steel sheet is greatly affected by the sheet thickness in addition to the Si content, and the iron loss decreases when the sheet thickness of the product is reduced by chemical polishing or the like.

本発明者等は先に特開昭58−217630号公報において、酸
可溶性Al,N,Snを含有する珪素鋼スラブを出発材料と
し、熱延板焼鈍を伴う強圧下一段冷延法により薄手高磁
束密度一方向性電磁鋼板を製造する方法を提案した。こ
の方法により鉄損の優れた薄手高磁束密度一方向性電磁
鋼板、就中、板厚0.225mm迄の薄手材が安価に工業生産
できるようになり、これを用いたトランスの低鉄損化を
通して時代の課題である省エネルギー化に貢献できた。
The present inventors previously disclosed in JP-A-58-217630 that a silicon steel slab containing acid-soluble Al, N, Sn was used as a starting material, and a thin sheet was formed by a high-pressure single-stage cold rolling method involving hot-rolled sheet annealing. A method of manufacturing magnetic flux density unidirectional electrical steel sheet was proposed. With this method, thin high magnetic flux density unidirectional electrical steel sheets with excellent iron loss, and in particular, thin materials up to a sheet thickness of 0.225 mm, can be industrially manufactured at low cost. We were able to contribute to energy saving, which is an issue of the times.

しかるに、その後省エネルギー化に対する時代の要請は
一段と強まり、トランス用素材である一方向性電磁鋼板
の一層の高性能化が必要となってきた。すなわち、板厚
0.225mm材より更に鉄損の低い、板厚0.175mm以下の薄手
高磁束密度一方向性電磁鋼板の安価で、且つ、安定した
製造方法の確立が緊急の課題になってきた。
However, the demands of the times for energy saving have further increased since then, and it has become necessary to further improve the performance of the unidirectional electrical steel sheet, which is a material for transformers. That is, the plate thickness
It has become an urgent task to establish a cheap and stable manufacturing method for thin high magnetic flux density unidirectional electrical steel sheets having a thickness of 0.175 mm or less, which has a lower iron loss than 0.225 mm material.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

特開昭58−217630号公報に開示した方法により0.175mm,
0.150mm材の製造は可能であるが、板厚が0.175mm以下の
場合、上記公報の第8表および第11表に示すごとく、二
次再結晶が完全ではなく、工業生産の場合、工程歩留が
低く、製品磁気特性のレベル及び安定性の点で問題があ
る事が判明した。
By the method disclosed in JP-A-58-217630, 0.175 mm,
Although it is possible to manufacture 0.150 mm material, if the plate thickness is 0.175 mm or less, as shown in Tables 8 and 11 of the above publication, the secondary recrystallization is not complete, and in the case of industrial production, the process steps are It was found that the retention was low and there were problems in the level and stability of the magnetic properties of the product.

本発明は酸可溶性Al,N,Snを含有する珪素鋼スラブを出
発材料とし、熱延板焼鈍を伴う強圧下一段冷延法により
板厚0.12〜0.17mmに冷延された製品磁気特性の優れた薄
手高磁束密度一方向性電磁鋼板を安定して製造する方法
を目指すものである。
The present invention uses a silicon steel slab containing acid-soluble Al, N, Sn as a starting material, and has excellent magnetic properties of a product cold-rolled to a sheet thickness of 0.12 to 0.17 mm by a high-pressure single-stage cold rolling method involving hot-rolled sheet annealing. The aim is to stably manufacture thin, high magnetic flux density unidirectional electrical steel sheets.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の骨子とするところは、酸可溶性Al,N,Snを含有
する珪素鋼スラブを出発材料とし、熱延板焼鈍を伴う強
圧下一段冷延法により板厚0.12〜0.17mmに冷延された薄
手一方向性電磁鋼板を製造する方法において、スラブの
含有するNと酸可溶性Alについて、N:0.0050〜0.0100
%,酸可溶性Al:{(27/14)×N(%)+0.0035}〜
{(27/14)×N(%)+0.0100}%とし、且つ、冷延
圧下率が85〜92%となる熱延板の板厚とし、且つ、熱延
板中のN as AlN含有量を0.0005〜0.0020%に制御する熱
延を行い、且つ、熱延板焼鈍後冷却後の鋼板断面の板厚
方向平均硬度をHv(1kg)200以上、230未満に制御する
ことにより、二次再結晶が完全で、製品磁気特性の優れ
た薄手高磁束密度一方向性電磁鋼板の安定した製造を可
能とするにある。
Where the gist of the present invention is, acid-soluble Al, N, using a silicon steel slab containing Sn, as a starting material, cold rolled to a sheet thickness of 0.12 to 0.17 mm by a high pressure single-stage cold rolling method involving hot rolled sheet annealing. In the method for producing a thin unidirectional electrical steel sheet, N: 0.0050 to 0.0100 with respect to N and acid-soluble Al contained in the slab
%, Acid-soluble Al: {(27/14) × N (%) + 0.0035} 〜
{(27/14) × N (%) + 0.0100}%, and the thickness of the hot-rolled sheet with a cold rolling reduction of 85 to 92%, and containing N as AlN in the hot-rolled sheet By performing hot rolling in which the amount is controlled to 0.0005 to 0.0020% and controlling the average hardness in the thickness direction of the steel sheet cross section after annealing after cooling the hot rolled sheet to Hv (1 kg) 200 or more and less than 230, the secondary This is to enable stable production of thin high magnetic flux density grain-oriented electrical steel sheets that are completely recrystallized and have excellent product magnetic properties.

〔作用〕[Action]

以下に本発明に至った経緯を実験結果に基づいて説明す
る。
The background of the present invention will be described below based on experimental results.

