JPH02240934A - Manufacture of mos semiconductor device - Google Patents

Manufacture of mos semiconductor device

Info

Publication number
JPH02240934A
JPH02240934A JP6322989A JP6322989A JPH02240934A JP H02240934 A JPH02240934 A JP H02240934A JP 6322989 A JP6322989 A JP 6322989A JP 6322989 A JP6322989 A JP 6322989A JP H02240934 A JPH02240934 A JP H02240934A
Authority
JP
Japan
Prior art keywords
polysilicon film
film
oxidation
silicon substrate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6322989A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
岸本 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP6322989A priority Critical patent/JPH02240934A/en
Publication of JPH02240934A publication Critical patent/JPH02240934A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable oxidation of an etching residue of a polysilicon film without changing a gate length of an MOS-type semiconductor device, by forming a high-concentration diffused layer on a silicon substrate in a self-alignment manner by using as a mask the polysilicon film of which the side-wall part is covered with an oxidation-resistant film. CONSTITUTION:An impurity of low concentration is injected into a silicon substrate 1 in a self-alignment manner by using a polysilicon film 4 to be a gate electrode as a mask. Subsequently, the sidewall part of this polysilicon film 4 to be the gate electrode is covered with an oxidation-resistant film 6, and then an etching residue of the polysilicon film 4 left on a gate oxide film 3 is subjected to oxidation treatment. Using as a mask the polysilicon film 4 of which the sidewall part is covered with this oxidation-resistant film 6, moreover, an impurity of high concentration is injected into the silicon substrate 1 in the self-alignment manner. By this method, the etching residue of the polysilicon film 4 left on the gate oxide film can be oxidized without oxidizing the sidewall part of the polysilicon film 4 to be the gate electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、MOS型半導体装置の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a MOS type semiconductor device.

〔従来の技術〕[Conventional technology]

近年、低消費電力の要求からMOS型半導体装置が多く
利用されるようになってきた。一方、集積回路の集積度
が増加するにつれて半導体装置の寸法を小さ(すること
が求められているが、MO8型半導体装置のゲート長を
短くしていくと、Pチャンネルトランジスタではパンチ
スルー耐圧の劣化がみられ、またNチャンネルトランジ
スタではドレイン領域近傍の電界強度が大きくなってホ
ントキャリアが発生し、しきい値電圧が著しく低下する
いわゆるショートチャンネル効果をもたらすことが知ら
れている。
In recent years, MOS type semiconductor devices have come into widespread use due to the demand for low power consumption. On the other hand, as the degree of integration of integrated circuits increases, it is required to reduce the dimensions of semiconductor devices, but as the gate length of MO8 type semiconductor devices is shortened, the punch-through breakdown voltage of P-channel transistors deteriorates. It is also known that in N-channel transistors, the electric field strength near the drain region increases and true carriers are generated, resulting in a so-called short channel effect in which the threshold voltage is significantly lowered.

これらショートチャンネル効果を抑制するためには、ゲ
ート側端部のソース・ドレイン領域に低濃度拡散層を設
ける方法があり、例えばLDD構造として知られるよう
なソース・ドレイン二重拡散構造がある。
In order to suppress these short channel effects, there is a method of providing a lightly doped diffusion layer in the source/drain region at the end of the gate side, such as a source/drain double diffusion structure known as an LDD structure.

以下に、従来のMOS型半導体装置の製造方法について
、Nチャンネルトランジスタの構造を例にとって説明す
る。
A conventional method for manufacturing a MOS type semiconductor device will be described below, taking the structure of an N-channel transistor as an example.

第2図1al〜(e)は従来のMOS型半導体装置の製
造方法の一部分の工程順断面図であり、11はp型シリ
コン基板、12は素子分離領域、13はゲート酸化膜、
14はポリシリコン膜、15はn型低濃度拡散層、17
はポリシリコン膜の酸化層、18はn型高濃度拡散層、
19は酸化シリコン膜である。
2A to 1E are step-by-step cross-sectional views of a part of a conventional method for manufacturing a MOS type semiconductor device, in which 11 is a p-type silicon substrate, 12 is an element isolation region, 13 is a gate oxide film,
14 is a polysilicon film, 15 is an n-type low concentration diffusion layer, 17
18 is an oxide layer of a polysilicon film, 18 is an n-type high concentration diffusion layer,
19 is a silicon oxide film.

