JPH02240947A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02240947A
JPH02240947A JP6104789A JP6104789A JPH02240947A JP H02240947 A JPH02240947 A JP H02240947A JP 6104789 A JP6104789 A JP 6104789A JP 6104789 A JP6104789 A JP 6104789A JP H02240947 A JPH02240947 A JP H02240947A
Authority
JP
Japan
Prior art keywords
layer
wirings
wiring
insulating film
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6104789A
Other languages
Japanese (ja)
Inventor
Takuyuki Motoyama
本山 琢之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6104789A priority Critical patent/JPH02240947A/en
Publication of JPH02240947A publication Critical patent/JPH02240947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the capacitance between wirings by providing a space which is formed by removing a part of an insulating film between the wirings in the same layer, and providing a ground insulating layer. CONSTITUTION:A part of an insulating film (e.g. insulating films 5, 6, 4 and 3) which is formed between wirings (e.g. between wirings 1 of a first layer or between wirings 2 of a second layer) in each same layer in a multilayer interconnection is removed. Thus a space is formed in each layer. A ground insulating film (e.g. 6, 5, 4 and 3) to the entire surface of which the wirings of each layer of the multilayer interconnection are fixed is provided. Therefore, the structure wherein space insulation is employed not only for the uppermost layer but also for each lower layer for insulation between the wirings is obtained. Thus, the capacitance between the wirings can be reduced.

Description

【発明の詳細な説明】 〔概要〕 多層配線構造を有する半導体装置の改良に関し、最上層
の配線のみでな(、下層の配線に於いても、その配線間
を絶縁する絶縁体の一部に誘電率が1である空間を用い
ることに依り、配線間の容量を低減させることを目的と
し、 多層配線に於ける各々の同一層の配線間に在る絶縁膜を
一部除去することで各層に亙って生成させた空間と、該
多層配線の各層の配線をそれぞれ全面に亙って固定して
いる下地の絶縁膜とを備えてなるよう構成する。
[Detailed Description of the Invention] [Summary] Regarding the improvement of a semiconductor device having a multilayer interconnection structure, it is necessary to improve not only the uppermost layer interconnection (but also the lower layer interconnection) by forming a part of the insulator that insulates between the interconnections. The purpose is to reduce the capacitance between interconnects by using a space with a dielectric constant of 1, and by removing part of the insulating film between interconnects on the same layer in multilayer interconnects, each layer The structure includes a space created over the above, and an underlying insulating film that fixes the wiring of each layer of the multilayer wiring over the entire surface.

〔産業上の利用分野〕[Industrial application field]

本発明は、多層配線構造を有する半導体装置の改良に関
する。
The present invention relates to improvement of a semiconductor device having a multilayer wiring structure.

半導体装置の集積化が進行すると共に配線密度も増加し
、半導体基板と配線間に発生する寄生容量の外に配線相
互間の寄生容量も問題になりつつあり、これ等の寄生容
量を低減させないと、半導体装置のスイッチング・スピ
ードを向上させることができない。
As the integration of semiconductor devices progresses, the wiring density also increases, and in addition to the parasitic capacitance generated between the semiconductor substrate and the wiring, the parasitic capacitance between the wirings is also becoming a problem, and it is necessary to reduce these parasitic capacitances. , it is not possible to improve the switching speed of semiconductor devices.

〔従来の技術〕[Conventional technology]

高集積化された半導体装置に於いては、多層配&?!構
造が採用されている。
In highly integrated semiconductor devices, multilayer &? ! structure has been adopted.

その場合、配線間を絶縁するのに、最上層の配線では、
固体絶縁体と空間絶縁とを併用しているが、下層の配線
では、固体絶縁体のみを用いて実施している。
In that case, in order to insulate between the wiring, the top layer wiring
Solid insulators and space insulation are used together, but only solid insulators are used in the lower layer wiring.

第8図は従来の多層配線構造を説明する為の要部平面図
を表している。
FIG. 8 shows a plan view of essential parts for explaining a conventional multilayer wiring structure.