(実験I) C:0.080%,Si:3.25%,Mn:0.075%,S:0.025%,Sn:0.13
%,N:0.0040〜0.0120%,酸可溶性Al:0.0100〜0.0500
%,残部:実質的にFeからなる多数の珪素鋼スラブを13
70℃で60分間加熱し、加熱炉から抽出して、1.4mmの板
厚に熱延した。熱延終了温度は1040〜1050℃であった。
熱延終了後約70℃/秒で550℃迄冷却し、その後大気中
に放冷した。熱延板の含有するN as AlNは0.0010〜0.00
12%であった。熱延板を1100℃で30秒間焼鈍し、次いで
100℃の水に浸漬して冷却した。冷却後の鋼板断面の板
厚方向平均硬度はHv(1kg)210〜215であった。焼鈍後
の板を酸洗し、板厚0.15mm迄冷延した。次いで、75%
H2,25%N2,露点65℃の雰囲気中で、850℃で150秒間の
脱炭焼鈍を行った。次いで、マグネシアパウダーを主成
分とする焼鈍分離剤を塗布し、85%H2,15%N2雰囲気中
で、25℃/時間の昇温速度で1200℃まで加熱し、次いで
H2雰囲気中で、1200℃で20時間均熱した後冷却し、焼鈍
分離剤を除去し、張力コーティングを行って製品を得
た。製品の磁束密度B8、鉄損W15/50を測定した。次い
で、コーティングおよびグラス被膜を除去して、マクロ
組織を観察した。スラブのN,酸可溶性Al含有量と、二次
再結晶状況,B8,W15/50の関係を、各々、第1図,第2
図,第3図に示す。
(Experiment I) C: 0.080%, Si: 3.25%, Mn: 0.075%, S: 0.025%, Sn: 0.13
%, N: 0.0040 to 0.0120%, Acid-soluble Al: 0.0100 to 0.0500
%, Balance: a large number of silicon steel slabs consisting essentially of Fe 13
It was heated at 70 ° C. for 60 minutes, extracted from the heating furnace, and hot-rolled to a plate thickness of 1.4 mm. The hot rolling finish temperature was 1040 to 1050 ° C.
After the hot rolling was completed, it was cooled to 550 ° C. at about 70 ° C./sec and then left to cool in the atmosphere. N as AlN contained in the hot rolled sheet is 0.0010 to 0.00
It was 12%. Anneal the hot-rolled sheet at 1100 ° C for 30 seconds, then
It was immersed in 100 ° C. water and cooled. The average hardness in the plate thickness direction of the steel plate cross section after cooling was Hv (1 kg) 210 to 215. The annealed plate was pickled and cold rolled to a plate thickness of 0.15 mm. Then 75%
Decarburization annealing was performed at 850 ° C for 150 seconds in an atmosphere of H 2 , 25% N 2 , dew point of 65 ° C. Then, an annealing separator containing magnesia powder as a main component was applied, and heated to 1200 ° C at a temperature rising rate of 25 ° C / hour in an atmosphere of 85% H 2 and 15% N 2 and then
The product was obtained by soaking in H 2 atmosphere at 1200 ° C. for 20 hours and then cooling, removing the annealing separator, and performing tension coating. The magnetic flux density B 8 and iron loss W 15/50 of the product were measured. The coating and glass coating were then removed and the macrostructure was observed. The relationship between the N and acid soluble Al contents of the slab and the state of secondary recrystallization, B 8 and W 15/50 is shown in Fig. 1 and Fig. 2 respectively.
Shown in Fig. And Fig. 3.

第1図において、横軸はN含有量であり、縦軸は酸可溶
性Al含有量である。二次再結晶状況を○,△,×の符号
で示す。同図における直線ab,bc,cd,daで囲まれる領域
で、二次再結晶が完全であった。直線abは次式で表わさ
れる。
In FIG. 1, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. The secondary recrystallization state is indicated by the symbols of ○, △, ×. The secondary recrystallization was complete in the region surrounded by the straight lines ab, bc, cd, and da in the figure. The straight line ab is expressed by the following equation.

直線ab:酸可溶性Al(%)=(27/14)×N(%)+0.01
00(%) すなわち、N:0.0050〜0.0120%で、酸可溶性Al:0.0100
〜{(27/14)×N(%)+0.0100}%のときに、二次
再結晶が完全であることが明らかになった。
Straight line ab: Acid soluble Al (%) = (27/14) x N (%) + 0.01
00 (%) That is, N: 0.0050 to 0.0120%, acid-soluble Al: 0.0100
It was revealed that the secondary recrystallization was complete when ~ ((27/14) x N (%) + 0.0100}%.

第2図において、横軸はN含有量であり、縦軸は酸可溶
性Al含有量である。B8の値を○,△,×の符号で示す。
同図における直線ab,bc,cd,daで囲まれる領域で、良好
なB8が得られた。
In FIG. 2, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. The value of B 8 is indicated by the symbols of ○, △, ×.
Good B 8 was obtained in the region surrounded by the straight lines ab, bc, cd, and da in the figure.

直線ab,cdは、各々、次式で表わされる。The straight lines ab and cd are represented by the following equations, respectively.

直線ab:酸可溶性Al(%)=(27/14)×N(%)+0.01
00(%) 直線cd:酸可溶性Al(%)=(27/14)×N(%)+0.00
35(%) すなわち、N:0.0050〜0.0100%で、酸可溶性Al:{(27/
14)×N(%)+0.0035}〜{(27/14)×N(%)+
0.0100}%のときに、良好なB8が得られることが明らか
になった。
Straight line ab: Acid soluble Al (%) = (27/14) x N (%) + 0.01
00 (%) Linear cd: Acid soluble Al (%) = (27/14) x N (%) + 0.00
35 (%) That is, N: 0.0050 to 0.0100%, acid-soluble Al: {(27 /
14) x N (%) + 0.0035} ~ {(27/14) x N (%) +
It was revealed that good B 8 can be obtained at 0.0100}%.

第3図において、横軸はN含有量であり、縦軸は酸可溶
性Al含有量である。W15/50の値を○,△,×の符号で示
す。同図における、直線ab,bc,cd,daで囲まれる領域
で、良好なW15/50が得られた。
In FIG. 3, the horizontal axis represents the N content, and the vertical axis represents the acid-soluble Al content. The value of W 15/50 is shown by the symbols of ○, △, ×. In the region surrounded by the straight lines ab, bc, cd, da in the figure, good W 15/50 was obtained.

直線ab,cdは、各々、次式で表わされる。The straight lines ab and cd are represented by the following equations, respectively.

直線ab:酸可溶性Al(%)=(27/14)×N(%)+0.01
00(%) 直線cd:酸可溶性Al(%)=(27/14)×N(%)+0.00
35(%) すなわち、N:0.0050〜0.0100%で、酸可溶性Al:{(27/
14)×N(%)+0.0035}〜{(27/14)×N(%)+
0.0100}%のときに、良好なW15/50が得られることが明
らかになった。
Straight line ab: Acid soluble Al (%) = (27/14) x N (%) + 0.01
00 (%) Linear cd: Acid soluble Al (%) = (27/14) x N (%) + 0.00
35 (%) That is, N: 0.0050 to 0.0100%, acid-soluble Al: {(27 /
14) x N (%) + 0.0035} ~ {(27/14) x N (%) +
It was revealed that when W is 0.0100}%, good W 15/50 is obtained.