まず、p型シリコン基板11に既知の技術にて厚い酸化
膜からなる素子骨M wi域12を形成する。
First, an element bone Mwi region 12 made of a thick oxide film is formed on a p-type silicon substrate 11 using a known technique.

つぎに、p型シリコン基板11にゲート酸化膜13を成
長させ、その上にゲート電極となるポリシリコンW11
4を成長させる。ついで、ポリシリコン膜14に高濃度
のリンを気相拡散して低抵抗膜とする。さらに、レジス
ト膜を回転塗布し、光露光技術、電子ビーム露光技術、
X線露光技術、あるいはイオンビーム露光技術を用いて
レジスト膜を所望のレジストパターンに形成し、このレ
ジストパターンをマスクとして、ポリシリコン膜14を
ドライエツチングにより選択除去してゲート電極とした
後、レジストを除去する。この時の状態は、第2図1a
lに示される。
Next, a gate oxide film 13 is grown on the p-type silicon substrate 11, and a polysilicon W11 that will become the gate electrode is grown on it.
Grow 4. Next, high-concentration phosphorus is diffused into the polysilicon film 14 in a vapor phase to form a low-resistance film. Furthermore, the resist film is spin-coated, and light exposure technology, electron beam exposure technology,
A resist film is formed into a desired resist pattern using X-ray exposure technology or ion beam exposure technology, and using this resist pattern as a mask, the polysilicon film 14 is selectively removed by dry etching to form a gate electrode. remove. The state at this time is shown in Figure 2 1a.
It is shown in l.

つぎに、第2図(b)に示すように、ゲート電極である
ポリシリコン膜14をマスクとしてp型シリコン基板1
1に低濃度不純物を注入してn型低濃度拡散層15を形
成する。
Next, as shown in FIG. 2(b), using the polysilicon film 14 as a gate electrode as a mask, the p-type silicon substrate 1 is
A low concentration impurity is implanted into the n-type low concentration diffusion layer 15.

つぎに、第2図(C)に示すように、素子骨#領域12
のエツジ部の段差部等で除去しきれなかったポリシリコ
ン膜14のエツチング残渣がポリシリコン同眉間の電気
的短絡の原因とならぬように、熱酸化法を用いてポリシ
リコン膜14のエツチング残渣を酸化して絶縁物とする
。この時同時にゲート電極となるポリシリコン1Iil
14の側壁および上面も酸化される。さらに、この時に
酸化がゲート電極部のゲート酸化膜13へ侵食し、ポリ
シリコン膜14が持ち上げられて、ゲート電極の両端で
ゲートバーズビークと呼ばれる形状が発生することがあ
る。なお、17はポリシリコン膜の酸化層である。
Next, as shown in FIG. 2(C), the element bone # region 12
In order to prevent the etching residue of the polysilicon film 14 that could not be removed due to the stepped portions of the edges of the polysilicon film 14 from causing an electrical short circuit between the eyebrows of the polysilicon film, a thermal oxidation method is used to remove the etching residue of the polysilicon film 14. Oxidize to make an insulator. At this time, polysilicon 1Iil which also becomes the gate electrode
The sidewalls and top surface of 14 are also oxidized. Furthermore, at this time, the oxidation may invade the gate oxide film 13 in the gate electrode portion, lifting the polysilicon film 14, and creating a shape called a gate bird's beak at both ends of the gate electrode. Note that 17 is an oxide layer of the polysilicon film.

つぎに、第2図1dlに示すように、p型シリコン基板
11上に酸化シリコン膜19を周知のCVD法で0.1
μmの厚さに成長させ、ゲート電極の側端部にのみ酸化
シリコン膜19が残るように異方性エツチングを行い、
スペーサを形成する。
Next, as shown in FIG. 2 1dl, a silicon oxide film 19 is formed on the p-type silicon substrate 11 by a well-known CVD method.
The silicon oxide film 19 is grown to a thickness of μm and anisotropically etched so that the silicon oxide film 19 remains only on the side edges of the gate electrode.
Form a spacer.