図に於いて、Llは第一層目の配線、L2は第二層目の
配線、L3は第三層目の配線をそれぞれ示している。尚
、図では眉間絶縁膜を省略しである。
In the figure, Ll indicates the first layer wiring, L2 the second layer wiring, and L3 the third layer wiring. Note that the glabella insulating film is omitted in the figure.

図から明らかなように、第一層目の配線L1と第三層目
の配線し3とは重なっていて、第二層目の配線し2は、
それ等の間に在って、且つ、それ等の直交する方向に延
在している。
As is clear from the figure, the first layer wiring L1 and the third layer wiring 3 overlap, and the second layer wiring 2
It lies between them and extends in a direction perpendicular to them.

第9図は第8図に見られる線X−Xに沿う要部切断側面
図を、また、第1θ図は第8図に見られるNaY −Y
に沿う要部切断側面図をそれぞれ表していて、両図とも
第8図に於いて用いた記号と同記号は同部分を示すか或
いは同じ意味を持つものとする。
Figure 9 is a cross-sectional side view of the main part along the line X-X seen in Figure 8, and Figure 1θ is the NaY-Y
In both figures, the same symbols as those used in FIG. 8 indicate the same parts or have the same meanings.

各図に於いて、IOXは固体絶縁体である二酸化シリコ
ン(SiOz)からなる絶縁膜、lAl1は空間絶縁領
域をそれぞれ示している。
In each figure, IOX indicates an insulating film made of silicon dioxide (SiOz), which is a solid insulator, and lAl1 indicates a space insulating region.

図から明らかなように、この従来例では、最上層の配線
である第三層目の配線し3のみは一部に空間絶縁を採り
入れている。
As is clear from the figure, in this conventional example, only the third layer wiring line 3, which is the uppermost layer wiring, partially incorporates space insulation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のように、配線間を固体絶縁体で絶縁する場合、二
酸化シリコン(SiOz)が多用されているが、その誘
電率が約3.5〜4.7程度であって、寄生容量を生成
する原因になっている。
As mentioned above, silicon dioxide (SiOz) is often used to insulate between wirings with a solid insulator, but its dielectric constant is about 3.5 to 4.7, which creates parasitic capacitance. It is the cause.

この配線間の絶縁に起因する寄生容量は、半導体装置に
於ける処理速度の向上を妨げる主因を成している。
The parasitic capacitance caused by the insulation between wirings is the main cause of impeding improvement in the processing speed of semiconductor devices.

現在、半導体装置では、配線密度の低減を図る為に多層
配線構造を採用しているが、それすらも微細化して配線
間の間隔を狭くせざるを得ない状況になりつつあり、ま
た、配線長も長大化しつつあることから、配線にまつわ
る寄生容量は急速に増加する傾向にあり、前記したよう
に、処理速度を向上する際の大きな問題になっている。
Currently, semiconductor devices employ multilayer wiring structures in order to reduce wiring density, but even these structures are becoming smaller and the spacing between wirings has to be narrower. As the length of the wires continues to increase, the parasitic capacitance associated with the wires tends to increase rapidly, and as described above, this becomes a major problem in improving the processing speed.

本発明は、最上層の配線のみでなく、下層の配線に於い
ても、その配線間を絶縁する絶縁体の一部に誘電率が1
である空間を用いることに依り、配線間の容量を低減さ
せた半導体装置を提供しようとする。
In the present invention, not only the uppermost layer wiring but also the lower layer wiring has a dielectric constant of 1 in a part of the insulator that insulates between the wirings.
An attempt is made to provide a semiconductor device in which the capacitance between wirings is reduced by using a space that is .

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の詳細な説明する為の多層配線構造を表
す要部平面図であり、第8図に於いて用いた記号と同記
号は同部分を示すか或いは同じ意味を持つものとする。
FIG. 1 is a plan view of the main parts of the multilayer wiring structure for explaining the present invention in detail, and the same symbols as those used in FIG. 8 indicate the same parts or have the same meaning. do.