第1図,第2図,第3図の結果から、N:0.0050〜0.0100
%で、酸可溶性Al:{(27/14)×N(%)+0.0035}〜
{(27/14)×N(%)+0.0100}%のときに二次再結
晶が完全で、B8,W15/50共良好な製品が得られることが
明らかになった。
From the results of Fig. 1, Fig. 2 and Fig. 3, N: 0.0050 to 0.0100
%, Acid-soluble Al: {(27/14) × N (%) + 0.0035} 〜
When {(27/14) × N (%) + 0.0100}%, secondary recrystallization was complete, and it was revealed that good products of B 8 and W 15/50 were obtained.

二次再結晶が完全であるにも拘らず、W15/50が不良の領
域ではB8が低くなっている。すなわち、低Al,高Nサイ
ドでは二次再結晶は安定でああるが、方向性が劣り、良
好な鉄損値が得られにくい傾向を示している。
Despite complete secondary recrystallization, B 8 is low in the region where W 15/50 is defective. That is, the secondary recrystallization is stable on the low Al and high N sides, but the directionality is poor and it tends to be difficult to obtain a good iron loss value.

ここに、(27/14)×N(%)は、鋼に含有するNがす
べてAlNとなる場合に必要なAl含有量に相当する。AlNを
主インヒビターとして活用する本法において、製品の磁
束密度、鉄損値を左右する二次再結晶現象が、(27/1
4)×N(%)をベースとする酸可溶性Al含有量により
強い影響を受けているものと理解される。
Here, (27/14) × N (%) corresponds to the Al content necessary when all the N contained in the steel is AlN. In this method that uses AlN as the main inhibitor, the secondary recrystallization phenomenon that affects the magnetic flux density and iron loss value of the product is (27/1
4) It is understood that it is strongly influenced by the acid-soluble Al content based on (N)%.

(実験II) C:0.082%,Si:3.25%,Mn:0.070%,S:0.025%,Sn:0.14
%,N:0.0085%,酸可溶性Al:0.0240%,残部:実質的に
Feからなる多数の珪素鋼スラブを1370℃で60分間加熱
し、加熱炉から抽出し、0.75〜3.0mmの各種板厚に熱延
した。この場合、圧延前、圧延中及び圧延後の冷却条件
を種々変更し、熱延板のN as AlNの量を0.0001〜0.0036
%迄変化させた。ここにAlNは、板全厚の分析値であ
り、分析方法は臭素メタノール法を用いた(本発明に関
するAlNの分析はすべて臭素メタノール法による)。こ
れ等の熱延板を実験Iと同様な方法で処理し、製品を得
た。
(Experiment II) C: 0.082%, Si: 3.25%, Mn: 0.070%, S: 0.025%, Sn: 0.14
%, N: 0.0085%, acid-soluble Al: 0.0240%, balance: substantially
A large number of silicon steel slabs made of Fe were heated at 1370 ° C. for 60 minutes, extracted from a heating furnace, and hot-rolled to various plate thicknesses of 0.75 to 3.0 mm. In this case, the cooling conditions before rolling, during rolling, and after rolling were variously changed, and the amount of N as AlN in the hot rolled sheet was 0.0001 to 0.0036.
Changed to%. Here, AlN is an analysis value of the total plate thickness, and the bromine-methanol method was used as the analysis method (all analyzes of AlN relating to the present invention were made by the bromine-methanol method). These hot-rolled sheets were treated in the same manner as in Experiment I to obtain products.

次いで、製品の磁束密度B8,鉄損W15/50を測定した。次
いで、コーティングおよびグラス被膜を除去してマクロ
組織を観察した。熱延板のN as AlN,冷延圧下率と二次
再結晶状況,B8,W15/50の関係を各々、第4図,第5
図,第6図に示す。
Next, the magnetic flux density B 8 and the iron loss W 15/50 of the product were measured. The coating and glass coating were then removed and the macrostructure was observed. The relationship between N as AlN, cold rolling reduction and secondary recrystallization condition, B 8 and W 15/50 of hot rolled sheet is shown in Fig. 4 and 5 respectively.
Figure and Figure 6 show.

第4図において、横軸はN as AlN含有量であり、縦軸は
冷延圧下率である。二次再結晶状況を○,△,×の符号
で示す。同図における直線ab,bc,cd,daで囲まれる領域
で、二次再結晶が完全であった。すなわち、N as AlN:
0.0001〜0.0020%,冷延圧下率:80〜92%のときに、二
次再結晶が完全であることが明らかになった。
In FIG. 4, the horizontal axis represents N as AlN content, and the vertical axis represents cold rolling reduction. The secondary recrystallization state is indicated by the symbols of ○, △, ×. The secondary recrystallization was complete in the region surrounded by the straight lines ab, bc, cd, and da in the figure. That is, N as AlN:
It was revealed that the secondary recrystallization was complete when the cold rolling reduction was 0.0001 to 0.0020% and the cold rolling reduction was 80 to 92%.

第5図において、横軸はN as AlN含有量であり、縦軸は
冷延圧下率である。B8の値を○,△,×の符号で示す。
同図におけるab,bc,cd,daで囲まれる領域で、良好なB8
が得られた。すなわち、N as AlN:0.0005〜0.0020%,
冷延圧下率:85〜92%のときに、良好なB8が得られるこ
とが明らかになった。
In FIG. 5, the horizontal axis represents N as AlN content, and the vertical axis represents cold rolling reduction. The value of B 8 is indicated by the symbols of ○, △, ×.
In the area surrounded by ab, bc, cd, and da in the figure, good B 8
was gotten. That is, N as AlN: 0.0005 to 0.0020%,
It was revealed that good B 8 was obtained when the cold rolling reduction rate was 85 to 92%.

第6図において、横軸はN as AlN含有量であり、縦軸は
冷延圧下率である。W15/50の値を○,△,×の符号で示
す。同図における、ab,bc,cd,daで囲まれる領域で、良
好なW15/50が得られた。すなわちN as AlN:0.0005〜0.0
020%,冷延圧下率85〜92%のときに、良好なW15/50
得られることが明らかになった。
In FIG. 6, the horizontal axis is the N as AlN content, and the vertical axis is the cold rolling reduction. The value of W 15/50 is shown by the symbols of ○, △, ×. Good W 15/50 was obtained in the region surrounded by ab, bc, cd, and da in the figure. That is, N as AlN: 0.0005 to 0.0
It was clarified that good W 15/50 was obtained at 020% and cold rolling reduction of 85 to 92%.

