JPH02236255A - Alloy for glass sealing - Google Patents

Alloy for glass sealing

Info

Publication number
JPH02236255A
JPH02236255A JP2609890A JP2609890A JPH02236255A JP H02236255 A JPH02236255 A JP H02236255A JP 2609890 A JP2609890 A JP 2609890A JP 2609890 A JP2609890 A JP 2609890A JP H02236255 A JPH02236255 A JP H02236255A
Authority
JP
Japan
Prior art keywords
alloy
less
glass
sealing
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2609890A
Other languages
Japanese (ja)
Other versions
JPH0480111B2 (en
Inventor
Norio Yuki
典夫 結城
Morinori Kamio
守則 神尾
Masahiro Tsuji
正博 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4463285A external-priority patent/JPS61204354A/en
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2609890A priority Critical patent/JPH02236255A/en
Publication of JPH02236255A publication Critical patent/JPH02236255A/en
Publication of JPH0480111B2 publication Critical patent/JPH0480111B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

PURPOSE:To manufacture the soft alloy for glass sealing having low thermal expansion coefficient and excellent glass sealability by incorporating specified ratios of Ni, Cr, C, O, N, P, S, Si, Mn and Al into Fe. CONSTITUTION:An alloy contg., by weight, 30 to <37% Ni, 1 to 10% Cr, <=0.1% C, <=0.015% O, <=0.025% N, <=0.05% P and <=0.05% S, contg., as auxiliary components, one or more kinds among 0.1 to 1% Si, 0.1 to 1% Mn and 0.05 to 1% Al and the balance Fe with inevitable impurities is prepd. and its grain size is regulated to >=8.0 in grain size number. In this way, the alloy easy to form Fe3O4 can be obtd. and its sealing with soft glass can efficiently be execut ed.

Description

【発明の詳細な説明】 B1図と【昨 本発明は軟質ガラスの封着用合金に関するものである。[Detailed description of the invention] Figure B1 and [Yesterday] The present invention relates to an alloy for sealing soft glass.

立IL丘上[1息 従来より軟質ガラスとの封着に用いられる合金として、
42%Ni−6%Cr−Fe合金が、熱膨張係数が軟質
ガラスと一致しており、しかも封着強度がよいことから
多く用いられている。この従来の42%Ni−6%Cr
−Fe合金は封着に際し、まず予備処理として湿潤水素
中でCrを優先酸化させておき、その後大気中でガラス
と封着させる。その際ガラスとの結合力の強いFe,0
.が形成され、ガラスとの良好な封着強度が得られる。
Tate IL Okaue [1 breath As an alloy used for sealing with soft glass,
A 42%Ni-6%Cr-Fe alloy is often used because its thermal expansion coefficient matches that of soft glass and its sealing strength is good. This conventional 42%Ni-6%Cr
When sealing the -Fe alloy, first, as a preliminary treatment, Cr is preferentially oxidized in wet hydrogen, and then the alloy is sealed with glass in the atmosphere. At that time, Fe,0, which has a strong bonding force with glass,
.. is formed, and good sealing strength with glass is obtained.

ところが42%Ni−6%Cr−Fe合金は非鉄元素を
N1とCr合せて48%も含有するため、通常の処理で
はFe.04の形成が十分に行われず、また、このFe
,0.を十分形成させるには時間がかかりすぎる難点が
あった。
However, the 42%Ni-6%Cr-Fe alloy contains 48% of non-ferrous elements including N1 and Cr, so in normal processing, Fe. 04 is not formed sufficiently, and this Fe
,0. The problem was that it took too much time to form a sufficient amount.

且ユ辺璽崖 本発明はこの点に鑑みてなされたもので、熱膨張率が低
く、ガラス封着性に優れ、しかも効率的にガラスとの封
着ができる合金を提供するものである。すなわち、重量
%でNi 30〜37%未満、Crl〜10%、G0.
1%以下、00.015%以下、N0.025%以下、
P0.05%以下、S0.05%以下、副成分としてS
i0.1〜1%、Mn0.1〜1%、Al0.05〜1
%のうち1種または2種以上、残部Fe及び不可避的不
純物からなるガラス封着用合金、及び重量%でNi 3
0〜37%未満、Cr1〜10%、Go,1%以下、0
0.015%以下、No.025%以下、po.05%
以下、so.os%以下,副成分とじてSi0.1〜1
%、Mn0.1〜1%、Al 0.05〜1%のうち1
種または2種以上及びTie.05超〜1%、Zr0.
05〜1%、Nb0,05〜1%、Cu0.Ol〜2%
、Mo0.01〜3%、Mg 0.0 1−0.5%、
Ca0.01〜0.5%、V0.01〜0.5%、80
.005〜0.2%のうち1種または2種以上、残部F
e及び不可避的不純物からなるガラス封着用合金並びに
該合金において、結晶粒度が粒度番号8。0以上である
ガラス封着用合金に関する。
The present invention has been made in view of this point, and provides an alloy that has a low coefficient of thermal expansion, excellent glass sealing properties, and can be efficiently sealed with glass. That is, Ni 30 to less than 37%, Crl to 10%, G0.
1% or less, 0.015% or less, N0.025% or less,
P0.05% or less, S0.05% or less, S as a subcomponent
i0.1-1%, Mn0.1-1%, Al0.05-1
%, the balance is Fe and unavoidable impurities, and Ni 3 in weight %
0 to less than 37%, Cr1 to 10%, Go, 1% or less, 0
0.015% or less, No. 025% or less, po. 05%
Below, so. os% or less, Si0.1-1 as a subcomponent
%, Mn 0.1-1%, Al 0.05-1%, 1
species or species and Tie. More than 05 to 1%, Zr0.
05-1%, Nb0.05-1%, Cu0. Ol~2%
, Mo 0.01-3%, Mg 0.0 1-0.5%,
Ca0.01-0.5%, V0.01-0.5%, 80
.. One or more of 005 to 0.2%, the balance F
The present invention relates to an alloy for glass sealing comprising e and inevitable impurities, and an alloy for glass sealing having a crystal grain size of grain size number 8.0 or more.