第2図は第1図に見られるl5IX−Xに沿う要部切断
側面図を、また、第3図は第1図に見られる線Y−Yに
沿う要部切断側面図をそれぞれ表していて、両図とも第
1図及び第8図に於いて用いた記号と同記号は同部分を
示すか或いは同じ意味を持つものとする。
Fig. 2 shows a cutaway side view of the main part taken along the line 15IX-X seen in Fig. 1, and Fig. 3 shows a cutaway side view of the main part taken along the line Y-Y seen in Fig. 1. In both figures, the same symbols as those used in FIGS. 1 and 8 indicate the same parts or have the same meanings.

図から明らかなように、この多層配線構造に於いては、
最上層の配線である第三層目の配、lL3は勿論のこと
、最下層の配線である第一層目の配&1lL1について
も空間絶縁を採り入れである。
As is clear from the figure, in this multilayer wiring structure,
Spatial insulation is adopted not only for the wiring on the third layer, 1L3, which is the wiring on the top layer, but also on the wiring on the first layer, 1L1, which is the wiring on the bottom layer.

前記したところから、本発明に依る半導体装置に於いて
は、多層配線に於ける各々の同一層の配線間(例えば第
一層目の配線1間或いは第二層目の配線2間など)に在
る絶縁膜(例えば絶縁膜6゜5.4.3など)を一部除
去することで各層に亙って生成させた空間と、該多層配
線の各層の配線をそれぞれ全面に亙って固定している下
地の絶縁膜(例えば絶縁膜6,5,4.3など)とを備
えている。
From the foregoing, in the semiconductor device according to the present invention, there is A space is created across each layer by removing a portion of the existing insulating film (for example, insulating film 6°5.4.3, etc.) and the wiring of each layer of the multilayer wiring is fixed over the entire surface. and an underlying insulating film (for example, insulating films 6, 5, 4.3, etc.).

〔作用〕[Effect]

前記手段を採ることに依り、最上層は勿論のこと、その
下層に於いても配線間の絶縁に空間絶縁を採り入れた構
成が得られ、固体絶縁体を用いた場合に比較すると寄生
容量は大きく低減され、従って、信号の処理速度は向上
する。
By adopting the above-mentioned method, a configuration is obtained in which space insulation is used for insulation between wiring not only in the top layer but also in the layer below it, and the parasitic capacitance is large compared to when solid insulators are used. The processing speed of the signal is therefore increased.

〔実施例〕〔Example〕

第4図乃至第6図は本発明一実施例を製造する場合につ
いて解説する為の工程要所に於ける半導体装置の要部切
断斜面図を表し、以下、これ等の図を参照しつつ説明す
る。
4 to 6 are cut-away oblique views of essential parts of a semiconductor device at key points in the process for explaining the case of manufacturing an embodiment of the present invention, and the following description will be made with reference to these figures. do.

第4図参照 通常の技法を適用することに依り、シリコン半導体基板
(図示せず)に半導体装置を構成するのに必要な諸部分
を形成する。
Referring to FIG. 4, various parts necessary for constructing a semiconductor device are formed on a silicon semiconductor substrate (not shown) by applying conventional techniques.

例えば、化学気相堆積(chemicalvapor 
 deposition:CVD)法を適用することに
依り、前記シリコン半導体基板を覆う燐珪酸ガラス(p
hosphosilicate  glass:PSG
)からなる絶縁膜lを形成する。
For example, chemical vapor deposition (chemical vapor deposition)
By applying the deposition:CVD method, phosphosilicate glass (p
phosphosilicate glass: PSG
) is formed.

通常のフォト・リソグラフィ技術を適用することに依り
、絶縁膜1の選択的エツチングを行って電極コンタクト
窓を形成する。
By applying ordinary photolithography techniques, the insulating film 1 is selectively etched to form electrode contact windows.