第4図,第5図,第6図の結果からN as AlN:0.0005〜
0.0020%,冷延圧下率85〜92%のとき、二次再結晶が完
全で、B8、W15/50共良好な製品が得られることが明らか
になった。
From the results of FIGS. 4, 5, and 6, N as AlN: 0.0005 ~
At 0.0020% and cold rolling reduction of 85-92%, it was clarified that secondary recrystallization was complete and good products of B 8 and W 15/50 were obtained.

二次再結晶が完全であるにもかかわらず、W15/50が不良
の領域では、B8が低くなっている。
Despite the complete secondary recrystallization, B 8 is low in the region where W 15/50 is defective.

実験I,実験IIの結果から、酸可溶性Al,N,Snを含有する
珪素鋼スラブを出発材料とし、熱延板焼鈍を伴う強圧下
一段冷延法により、板厚0.12〜0.17mmに冷延された薄手
一方向性電磁鋼板を製造する方法において、スラブの含
有するNと酸可溶性Alについて、N:0.0050〜0.0100%、
酸可溶性Al:{(27/14)×N(%)+0.0035}〜{(27
/14)×N(%)+0.0100}%とし、且つ、冷延圧下率
が85〜92%となる熱延板の板厚とし、且つ、熱延板中の
N as AlN含有量を0.0005〜0.0020%に制御する熱延を行
うことにより、二次再結晶が完全で、製品磁気特性の優
れた薄手高磁束密度一方向性電磁鋼板の安定製造が可能
になることが明らかになった。
From the results of Experiment I and Experiment II, a silicon steel slab containing acid-soluble Al, N, and Sn was used as the starting material, and cold-rolled to a sheet thickness of 0.12 to 0.17 mm by the high-pressure single-stage cold rolling method involving hot-rolled sheet annealing. In the method for producing the thin unidirectional electrical steel sheet described above, N: 0.0050 to 0.0100% with respect to N and acid-soluble Al contained in the slab,
Acid-soluble Al: {(27/14) × N (%) + 0.0035} to {(27
/ 14) × N (%) + 0.0100}% and the thickness of the hot rolled sheet with a cold rolling reduction of 85 to 92%, and
By performing hot rolling with the N as AlN content controlled to 0.0005 to 0.0020%, it is possible to stably manufacture thin high magnetic flux density unidirectional electrical steel sheets with perfect secondary magnetic recrystallization and excellent product magnetic properties. It became clear.

熱延板中のN as AlN含有量を0.0005〜0.0020%に制御す
る熱延を行うことにより、二次再結晶が良好で、且つ、
磁気特性の優れた製品が得られる理由については必ずし
も明確ではない。
By performing hot rolling to control the N as AlN content in the hot rolled sheet to 0.0005 to 0.0020%, good secondary recrystallization, and,
It is not always clear why a product with excellent magnetic properties can be obtained.

冷延板厚0.17mm以下の薄手高磁束密度一方向電磁鋼板を
一段冷延法で製造する場合には、厚手製品を製造する場
合又は多段冷延法で製造する場合に比べ、熱延板焼鈍後
の組織及び析出物の状況が製品特性に対し、より強い影
響を及ぼすことが考えられる。
When a thin high magnetic flux density unidirectional electrical steel sheet with a cold-rolled sheet thickness of 0.17 mm or less is produced by the single-stage cold rolling method, compared with the case of producing thick products or the multi-stage cold rolling method, hot-rolled sheet annealing It is conceivable that the subsequent structure and the state of precipitates have a stronger influence on the product properties.

一方、熱延板中のN as AlN含有量は、熱延板焼鈍におけ
る鋼板の組織変化及び析出物の挙動に微妙に影響を及ぼ
すことが考えられ、熱延板中のN as AlN含有量が0.0005
〜0.0020%の場合に、製品特性に対して最も有利な熱延
板焼鈍後の鋼板の性状が得られるものであろう。
On the other hand, the N as AlN content in the hot rolled sheet is considered to have a subtle influence on the microstructural change of the steel sheet during hot rolled sheet annealing and the behavior of precipitates, and the N as AlN content in the hot rolled sheet is 0.0005
In the case of up to 0.0020%, the properties of the steel sheet after hot-rolled sheet annealing that are most advantageous for the product properties will be obtained.

なお、熱延板中のN as AlN含有量を0.0005〜0.0020%に
制御する方法としては、スラブ加熱条件,粗圧延条件,
仕上圧延条件,仕上圧延後の冷却条件等があるが、その
何れでもよい。
In addition, as a method for controlling the N as AlN content in the hot-rolled sheet to 0.0005 to 0.0020%, slab heating conditions, rough rolling conditions,
Although there are finish rolling conditions, cooling conditions after finish rolling, and the like, any of them may be used.

(実験III) C:0.075%,Si:3.25%,Mn:0.070%,S:0.025%,酸可溶性
Al:0.0255%,N:0.0085%,Sn:0.15%,残部:実質的にFe
からなる珪素鋼スラブを、熱延板焼鈍後の急冷条件以外
は実験Iと同様の方法で処理し製品を得た。上記急冷条
件については、種々条件を変更し、冷却後の鋼板断面の
板厚方向平均硬度Hv(1kg)を185〜290とした。
(Experiment III) C: 0.075%, Si: 3.25%, Mn: 0.070%, S: 0.025%, acid soluble
Al: 0.0255%, N: 0.0085%, Sn: 0.15%, balance: Fe
A silicon steel slab consisting of the above was treated in the same manner as in Experiment I except for the quenching condition after annealing the hot rolled sheet to obtain a product. With respect to the quenching conditions, various conditions were changed, and the average hardness Hv (1 kg) in the plate thickness direction of the steel plate cross section after cooling was set to 185 to 290.

製品の鉄損値と磁束密度を測定した。The iron loss value and magnetic flux density of the product were measured.

平均硬度と鉄損値及び磁束密度の関係を第7図に示す。
第7図において横軸は、平均硬度であり、縦軸は鉄損値
と磁束密度である。
FIG. 7 shows the relationship among the average hardness, iron loss value and magnetic flux density.
In FIG. 7, the horizontal axis represents average hardness, and the vertical axis represents iron loss value and magnetic flux density.