そして、第2図1etに示すように、ポリシリコン膜の
酸化N17および酸化シリコン膜19のスペーサをマス
クとしてp型シリコン基板11に高濃度不純物を注入し
てn型高濃度拡散91Bを形成し、ゲート電極の両端に
ソース・ドレインの二重拡散層を形成する。
Then, as shown in FIG. 2 1 et, a high concentration impurity is implanted into the p-type silicon substrate 11 using the oxide N17 of the polysilicon film and the spacer of the silicon oxide film 19 as a mask to form an n-type high concentration diffusion 91B. A source/drain double diffusion layer is formed at both ends of the gate electrode.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記の従来のMOS型半導体装置の製造
方法では、ゲート電極となるポリシリコン膜14の表面
が酸化されて!!lli物(ポリシリコン膜の酸化層1
7)となるため、導電性を有した実効的なゲート長が短
くなり、さらにはゲートバーズビーク形状となることで
、MOS型半導体装置のチャンネル長が変化する問題点
があった。
However, in the above conventional method for manufacturing a MOS type semiconductor device, the surface of the polysilicon film 14 that becomes the gate electrode is oxidized! ! lli material (oxide layer 1 of polysilicon film)
7), the effective conductive gate length is shortened, and furthermore, the gate has a bird's beak shape, which causes the problem that the channel length of the MOS type semiconductor device changes.

また、リンが高濃度に拡散されたポリシリコン膜14は
、増速酸化現象によりp型シリコン基板11に比べて酸
化速度が著しく速いため、酸化を高い精度で制御する必
要が生じ、この結果工程が複雑になり、制御精度が損な
われた場合には、MO8型半導体装置の特性にばらつき
が生しるという問題点があった。
In addition, the polysilicon film 14 in which phosphorus is diffused at a high concentration has a significantly faster oxidation rate than the p-type silicon substrate 11 due to the accelerated oxidation phenomenon, so it is necessary to control the oxidation with high precision, and as a result, the process If the control accuracy becomes complicated and the control accuracy is impaired, there is a problem in that the characteristics of the MO8 type semiconductor device vary.

この発明の目的は、MOS型半導体装置のゲート長を変
えることな(、また製造工程数を増やすことなく、ポリ
シリコン膜のエツチング残渣を酸化することができ、さ
らにMOS型半導体装置のソース・ドレインの二重拡散
層を形成することができるMOS型半導体装置の製造方
法を提供することである。
The purpose of this invention is to oxidize the etching residue of the polysilicon film without changing the gate length of the MOS type semiconductor device (and without increasing the number of manufacturing steps), and to oxidize the etching residue of the polysilicon film without changing the gate length of the MOS type semiconductor device (and without increasing the number of manufacturing steps). It is an object of the present invention to provide a method for manufacturing a MOS type semiconductor device that can form a double diffusion layer of 1.

〔課題を解決するための手段〕[Means to solve the problem]

この発明のMOS型半導体装置の製造方法は、ゲート電
極となるポリシリコン膜をマスクとしてシリコン基板に
自己整合的に低濃度不純物の注入を行い、ついでこのゲ
ート電極となるポリシリコン膜の側壁部を耐酸化性被膜
で覆った後、ゲート酸化膜上に残存するポリシリコン膜
のエツチング残渣の酸化処理を行い、さらにこの耐酸化
性被膜で側壁部が覆われたポリシリコン膜をマスクとし
てシリコン基板に自己整合的に高濃度不純物の注入を行
う。
The method for manufacturing a MOS type semiconductor device of the present invention involves implanting low concentration impurities into a silicon substrate in a self-aligned manner using a polysilicon film that will become a gate electrode as a mask, and then implanting a sidewall of the polysilicon film that will become a gate electrode. After covering with an oxidation-resistant film, the etching residue of the polysilicon film remaining on the gate oxide film is oxidized, and the polysilicon film whose sidewalls are covered with this oxidation-resistant film is used as a mask to attach the silicon substrate. High concentration impurities are implanted in a self-aligned manner.