例えば、真空蒸着法を適用することに依り、厚さ例えば
1.0〔μm〕程度の/It’合金膜を形成する。
For example, by applying a vacuum evaporation method, an /It' alloy film having a thickness of, for example, about 1.0 [μm] is formed.

通常のフォト・リソグラフィ技術を適用することに依り
、前記A1合金膜のパターニングを行って第一層目の配
&!2を形成する。
By applying ordinary photolithography technology, the A1 alloy film is patterned to form the first layer &! form 2.

例えば、CVD法を適用することに依り、厚さ例えば1
500 (人〕程度のPSGからなる絶縁HIi!3を
形成する。
For example, by applying the CVD method, a thickness of, for example, 1
An insulation HIi!3 made of PSG of about 500 (people) is formed.

第5図参照 +5)−1 スピン・コート法を適用することに依り、SOG (s
pin  on  glass)を塗布してから温度例
えば250(t’)程度のアニールを行って絶縁[14
を形成する。
Refer to Figure 5 +5)-1 By applying the spin coating method, SOG (s
After applying a pin on glass), annealing is performed at a temperature of, for example, 250 (t') to insulate [14
form.

この絶縁膜4の厚さは配線2間の空間が残るように、例
えば、該空間の略〃程度が埋まる程度で良い。
The thickness of the insulating film 4 may be such that, for example, the space between the wirings 2 is left, for example, approximately approximately 100% of the space is filled.

尚、この場合のSOGとしてはOCD (商品名 東京
応化型)を用いて良い。
Note that OCD (trade name: Tokyo Ohka Type) may be used as the SOG in this case.

減圧プラズマCVD法を適用することに依り、PSGか
らなる絶縁膜5を形成する。
An insulating film 5 made of PSG is formed by applying a low pressure plasma CVD method.

この絶縁膜5の厚さは配線2間の空間を完全に埋め、且
つ、全面を覆うように充分に厚く形成する。また、この
場合のソース・ガスとしては、S i Ha + O□
+Nz +PH4/N!  (1〔%〕)として良い。
The insulating film 5 is formed to be sufficiently thick so as to completely fill the space between the wirings 2 and cover the entire surface. In addition, the source gas in this case is S i Ha + O□
+Nz +PH4/N! (1 [%]) is good.

スピン・コート法を適用することに依り、フォト・レジ
スト(図示せず)の塗布を行って表面を平坦化にしてか
ら、エツチング・ガスをCF4 +CHF3とする反応
性イオン・エツチング(reactive  ion 
 etching:RIE)法を適用することに依り、
フォト・レジスト膜、PSGからなる絶縁膜5の一部、
SOGからなる絶縁膜4の一部をエッチ・バックし、絶
縁膜5及び4の凸部を除去して平坦化する。尚、この場
合のフォト・レジストとしては、0FPR−800(商
品名 東京応化型)を用いて良い。
By applying a spin coating method, a photoresist (not shown) is applied to planarize the surface, and then reactive ion etching is performed using CF4 + CHF3 as an etching gas.
By applying the etching: RIE) method,
A photoresist film, a part of the insulating film 5 made of PSG,
A portion of the insulating film 4 made of SOG is etched back, and the convex portions of the insulating films 5 and 4 are removed and planarized. Incidentally, as the photoresist in this case, 0FPR-800 (trade name: Tokyo Ohka Type) may be used.

この工程を経ることに依って、配線2間の空間は絶縁膜
5及び4で完全に埋められ、且つ、表面は平坦なものと
なる。
Through this step, the space between the wirings 2 is completely filled with the insulating films 5 and 4, and the surface becomes flat.

+5)−4 前記と同様、減圧プラズマCVD法を適用することに依
り、厚さ例えば4000 (人〕程度のPSGからなる
絶縁膜6を形成する。
+5)-4 Similarly to the above, by applying the low pressure plasma CVD method, the insulating film 6 made of PSG with a thickness of, for example, about 4000 (people) is formed.