第7図から明らかなように、平均硬度Hv(1kg)200以
上、230未満の範囲で良好な鉄損値と磁束密度が得られ
た。
As is clear from FIG. 7, good iron loss values and magnetic flux densities were obtained in the range of average hardness Hv (1 kg) of 200 or more and less than 230.

実験I,実験II,実験IIIで示す材料成分にCu又はSbの何れ
か一方又は双方を添加した場合について、実験I,実験I
I,実験IIIと同様の実験を行い同様の結果を得た。
In the case of adding one or both of Cu and Sb to the material components shown in Experiment I, Experiment II, and Experiment III, Experiment I, Experiment I
Experiments similar to I and Experiment III were performed and similar results were obtained.

(実験IV) C:0.083%,Si:3.25%,Mn:0.076%,S:0.025%,Sn:0.14
%,N:0.0085%,酸可溶性Al:0.0235%,Cu:無添加および
0.01〜0.20%,残部:実質的にFeからなる多数の珪素鋼
スラブについて、熱延以降工程を実験Iと同様の方法で
処理し製品を得た。Cu含有量と鉄損値の関係を第8図に
示す。第8図から明らかな如く、Cu:0.03〜0.08%の範
囲で鉄損特性の向上が認められた。
(Experiment IV) C: 0.083%, Si: 3.25%, Mn: 0.076%, S: 0.025%, Sn: 0.14
%, N: 0.0085%, acid-soluble Al: 0.0235%, Cu: no additive and
0.01 to 0.20%, balance: A large number of silicon steel slabs substantially made of Fe were processed in the same manner as in Experiment I in the steps after hot rolling to obtain products. Fig. 8 shows the relationship between the Cu content and the iron loss value. As is clear from FIG. 8, the improvement of the iron loss characteristics was recognized in the range of Cu: 0.03 to 0.08%.

(実験V) C:0.080%,Si:3.23%,Mn:0.075%,S:0.025%,Sn:0.13
%,N:0.0085%,酸可溶性Al:0.0230%,Sb:無添加および
0.001〜0.050%,残部:実質的にFeからなる多数の珪素
鋼スラブについて、熱延以降工程を実験Iと同様の方法
で処理し、製品を得た。Sb含有量と鉄損の関係を第9図
に示す。第9図から明らかな如く、Sb:0.005〜0.035%
の範囲で鉄損特性の向上が認められた。
(Experiment V) C: 0.080%, Si: 3.23%, Mn: 0.075%, S: 0.025%, Sn: 0.13
%, N: 0.0085%, acid-soluble Al: 0.0230%, Sb: no addition and
0.001 to 0.050%, balance: A large number of silicon steel slabs substantially made of Fe were processed in the same manner as in Experiment I in the steps after hot rolling to obtain products. The relationship between Sb content and iron loss is shown in FIG. As is clear from Fig. 9, Sb: 0.005 to 0.035%
It was confirmed that the iron loss characteristics were improved in the range.

次に、本発明における珪素鋼スラブの成分及び製造工程
の処理条件の限定理由について述べる。
Next, the reasons for limiting the components of the silicon steel slab and the processing conditions of the manufacturing process in the present invention will be described.

Cは0.060〜0.120%とする。0.060%未満、あるいは0.1
20%を超えると、二次再結晶が不安定になる。
C is 0.060 to 0.120%. Less than 0.060% or 0.1
If it exceeds 20%, the secondary recrystallization becomes unstable.

Siは2.9〜4.5%とする。2.9%未満では良好な(低い)
鉄損値が得られず、4.5%を超えると加工性(冷間圧延
のし易さ)が劣化する。
Si is 2.9 to 4.5%. Less than 2.9% is good (low)
If the iron loss value cannot be obtained and exceeds 4.5%, the workability (ease of cold rolling) deteriorates.

Mnは0.050〜0.090%とする。0.050%未満、あるいは0.0
90%を超えると、二次再結晶が不安定になる。
Mn is 0.050 to 0.090%. Less than 0.050% or 0.0
If it exceeds 90%, the secondary recrystallization becomes unstable.

S又はSeの何れか一方又は双方は0.020〜0.060%とす
る。0.020%未満では二次再結晶が不安定となり、0.060
%を超えると鉄損値が不良になる。
Either or both of S and Se are 0.020 to 0.060%. If less than 0.020%, the secondary recrystallization becomes unstable, and 0.060%
If it exceeds%, the iron loss value becomes poor.

又、SとSeを複合添加した場合に、特に優れた製品磁気
特性が得られる。
Also, when S and Se are added in combination, particularly excellent product magnetic characteristics are obtained.

Snは0.05〜0.25%とする。0.05%未満では二次再結晶が
不安定となり、0.25%を超えると加工性が劣化する。
Sn is 0.05 to 0.25%. If it is less than 0.05%, the secondary recrystallization becomes unstable, and if it exceeds 0.25%, the workability deteriorates.

スラブ加熱において、硫化物,窒化物を十分に固溶させ
るため高温加熱が必要であり、好ましくは1300℃以上で
の加熱が望ましい。
In the slab heating, high temperature heating is required to sufficiently dissolve sulfides and nitrides, and heating at 1300 ° C or higher is desirable.

熱延板を1030〜1200℃で10分間以内焼鈍する理由は、10
30℃未満では良好な製品磁気特性が得られず、1200℃を
超えると二次再結晶が不安定になるからであり、又10分
間を超えて焼鈍しても製品磁気特性の向上は期待でき
ず、経済的に不利であるからである。
The reason for annealing a hot-rolled sheet at 1030 to 1200 ° C within 10 minutes is 10
This is because if the temperature is lower than 30 ° C, good magnetic properties of the product cannot be obtained, and if it exceeds 1200 ° C, the secondary recrystallization becomes unstable, and improvement of the magnetic properties of the product can be expected even if annealing is performed for more than 10 minutes. Because it is economically disadvantageous.

焼鈍後は急冷する。急冷しないと良好な製品磁気特性が
得られない。
Quench after annealing. Good magnetic properties cannot be obtained without rapid cooling.

一段冷延法は、二段冷延法より製造コストが著しく安
く、好ましい。
The one-step cold rolling method is preferable because the manufacturing cost is significantly lower than that of the two-step cold rolling method.