〔作   用〕[For production]

この発明の方法によれば、ゲート電極となるポリシリコ
ン膜の側壁部を耐酸化性被膜で覆うことで、ゲート酸化
膜上に残存するエツチング残渣の酸化処理時においてゲ
ート電極の側壁が酸化されない、したがって、ゲート電
極の幅が酸化により減少することなくポリシリコン膜の
エツチング残渣を酸化することができる。
According to the method of the present invention, by covering the sidewalls of the polysilicon film that will become the gate electrode with an oxidation-resistant film, the sidewalls of the gate electrode will not be oxidized during the oxidation treatment of etching residue remaining on the gate oxide film. Therefore, the etching residue of the polysilicon film can be oxidized without reducing the width of the gate electrode due to oxidation.

また、耐酸化性被膜で覆う前にゲート電極であるポリシ
リコン膜をマスクとしてシリコン基板に低濃度不純物を
注入し、つぎにゲート電極であるポリシリコン膜の側壁
部を覆った耐酸化性被膜がスペーサとなり、耐酸化性被
膜で側壁部が覆われたポリシリコン膜をマスクとしてシ
リコン基板に高濃度不純物を注入することにより、ソー
ス・ドレインの二重拡散層を自己整合的に形成すること
ができ、る。
In addition, before covering with an oxidation-resistant film, low concentration impurities are implanted into the silicon substrate using the polysilicon film that is the gate electrode as a mask, and then an oxidation-resistant film that covers the sidewalls of the polysilicon film that is the gate electrode is applied. By implanting high-concentration impurities into the silicon substrate using a polysilicon film, which serves as a spacer and whose sidewalls are covered with an oxidation-resistant film, as a mask, a source/drain double diffusion layer can be formed in a self-aligned manner. ,ru.

〔実 施 例〕〔Example〕

以下、この発明のMOS型半導体装置の製造方法を図面
を参照しながら説明する。ここでは、実施例としてNチ
ャンネルトランジスタの場合について述べる。
Hereinafter, a method for manufacturing a MOS type semiconductor device according to the present invention will be explained with reference to the drawings. Here, a case of an N-channel transistor will be described as an example.

第1図ial〜lelはこの発明の一実施例におけるM
O8゛型半導体装置の製造方法の一部分を示す工程順断
面図である。同図において、lはp型シリコン基板、2
は素子骨#領域、3はゲート酸化膜、4はポリシリコン
膜、5はn型低濃度拡散層、6は窒化シリコン膜、7は
ポリシリコン膜の酸化層、8はn型高濃度拡散層である
FIG. 1 ial to lel are M in one embodiment of this invention.
FIG. 3 is a step-by-step cross-sectional view showing a part of a method for manufacturing an O8-type semiconductor device. In the figure, l is a p-type silicon substrate, 2
is an element bone # region, 3 is a gate oxide film, 4 is a polysilicon film, 5 is an n-type low concentration diffusion layer, 6 is a silicon nitride film, 7 is an oxide layer of the polysilicon film, 8 is an n-type high concentration diffusion layer It is.

まず、例えば濃度が5 X l O”ell−”のp型
シリコン基板lに既知の技術にて厚い酸化膜からなる素
子分離領域2を形成する。つぎに、p型シリコン基板l
にゲート酸化膜3を例えば20nmの厚さに成長させ、
その上にゲート電極となるポリシリコン膜4を例えば0
.4μmの厚さに成長させる。
First, an element isolation region 2 made of a thick oxide film is formed on a p-type silicon substrate l having a concentration of, for example, 5XlO"ell-" using a known technique. Next, p-type silicon substrate l
The gate oxide film 3 is grown to a thickness of, for example, 20 nm.
On top of that, a polysilicon film 4 that will become a gate electrode is placed, for example, at 0.
.. Grow to a thickness of 4 μm.