通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス及びRIE法を通用することに依り、絶縁膜6及
び3の選択的エツチングを行って電極コンタクト窓3A
を形成する。
The insulating films 6 and 3 are selectively etched by using a resist process in a normal photolithography technique and an RIE method to form an electrode contact window 3A.
form.

この電極コンタクト窓3A内には第一層目の配+1M2
の一部が表出されることは云うまでもない。
In this electrode contact window 3A, the first layer is arranged +1M2.
Needless to say, some of them will be exposed.

尚、この場合、フォト・レジストとしてはTSMR−8
900(商品名 東京応化型)を用い、高圧水銀ランプ
のg線で露光し、現像を行ってマスクを形成し、その後
、エツチング・ガスをCFa +CHF3とするRIE
法を適用した。
In this case, the photoresist is TSMR-8.
900 (trade name: Tokyo Ohka Type), exposed to g-line from a high-pressure mercury lamp, developed to form a mask, and then RIE using etching gas as CFa + CHF3.
applied the law.

マグネトロン・スパッタリング法を適用することに依り
、厚さ例えば10000 (人〕程度の、11合金膜を
形成する。
By applying the magnetron sputtering method, an 11 alloy film having a thickness of, for example, about 10,000 (people) is formed.

第6図参照 通常のフォト・リソグラフィ技術に於けるレジスト・プ
ロセス及びRIE法を適用することに依り、A1合金膜
のパターニングを行って第二層目の配′s7を形成する
Referring to FIG. 6, the A1 alloy film is patterned to form a second layer s7 by applying a resist process and an RIE method in a conventional photolithography technique.

尚、この場合、フォト・レジストとしてはTSMR−8
900(商品名 東京応化型)を用い、高圧水銀ランプ
のgvAで露光し、現像を行ってマスクを形成し、その
後、エツチング・ガスをS i C1a ” B C1
2s + CCl 4とするRIE法を適用した。
In this case, the photoresist is TSMR-8.
900 (trade name: Tokyo Ohka Type), exposed with gvA of a high-pressure mercury lamp, developed to form a mask, and then etching gas was applied to S i C1a ” B C1
The RIE method with 2s + CCl 4 was applied.

エツチング・ガスをCF4 +CHF3とするRIE法
を適用することに依り、PSGからなルwA縁wA6、
psGからなる11を縁H5、SOGからなる絶縁膜3
、PSGからなる絶縁Julの選択的エツチングを行う
By applying the RIE method using CF4 + CHF3 as the etching gas, the edges wA6,
11 made of psG is connected to the edge H5, and an insulating film 3 made of SOG
, selectively etching the insulation Jul made of PSG.

この場合、第二層目の配線7の直下に在る諸絶縁膜はそ
のまま残るが、第一層目の配線2の表面及びそれ等の間
に在るものはエツチングされる。但し、このエツチング
は異方性であることから、第一層目の配線2の側壁には
PSGか。
In this case, the various insulating films directly under the second-layer wiring 7 remain as they are, but the surfaces of the first-layer wiring 2 and those between them are etched. However, since this etching is anisotropic, the side walls of the first layer wiring 2 are coated with PSG.

らなる絶縁膜3の薄膜が残留する。尚、図示のように、
エツチングがPSGである絶縁膜lに喰い込んでも差支
えない。
A thin film of the insulating film 3 consisting of the following remains. Furthermore, as shown in the diagram,
There is no problem even if the etching digs into the insulating film 1, which is PSG.

第7図参照 減圧プラズマCVD法を適用することに依り、厚さ例え
ば1500 (人〕程度のPSGからなる!!I縁膜8
を形成する。
By applying the low pressure plasma CVD method (see Fig. 7), the film is made of PSG with a thickness of, for example, about 1500 (people)!!
form.