冷延後の板厚は0.12〜0.17mmとする。0.12mm未満では二
次再結晶が不安定になり易く、0.17mmを超えると期待す
る鉄損値が得られない。
The plate thickness after cold rolling is 0.12 to 0.17 mm. If it is less than 0.12 mm, secondary recrystallization tends to be unstable, and if it exceeds 0.17 mm, the expected iron loss value cannot be obtained.

なお、冷間圧延の途中で、200〜300℃で1〜5分間保定
することは製品磁気特性の向上に有効である。
In addition, holding during the cold rolling at 200 to 300 ° C. for 1 to 5 minutes is effective in improving the magnetic properties of the product.

高温仕上焼鈍に際しては、昇温途中少くとも1000℃迄、
窒素を含む雰囲気を用いる。窒素を含まない場合、二次
再結晶が不安定になる。
At the time of high temperature finish annealing, at least 1000 ° C during heating,
An atmosphere containing nitrogen is used. If nitrogen is not contained, the secondary recrystallization becomes unstable.

〔実施例〕〔Example〕

実施例1 C:0.080%,Si:3.25%,Mn:0.076%,S:無添加,0.015%,0.
025%、Se:無添加,0.015%,0.025%、Sn:0.13%、N:0.0
045%,0.0085%,0.0110%,酸可溶性Al:0.0150%,0.017
0%,0.0230%,0.0260%,0.0300%,Cu:無添加,0.07%、S
b:無添加,0.020%、残部:実質的にFeからなる多数の珪
素鋼スラブを1360℃で60分間加熱し、加熱炉から抽出
し、0.92mm,1.00mm,1.31mm,2.43mmの各板厚に熱延し
た。この場合、圧延前、圧延中及び圧延後の冷却条件を
種々変更した。熱延板のN as AlN含有量は0.0002〜0.00
35%であった。
Example 1 C: 0.080%, Si: 3.25%, Mn: 0.076%, S: no additive, 0.015%, 0.
025%, Se: no additive, 0.015%, 0.025%, Sn: 0.13%, N: 0.0
045%, 0.0085%, 0.0110%, acid soluble Al: 0.0150%, 0.017
0%, 0.0230%, 0.0260%, 0.0300%, Cu: No additive, 0.07%, S
b: Additive-free, 0.020%, balance: A large number of silicon steel slabs consisting essentially of Fe are heated at 1360 ° C for 60 minutes, extracted from a heating furnace, and 0.92mm, 1.00mm, 1.31mm, 2.43mm plates Hot rolled. In this case, the cooling conditions before rolling, during rolling, and after rolling were changed variously. N as AlN content of hot rolled sheet is 0.0002 to 0.00
It was 35%.

熱延板を1120℃で60秒間焼鈍し、次いで風冷と100℃の
水への浸漬により冷却した。
The hot-rolled sheet was annealed at 1120 ° C for 60 seconds and then cooled by air cooling and immersion in 100 ° C water.

冷却後の鋼板断面の板厚方向平均硬度はHv(1kg)210〜
215であった。焼鈍後の板を酸洗し板厚0.12mmと0.17mm
に冷延した。
The average hardness of the cross section of the steel plate after cooling is Hv (1kg) 210 ~
It was 215. The annealed plate is pickled and the plate thickness is 0.12mm and 0.17mm
Cold rolled.

次いで、75%H2,25%N2、露点65℃の雰囲気中で、850℃
で150秒間の脱炭焼鈍を行った。次いで、マグネシアを
主成分とする焼鈍分離剤を塗布し、85%H2,15%N2雰囲
気中で、25℃/時間の昇温速度で1200℃まで加熱し、次
いでH2雰囲気中で、1200℃で20時間均熱した後冷却し、
焼鈍分離剤を除去し、張力コーティングを行って製品を
得た。製品の磁束密度B8,鉄損W15/50を測定した。次い
で、コーティングおよびグラス被膜を除去して、マクロ
組織を観察した。その結果を第1表に示す。第1表から
明らかなように、スラブのN,酸可溶性Al含有量,熱延板
のN as AlN含有量及び冷延圧下率が本発明の条件あであ
るときのみ、二次再結晶が完全で、B8,W15/50共優れた
製品が得られた。
Then, 75% H 2, 25% N 2, in an atmosphere of a dew point of 65 ° C., 850 ° C.
Decarburization annealing was performed for 150 seconds. Then, an annealing separator containing magnesia as a main component is applied, and heated in an atmosphere of 85% H 2 , 15% N 2 at a heating rate of 25 ° C./hour to 1200 ° C., and then in an H 2 atmosphere, After soaking at 1200 ℃ for 20 hours, cool and
The annealing separator was removed, and tension coating was performed to obtain a product. The magnetic flux density B 8 and iron loss W 15/50 of the product were measured. The coating and glass coating were then removed and the macrostructure was observed. The results are shown in Table 1. As is clear from Table 1, the secondary recrystallization is completed only when the N content of the slab, the acid-soluble Al content, the N as AlN content of the hot-rolled sheet and the cold rolling reduction are the conditions of the present invention. Thus, excellent products were obtained for both B 8 and W 15/50 .

また、Cu,Sbの含有量が本発明領域にあるとき、更に優
れた製品磁気特性が得られた。
Further, when the Cu and Sb contents were within the range of the present invention, more excellent product magnetic characteristics were obtained.

実施例2 第2表に示す、A,B,C,D4種の成分の珪素鋼スラブを熱延
板焼鈍の冷却条件以外は実施例1と同様の方法で処理し
製品を得た。熱延板焼鈍の冷却条件については、冷却後
の鋼板断面の板厚方向平均硬度Hv(1kg)が190,215,240
になるよう調整した。
Example 2 A silicon steel slab having A, B, C and D4 components shown in Table 2 was treated in the same manner as in Example 1 except for the cooling conditions for hot rolled sheet annealing, to obtain a product. Regarding the cooling conditions for hot rolled sheet annealing, the average hardness Hv (1 kg) in the sheet thickness direction of the steel sheet cross section after cooling is 190,215,240.
I adjusted it to be.

製品の鉄損値(W15/50)と磁束密度(B8)を測定した。
その結果を第3表に示す。第3表から明らかなように、
平均硬度が本発明の領域にあるときのみ優れた(低い)
鉄損値と(高い)磁束密度を示している。
The iron loss value (W 15/50 ) and magnetic flux density (B 8 ) of the product were measured.
The results are shown in Table 3. As is clear from Table 3,
Excellent (low) only when the average hardness is within the range of the present invention
The iron loss value and the (high) magnetic flux density are shown.