ついで、ポリシリコン膜4に高濃度のリンを例えば10
00℃で気相拡散し、例えば濃度3X10”(Jl −
”の低抵抗膜とする。さらに、レジスト膜を回転塗布し
、光露光技術、電子ビーム露光技術、X線露光技術、あ
るいはイオンビーム露光技術を用いてレジスト膜を所望
のレジストパターンに形成し、このレジストパターンを
マスクとして、ポリシリコン膜4をドライエツチングに
より選択除去してゲート電極とした後、レジストを除去
する。
Next, the polysilicon film 4 is coated with high concentration phosphorus, for example, 10
Gas phase diffusion occurs at 00°C, for example, at a concentration of 3×10” (Jl −
” to form a low resistance film.Furthermore, the resist film is spin-coated and formed into a desired resist pattern using light exposure technology, electron beam exposure technology, X-ray exposure technology, or ion beam exposure technology, Using this resist pattern as a mask, polysilicon film 4 is selectively removed by dry etching to form a gate electrode, and then the resist is removed.

この時の状態は第1図(alに示される。The state at this time is shown in FIG. 1 (al).

つぎに、第1図(blに示すように、ゲート電極である
ポリシリコン膜4をマスクとして、p型シリコン基板l
に例えばリンイオンを60KeV、10X I Q ”
cs−”の条件で注入してn型低濃度拡散層5を形成す
る(低濃度イオン注入工程)。
Next, as shown in FIG. 1 (bl), using the polysilicon film 4 that is the gate electrode as a mask,
For example, phosphorus ion at 60KeV, 10X IQ”
cs-" to form an n-type low concentration diffusion layer 5 (low concentration ion implantation step).

つぎに、第1図(C1に示すように、周知のCVD法に
よりシリコン基板!上に窒化シリコン膜6を例えば厚さ
0.1μmに成長させる。
Next, as shown in FIG. 1 (C1), a silicon nitride film 6 is grown to a thickness of, for example, 0.1 μm on the silicon substrate by the well-known CVD method.

つぎに、第1図(d)に示すように、窒化シリコン膜6
を、ゲート電極となるポリシリコン膜4の側壁部に窒化
シリコン膜6を残すように異方性エツチングすることで
、片側0.1μmのスペーサをゲート電極の両端に加え
たことになる(被覆工程)。
Next, as shown in FIG. 1(d), the silicon nitride film 6
By anisotropically etching the silicon nitride film 6 to leave the silicon nitride film 6 on the sidewalls of the polysilicon film 4 that will become the gate electrode, a spacer of 0.1 μm on one side is added to both ends of the gate electrode (covering process). ).

ついで、素子分離領域2のエツジ部の段差等で除去しき
れなかったポリシリコン膜4のエツチング残渣がポリシ
リコン同眉間の電気的短絡の原因とならぬように、例え
ば900℃、30分の条件で熱酸化してエツチング残渣
を絶縁物とする(熱酸化工程)。
Next, in order to prevent the etching residue of the polysilicon film 4 that could not be removed due to the steps at the edges of the element isolation region 2 from causing an electrical short circuit between the eyebrows of the polysilicon film, etching is performed at, for example, 900° C. for 30 minutes. The etching residue is then thermally oxidized to become an insulator (thermal oxidation process).

つぎに、第1図(e)に示すように、窒化シリコン膜6
で側壁部が覆われてゲート電極となるポリシリコン膜4
をマスクとして、p型シリコン基板1に例えばヒ素イオ
ンを40KeV、4XlO”(J−”の条件で注入して
n型高濃度拡散層8を形成し、ゲート電極の両端にソー
ス・ドレインの二重拡散層が形成される(高濃度イオン
注入工程)。
Next, as shown in FIG. 1(e), the silicon nitride film 6
A polysilicon film 4 whose side walls are covered with polysilicon film 4 serves as a gate electrode.
Using as a mask, arsenic ions, for example, are implanted into the p-type silicon substrate 1 under the conditions of 40 KeV and 4 A diffusion layer is formed (high concentration ion implantation process).

以降は、公知の技術にて、Nチャンネルトランジスタが
形成される。
Thereafter, an N-channel transistor is formed using a known technique.