(?) −2 ソース・ガスをS i H4+NH3+Nzとする減圧
プラズマCVD法を適用することに依り、窒化シリコン
(Si3N4)からなる絶縁膜9を形成する。
(?) -2 An insulating film 9 made of silicon nitride (Si3N4) is formed by applying a low pressure plasma CVD method using S i H4+NH3+Nz as a source gas.

このようにして得られた多層配線構造を有する半導体装
置は、最上層の配線間のみでなく、下層の配線間の一部
にも空間絶縁が施されていることが明らかである。
It is clear that in the semiconductor device having the multilayer wiring structure thus obtained, space insulation is provided not only between the wirings in the uppermost layer but also partially between the wirings in the lower layer.

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体装置に於いては、多層配線に於ける
同一層の配線間に在る絶縁膜を一部除去することで各層
に亙って生成させた空間と、該多層配線の各層の配線を
それぞれ全面に亙って固定している下地の絶縁膜とを備
えている。
In the semiconductor device according to the present invention, a space is created between each layer of the multilayer wiring by partially removing the insulating film between the wirings of the same layer, and a space is created between each layer of the multilayer wiring. It has an underlying insulating film that fixes the wiring over the entire surface.

前記構成を採ることに依り、最上層は勿論のこと、その
下層に於いても配線間の絶縁に空間絶縁を採り入れた構
成が得られ、固体絶縁体を用いた場合に比較すると寄生
容量は大きく低減され、従って、信号の処理速度は向上
する。また、配線の下地が一部欠如している、所謂、空
中配線と比較すると、配線は全て下地の絶縁膜に固定さ
れているから、半導体装置全体の機械的強度は大きい。
By adopting the above structure, a structure is obtained in which space insulation is used for insulation between wiring not only in the top layer but also in the layer below it, and the parasitic capacitance is large compared to when solid insulators are used. The processing speed of the signal is therefore increased. Furthermore, compared to so-called aerial wiring in which the underlying wiring is partially missing, the entire wiring is fixed to the underlying insulating film, so the mechanical strength of the entire semiconductor device is greater.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する為の多層配線構造の要
部平面図、第2図は第1図に見られる線X−Xに沿う要
部切断側面図、第3図は第1図に見られる線Y−Yに沿
う要部切断側面図、第4図乃至第7図は一実施例を製造
する場合について説明する為の工程要所に於ける半導体
装置の要部切断斜面図、第8図は従来の多層配線構造を
説明する為の要部平面図、第9図は第8図に見られる線
X−Xに沿う要部切断側面図、第10図は第8図に見ら
れる腺Y−Yに沿う要部切断側面図をそれぞれ表してい
る。 図に於いて、Llは第一層目の配線、L2は第二層目の
配線、L3は第三層目の配線、■。8は固体絶縁体であ
るS i02からなる絶縁膜、IAIIは空間絶縁領域
をそれぞれ示している。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 多層配線構造を表す要部平面図 第 図 第1図に見られる線X−×に沿う要部切断側面図第2図 第1図に見られる線Y−Yに沿う要部切断側面図従来の
多層配線構造を説明¥る為の要部平面図第8図 第8図に見られる線×−×に沿う要部切断側面図第8図
]こ見られる線Y−Yに沿う要部切断側面図第10図
FIG. 1 is a plan view of the main parts of a multilayer wiring structure for explaining the present invention in detail, FIG. 2 is a side view of the main parts cut away along the line 4 to 7 are cut-away side views of the main parts taken along the line Y-Y shown in the figure, and FIGS. 4 to 7 are cut-away oblique views of the main parts of the semiconductor device at key points in the process to explain the case of manufacturing one embodiment. , Fig. 8 is a plan view of the main part for explaining the conventional multilayer wiring structure, Fig. 9 is a cutaway side view of the main part along the line X-X seen in Fig. 8, and Fig. 10 is the same as Fig. 8. Each shows a cutaway side view of the main part along the visible gland YY. In the figure, Ll is the first layer wiring, L2 is the second layer wiring, L3 is the third layer wiring, and (2). Reference numeral 8 indicates an insulating film made of Si02, which is a solid insulator, and IAII indicates a space insulating region. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney: Akira Aitani Representative Patent Attorney: Hiroshi Watanabe - A plan view of the main part showing the multilayer wiring structure - Cutaway side view of the main part along the line X-X seen in Figure 1 Figure 2: A cut-away side view of the main parts along the line Y-Y seen in Figure 1. A plan view of the main parts to explain the conventional multilayer wiring structure. Figure 8: Along the line x-x shown in Figure 8. Main part cut-away side view Fig. 8] Main part cut-away side view taken along the line Y-Y shown in Fig. 10