〔発明の効果〕 本発明は、以上述べたように構成したから、酸可溶性A
l,N,Snを含有する珪素鋼スラブを出発材料とし、熱延板
焼鈍を伴う強圧下一段冷延法により、板厚0.12〜0.17mm
に冷延された薄手一方向性電磁鋼板を製造する方法にお
いて、二次再結晶が完全で、製品磁気特性の優れた薄手
高磁束密度一方向性電磁鋼板が安定して製造できるよう
になった。
EFFECTS OF THE INVENTION The present invention is configured as described above, and therefore acid-soluble A
Using a silicon steel slab containing l, N, Sn as a starting material, and by a high-pressure single-stage cold rolling method involving hot-rolled sheet annealing, a sheet thickness of 0.12 to 0.17 mm
In the method of manufacturing thin unidirectional electrical steel sheet cold-rolled into, it became possible to stably produce thin high magnetic flux density unidirectional electrical steel sheet with perfect secondary magnetic recrystallization and excellent product magnetic properties. .

【図面の簡単な説明】[Brief description of drawings]

第1図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と二次再結晶状況(○,×等で表示)の関
係を示す図である。 第2図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と製品の磁束密度B8(○,×等で表示)の
関係を示す図である。 第3図は、スラブのN含有量(横軸)及び酸可溶性Al含
有量(縦軸)と製品の鉄損W15/50(○,×等で表示)の
関係を示す図である。 第4図は、熱延板のN as AlN含有量(横軸)及び冷延圧
下率(縦軸)と二次再結晶状況(○,×等で表示)の関
係を示す図である。 第5図は、熱延板のN as AlN含有量(横軸)及び冷延圧
下率(縦軸)と製品の磁束密度B8(○,×等で表示)の
関係を示す図である。 第6図は、熱延板のN as AlN(横軸)及び冷延圧下率
(縦軸)と製品の鉄損W15/50(○,×等で表示)の関係
を示す図である。 第7図は、熱延焼鈍板の断面の板厚方向平均硬度(横
軸)と製品の鉄損値及び磁束密度(縦軸)の関係を示す
図である。 第8図は、スラブのCu含有量(横軸)とCu添加による製
品の鉄損W15/50の変化量(縦軸)の関係を示す図であ
る。 第9図は、スラブのSb含有量(横軸)とSb添加による製
品の鉄損W15/50の変化量(縦軸)の関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the secondary recrystallization state (indicated by ◯, ×, etc.). FIG. 2 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the magnetic flux density B 8 (indicated by ◯, ×, etc.) of the product. FIG. 3 is a diagram showing the relationship between the N content (horizontal axis) and the acid-soluble Al content (vertical axis) of the slab and the iron loss W 15/50 (indicated by ○, ×, etc.) of the product. FIG. 4 is a diagram showing the relationship between the N as AlN content (horizontal axis) and the cold rolling reduction rate (vertical axis) of the hot-rolled sheet and the secondary recrystallization state (indicated by ◯, ×, etc.). FIG. 5 is a diagram showing the relationship between the N as AlN content (horizontal axis) and the cold rolling reduction rate (vertical axis) of the hot-rolled sheet and the magnetic flux density B 8 (indicated by ◯, ×, etc.) of the product. FIG. 6 is a diagram showing the relationship between N as AlN (horizontal axis) and cold rolling reduction rate (vertical axis) of hot-rolled sheet and iron loss W 15/50 (indicated by ○, ×, etc.) of the product. FIG. 7 is a diagram showing the relationship between the average hardness in the thickness direction (horizontal axis) of the cross section of the hot rolled annealed sheet, the iron loss value of the product, and the magnetic flux density (vertical axis). FIG. 8 is a diagram showing the relationship between the Cu content of the slab (horizontal axis) and the amount of change in iron loss W 15/50 of the product due to the addition of Cu (vertical axis). FIG. 9 is a graph showing the relationship between the Sb content of the slab (horizontal axis) and the amount of change in iron loss W 15/50 of the product due to Sb addition (vertical axis).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%でC:0.060〜0.120%,Si:2.9〜4.5
%,Mn:0.050〜0.090%,S又はSeの何れか一方又は双方:
0.020〜0.060%,Sn:0.02〜0.25%並びに酸可溶性Al,Nを
含み、残部:Feおよび不可避的不純物からなる珪素鋼ス
ラブを高温加熱し、熱間圧延し、熱延板を1030〜1200℃
の温度範囲で10分間以内焼鈍し、焼鈍後急冷し、次いで
冷間圧延し、冷間圧延後の板厚を0.12〜0.17mmとし、水
素を含む湿潤雰囲気中で脱炭焼鈍を行い、マグネシアを
主とする焼鈍分離剤を塗布し、昇温途中少くとも1000℃
迄、窒素を含む雰囲気を用いる高温仕上焼鈍を行い、張
力コーティングを行う薄手一方向性電磁鋼板の製造方法
において、前記珪素鋼スラブの含有するNと酸可溶性Al
について、N:0.0050〜0.0100%,酸可溶性Al:{(27/1
4)×N(%)+0.0035}〜{(27/14)×N(%)+0.
0100}%とし、且つ、冷延圧下率が85〜92%となる熱延
板の板厚とし、且つ、熱延板中のN as AlN含有量を0.00
05〜0.0020%に制御する熱延を行い、且つ、熱延板焼鈍
後冷却後の鋼板断面の板厚方向平均硬度をHv(1kg)200
以上、230未満に制御することを特徴とする一段冷延法
による製品磁気特性の優れた薄手高磁束密度一方向性電
磁鋼板の製造方法。
1. C: 0.060-0.120% by weight%, Si: 2.9-4.5
%, Mn: 0.050 to 0.090%, either or both of S and Se:
0.020 ~ 0.060%, Sn: 0.02 ~ 0.25% and acid-soluble Al, N, the balance: Fe and unavoidable impurities silicon steel slab heated at high temperature, hot rolled, hot rolled plate 1030 ~ 1200 ℃
Annealing within 10 minutes in the temperature range, quenching after annealing, then cold rolling, the thickness after cold rolling is 0.12 to 0.17 mm, decarburization annealing is performed in a humid atmosphere containing hydrogen, and magnesia is removed. Applying the main annealing separator, at least 1000 ° C during heating
In a method for manufacturing a thin unidirectional electrical steel sheet, in which high temperature finish annealing is performed using an atmosphere containing nitrogen and tension coating is performed, N and acid-soluble Al contained in the silicon steel slab are used.
N: 0.0050-0.0100%, acid-soluble Al: {(27/1
4) x N (%) + 0.0035} to {(27/14) x N (%) + 0.
0100}% and the thickness of the hot-rolled sheet with a cold rolling reduction of 85 to 92%, and the N as AlN content in the hot-rolled sheet is 0.00
Performs hot rolling controlled to 05 to 0.0020%, and the average hardness in the thickness direction of the steel sheet cross section after cooling after annealing the hot rolled sheet is Hv (1 kg) 200
A method for producing a thin high magnetic flux density grain-oriented electrical steel sheet excellent in product magnetic characteristics by the one-step cold rolling method, which is characterized by controlling to less than 230.
【請求項2】重量%でC:0.060〜0.120%,Si:2.9〜4.5
%,Mn:0.050〜0.090%,S又はSeの何れか一方又は双方:
0.020〜0.060%,Sn:0.02〜0.25%,Cu:0.03〜0.08%又は
Sb:0.005〜0.035%の何れか一方又は双方並びに酸可溶
性Al,Nを含み、残部:Feおよび不可避的不純物からなる
珪素鋼スラブを高温加熱し、熱間圧延し、熱延板を1030
〜1200℃の温度範囲で10分間以内焼鈍し、焼鈍後急冷
し、次いで冷間圧延し、冷間圧延後の板厚を0.12〜0.17
mmとし、水素を含む湿潤雰囲気中で脱炭焼鈍を行い、マ
グネシアを主とする焼鈍分離剤を塗布し、昇温途中少く
とも1000℃迄、窒素を含む雰囲気を用いる高温仕上焼鈍
を行い、張力コーティングを行う薄手一方向性電磁鋼板
の製造方法において、前記珪素鋼スラブの含有するNと
酸可溶性Alについて、N:0.0050〜0.0100%,酸可溶性A
l:{(27/14)×N(%)+0.0035}〜{(27/14)×N
(%)+0.0100}%とし、且つ、冷延圧下率が85〜92%
となる熱延板の板厚とし、且つ、熱延板中のN as AlN含
有量を0.0005〜0.0020%に制御する熱延を行い、且つ、
熱延板焼鈍後冷却後の鋼板断面の板厚方向平均硬度をHv
(1kg)200以上、230未満に制御することを特徴とする
一段冷延法による製品磁気特性の優れた薄手高磁束密度
一方向性電磁鋼板の製造方法。
2. C: 0.060 to 0.120% by weight, Si: 2.9 to 4.5
%, Mn: 0.050 to 0.090%, either or both of S and Se:
0.020-0.060%, Sn: 0.02-0.25%, Cu: 0.03-0.08% or
Sb: 0.005 to 0.035% any one or both and acid-soluble Al, containing N, the balance: Fe and unavoidable impurities silicon steel slab heated at high temperature, hot-rolled, hot-rolled sheet 1030
〜1200 ℃, annealing within 10 minutes, annealing, quenching, cold rolling, cold rolling.
mm, decarburization annealing is performed in a moist atmosphere containing hydrogen, an annealing separating agent mainly containing magnesia is applied, and high temperature finishing annealing is performed at a temperature of at least 1000 ° C. while using a nitrogen-containing atmosphere to increase the tension. In the method for producing a thin unidirectional electrical steel sheet for coating, N: 0.0050 to 0.0100%, acid-soluble A with respect to N and acid-soluble Al contained in the silicon steel slab.
l: {(27/14) × N (%) + 0.0035} to {(27/14) × N
(%) + 0.0100}% and cold rolling reduction is 85-92%
And the thickness of the hot rolled sheet to be, and, and hot rolling to control the N as AlN content in the hot rolled sheet to 0.0005 to 0.0020%, and
Hv is the average hardness in the thickness direction of the steel sheet cross section after cooling after annealing the hot rolled sheet.
(1 kg) A method for producing a thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by a one-step cold rolling method, which is controlled to 200 or more and less than 230.
JP3246989A 1989-02-10 1989-02-10 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method Expired - Lifetime JPH0717954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246989A JPH0717954B2 (en) 1989-02-10 1989-02-10 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246989A JPH0717954B2 (en) 1989-02-10 1989-02-10 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method