なお、この実施例では、ゲート電極となるポリシリコン
膜4の側壁部を覆う耐酸化性被膜として、窒化シリコン
を用いたが、炭化シリコン、酸化アルミニューム等の耐
酸化性を有する被膜であれば有効であることは言うまで
もない。
In this example, silicon nitride was used as the oxidation-resistant coating that covers the sidewalls of the polysilicon film 4 that will serve as the gate electrode, but any oxidation-resistant coating such as silicon carbide or aluminum oxide may be used. Needless to say, it is effective.

なお、熱酸化工程は、n型高濃度拡散N8の形成工程の
後に行ってもよい。
Note that the thermal oxidation step may be performed after the step of forming the n-type high concentration diffusion N8.

以上のように、この実施例によれば、ゲート電極となる
ポリシリコン膜4の側壁部を耐酸化性被膜である例えば
窒化シリコン膜で覆うことで、MO8型半導体装置のゲ
ート電極となるポリシリコン1114の幅を変えること
なくエツチング残渣を酸化することができ、また耐酸化
性被膜形成の前後にそれぞれ低濃度と高濃度の不純物を
注入することで、ソース・ドレインの二重拡散層が自己
整合的に得られる。
As described above, according to this embodiment, by covering the side walls of the polysilicon film 4, which will become the gate electrode, with an oxidation-resistant film, such as a silicon nitride film, the polysilicon film 4, which will become the gate electrode of the MO8 type semiconductor device, The etching residue can be oxidized without changing the width of the 1114, and by implanting low and high concentration impurities before and after forming the oxidation-resistant film, the double diffusion layers of the source and drain can be self-aligned. can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明のMOS型半導体装置の製造方法によれば、ゲ
ート電極となるポリシリコン膜の側壁部を酸化すること
なく、ゲート酸化膜上に残存するポリシリコン膜のエツ
チング残渣を酸化することができ、酸化によってゲート
長が変化しないため、デバイス特性の安定性が得られる
According to the method of manufacturing a MOS type semiconductor device of the present invention, etching residue of the polysilicon film remaining on the gate oxide film can be oxidized without oxidizing the sidewall portion of the polysilicon film that becomes the gate electrode, Since the gate length does not change due to oxidation, stability of device characteristics can be achieved.

また、ソース・ドレインの二重拡散層形成時の2回の不
純物注入マスクとして、耐酸化性被膜で覆う前のゲート
電極となるポリシリコン膜と、側壁部が耐酸化性被膜で
覆われた後のポリシリコン膜とを用いているので、ソー
ス・ドレインの二重拡散層を自己整合的に形成すること
ができ、優れた特性を有するMOS型半導体装置を得る
ことができる。
In addition, as a mask for two impurity implantations when forming source/drain double diffusion layers, the polysilicon film that will become the gate electrode is used before being covered with an oxidation-resistant film, and after the sidewalls are covered with an oxidation-resistant film. Since the polysilicon film is used, the source/drain double diffusion layers can be formed in a self-aligned manner, and a MOS type semiconductor device with excellent characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(a)はこの発明の一実施例のMO5型
半導体装置の製造方法を示す工程順断面図、第2図(a
l〜le)は従来のMOS型半導体装置の製造方法を示
す工程順断面図である。 l・・・p型シリコン基板、2・・・素子分M領域、3
・・・ゲート酸化膜、4・・・ポリシリコン膜、5・・
・n型低濃度拡散層、6・・・窒化シリコン膜、7・・
・ポリシリコン膜の酸化層、8・・・n型高濃度拡散層
(e)
FIGS. 1(a) to 1(a) are step-by-step cross-sectional views showing a method for manufacturing an MO5 type semiconductor device according to an embodiment of the present invention, and FIG.
1 to 1e) are step-by-step cross-sectional views showing a conventional method for manufacturing a MOS type semiconductor device. l...p-type silicon substrate, 2...element M region, 3
...Gate oxide film, 4...Polysilicon film, 5...
・N-type low concentration diffusion layer, 6... silicon nitride film, 7...
- Oxidized layer of polysilicon film, 8... n-type high concentration diffusion layer (e)