Claims (1)

【特許請求の範囲】 多層配線に於ける各々の同一層の配線間に在る絶縁膜を
一部除去することで各層に亙って生成させた空間と、 該多層配線の各層の配線をそれぞれ全面に亙って固定し
ている下地の絶縁膜と を備えてなることを特徴とする半導体装置。
[Claims] A space created between each layer of a multilayer wiring by partially removing an insulating film between the wirings of the same layer, and a space created between the wirings of each layer of the multilayer wiring, respectively. 1. A semiconductor device comprising a base insulating film fixed over the entire surface.
JP6104789A 1989-03-15 1989-03-15 Semiconductor device Pending JPH02240947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6104789A JPH02240947A (en) 1989-03-15 1989-03-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6104789A JPH02240947A (en) 1989-03-15 1989-03-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02240947A true JPH02240947A (en) 1990-09-25

Family

ID=13159926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6104789A Pending JPH02240947A (en) 1989-03-15 1989-03-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02240947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183060A (en) * 1991-12-30 1993-07-23 Nec Corp Semiconductor integrated circuit
US6376357B1 (en) 1997-05-30 2002-04-23 Nec Corporation Method for manufacturing a semiconductor device with voids in the insulation film between wirings
US7601629B2 (en) 2005-12-20 2009-10-13 Texas Instruments Incorporated Semiconductive device fabricated using subliming materials to form interlevel dielectrics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183060A (en) * 1991-12-30 1993-07-23 Nec Corp Semiconductor integrated circuit
US6376357B1 (en) 1997-05-30 2002-04-23 Nec Corporation Method for manufacturing a semiconductor device with voids in the insulation film between wirings
US7601629B2 (en) 2005-12-20 2009-10-13 Texas Instruments Incorporated Semiconductive device fabricated using subliming materials to form interlevel dielectrics

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
JP3074713B2 (en) Method for manufacturing semiconductor device
JPH10189716A (en) Semiconductor device and manufacturing method thereof
US5801090A (en) Method of protecting an alignment mark in a semiconductor manufacturing process with CMP
JP2000294628A (en) Semiconductor device and manufacture of the same
US6495452B1 (en) Method to reduce capacitance for copper interconnect structures
US4855252A (en) Process for making self-aligned contacts
US5427982A (en) Method for fabricating a semiconductor device
JPH02240947A (en) Semiconductor device
JP3369817B2 (en) Semiconductor device
JP2003158190A (en) Semiconductor device and its manufacturing method
JP2001036010A (en) Manufacture of semiconductor device
JPS59155128A (en) Manufacture of semiconductor device
JPS613431A (en) Semiconductor device with multilayer interconnection and manufacture thereof
JPS59104143A (en) Forming method for wiring
JP2636753B2 (en) Method for manufacturing semiconductor device
JP2001332619A (en) Manufacturing method of semiconductor device
JPH0936222A (en) Semiconductor device and its manufacture
JPH01150340A (en) Manufacture of semiconductor integrated circuit device
JPH0982799A (en) Wiring board and manufacture thereof
JP2699389B2 (en) Method for manufacturing semiconductor device
JPS6149439A (en) Manufacture of semiconductor device
JPH11297826A (en) Multilayer wiring connection structure
JPH065711A (en) Manufacture of semiconductor device
JPH06216257A (en) Semiconductor device of multilayer interconnection structure