Publications (2)

Publication Number Publication Date
JPH02209426A JPH02209426A (en) 1990-08-20
JPH0717954B2 true JPH0717954B2 (en) 1995-03-01

Family

ID=12359832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246989A Expired - Lifetime JPH0717954B2 (en) 1989-02-10 1989-02-10 Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method

Country Status (1)

Country Link
JP (1) JPH0717954B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919528B1 (en) * 2016-12-22 2018-11-16 주식회사 포스코 Oriented electrical steel sheet and method for manufacturing the same
BR112020025033B1 (en) * 2018-06-21 2023-10-17 Nippon Steel Corporation GRAIN ORIENTED ELECTRIC STEEL SHEET

Also Published As

Publication number Publication date
JPH02209426A (en) 1990-08-20

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
US8333846B2 (en) Manufacturing method of oriented SI steel with high electric-magnetic property
KR101498404B1 (en) Method for manufacturing grain oriented electrical steel sheet
JPH0774388B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
GB2167439A (en) Process for producing a grain-oriented electrical steel sheet having a low watt loss
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
KR940008932B1 (en) Process for producing grain-oriented electrical steel sheet having improved magnetic and surface film properties
JP2000129352A (en) Production of grain oriented silicon steel sheet high in magnetic flux density
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH0617137A (en) Production of grain-priented silicon steel sheet free from glass film and having high magnetic flux density
US4992114A (en) Process for producing grain-oriented thin electrical steel sheet having high magnetic flux density by one-stage cold-rolling method
US4371405A (en) Process for producing grain-oriented silicon steel strip
JPH0717954B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties by one-step cold rolling method
JP2762095B2 (en) Method of manufacturing thin high magnetic flux density unidirectional electrical steel sheet with excellent product magnetic properties by single-stage cold rolling method
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2755414B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet by single-stage cold rolling method
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JPH07258737A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH07258738A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density
JPH0718333A (en) Production of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 14

EXPY Cancellation because of completion of term