Claims (1)

【特許請求の範囲】 MOS型半導体装置のソース・ドレイン二重拡散層を形
成するに際し、 シリコン基板上にゲート酸化膜を介して形成されてゲー
ト電極となるポリシリコン膜をマスクとして前記シリコ
ン基板に自己整合的に低濃度拡散層を形成する低濃度イ
オン注入工程と、前記低濃度イオン注入工程の後に前記
ポリシリコン膜の側壁部を耐酸化性被膜で覆う被覆工程
と、前記被覆工程の後に前記シリコン基板の表面を熱酸
化してゲート酸化膜上に残存するポリシリコン膜のエッ
チング残渣を絶縁物に変化させる熱酸化工程と、前記耐
酸化性被膜で側壁部が覆われたポリシリコン膜をマスク
として前記シリコン基板に自己整合的に高濃度拡散層を
形成する高濃度イオン注入工程とを含むMOS型半導体
装置の製造方法。
[Claims of Claims] When forming a source/drain double diffusion layer of a MOS type semiconductor device, a polysilicon film formed on a silicon substrate via a gate oxide film and serving as a gate electrode is used as a mask to form a polysilicon film on the silicon substrate. a low-concentration ion implantation step for forming a low-concentration diffusion layer in a self-aligned manner; a coating step for covering the sidewalls of the polysilicon film with an oxidation-resistant film after the low-concentration ion implantation step; A thermal oxidation step in which the surface of the silicon substrate is thermally oxidized to convert the etching residue of the polysilicon film remaining on the gate oxide film into an insulator, and the polysilicon film whose sidewalls are covered with the oxidation-resistant film is masked. and a high concentration ion implantation step of forming a high concentration diffusion layer in the silicon substrate in a self-aligned manner.
JP6322989A 1989-03-14 1989-03-14 Manufacture of mos semiconductor device Pending JPH02240934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6322989A JPH02240934A (en) 1989-03-14 1989-03-14 Manufacture of mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6322989A JPH02240934A (en) 1989-03-14 1989-03-14 Manufacture of mos semiconductor device

Publications (1)

Publication Number Publication Date
JPH02240934A true JPH02240934A (en) 1990-09-25

Family

ID=13223172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6322989A Pending JPH02240934A (en) 1989-03-14 1989-03-14 Manufacture of mos semiconductor device

Country Status (1)

Country Link
JP (1) JPH02240934A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333222B1 (en) 1999-03-17 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333222B1 (en) 1999-03-17 2001-12-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH10200110A (en) Semiconductor device and manufacture of the same
JPH10223771A (en) Semiconductor device and fabrication thereof
US5466615A (en) Silicon damage free process for double poly emitter and reverse MOS in BiCMOS application
US4263057A (en) Method of manufacturing short channel MOS devices
JPH1187704A (en) Semiconductor device and fabrication thereof
JPH11284178A (en) Insulating gate transistor, its manufacture and semiconductor integrated circuit device
JPH0234936A (en) Semiconductor device and its manufacture
JP2633104B2 (en) Method for manufacturing semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH02240934A (en) Manufacture of mos semiconductor device
JP2706162B2 (en) Method for manufacturing semiconductor device
JP3259479B2 (en) MOS type semiconductor device and method of manufacturing the same
KR100310173B1 (en) Method for manufacturing ldd type cmos transistor
JPH05267338A (en) Manufacture of semiconductor device
JPS63302562A (en) Manufacture of mos type semiconductor device
JPH02240933A (en) Manufacture of mos semiconductor device
JPH0778979A (en) Fabrication of semiconductor device
JPH0438834A (en) Manufacture of mos transistor
JPH0964361A (en) Manufacture of semiconductor device
JP3008579B2 (en) Method for manufacturing semiconductor device
JP3656867B2 (en) Manufacturing method of fine MOS transistor
JPH1126766A (en) Mos field effect transistor and manufacture thereof
JPH0629527A (en) Semiconductor device and its manufacture
JPS61101077A (en) Manufacture of semiconductor device
JPH06151451A (en) Manufacture of semiconductor device