且豆n分呈 この結果、従来の優れた低熱膨張性を有する42%NL
−6%Cr−Fe合金と熱膨張特性が同等で、しかも非
鉄元素が低減することにより、ガラスとの結合力の強い
Fe,0.が形成されやすくなってガラス封着の作業効
率が増し総合的な封着性で42%Ni−6%Cr−Fe
合金を上まわる合金が得られた。
As a result, 42% NL with excellent low thermal expansion
-6%Fe, which has the same thermal expansion characteristics as Cr-Fe alloy, and has a strong bond with glass due to the reduced amount of non-ferrous elements. is formed more easily, increasing the work efficiency of glass sealing and improving the overall sealing performance of 42%Ni-6%Cr-Fe.
An alloy superior to that of the alloy was obtained.

また、本発明合金は高価なN1の含有量が従来に比べ少
ないので、コスト的にも安価になり、極めて優れた合金
である。
Furthermore, since the alloy of the present invention has a lower content of expensive N1 than the conventional alloy, it is inexpensive in terms of cost and is an extremely excellent alloy.

次に本発明合金の組成の限定理由について説明する。Next, the reasons for limiting the composition of the alloy of the present invention will be explained.

Niはガラスとの適合性すなわちガラスの熱膨張特性に
適合させる元素として最も大きな影響を与える。Niが
30%未満では熱膨張係数が高くなり熱膨張特性がガラ
スと適合しなくなる。また37%以上では非鉄元素の含
有量が高くなりすぎてFe.○.が形成されにくくなり
、また経済的にも不利になる。このためNi含有量を3
0〜37%未満とした。
Ni has the greatest influence as an element on compatibility with glass, that is, on adapting to the thermal expansion characteristics of glass. If the Ni content is less than 30%, the thermal expansion coefficient becomes high and the thermal expansion characteristics become incompatible with glass. Moreover, if it exceeds 37%, the content of non-ferrous elements becomes too high and Fe. ○. It becomes difficult to form, and it is also economically disadvantageous. For this reason, the Ni content was reduced to 3
0% to less than 37%.

Crはガラスとの適合性及び封着強度に大きく影響を与
える元素である。Crの含有量が増加すると熱膨張係数
が大きくなる。そこで、封着に使用するガラスに合せて
NiとCrの含有量をコントロールすることにより本発
明合金の熱膨張特性を勇適なものに、微妙に調節するこ
とができる。
Cr is an element that greatly affects compatibility with glass and sealing strength. As the content of Cr increases, the coefficient of thermal expansion increases. Therefore, by controlling the contents of Ni and Cr in accordance with the glass used for sealing, it is possible to finely adjust the thermal expansion characteristics of the alloy of the present invention.

しかし、Cr含有量が10%を超えると熱膨張係数が大
きくなりすぎるためガラス封着には適さなくなる。また
、本発明合金のガラスとの封着に先立ち予備処理として
表面に酸化膜を形成させ、この酸化腹を介してガラスと
封着するが、封着強度はこの酸化膜と合金地金との密着
性にも依存する。
However, if the Cr content exceeds 10%, the coefficient of thermal expansion becomes too large, making it unsuitable for glass sealing. In addition, prior to sealing the alloy of the present invention with glass, an oxide film is formed on the surface as a preliminary treatment, and the glass is sealed via this oxide layer, but the sealing strength is determined by the bonding strength between this oxide film and the base alloy. It also depends on the adhesion.

酸化膜と合金地金の密着性を高めるためには予備処理に
おいて、クロムを優先酸化させ、クロム酸化膜を形成し
ておくことが必要である。そのためにはCr含有量が1
%以上必要である。以上からCr含有量を1〜10%と
した。
In order to improve the adhesion between the oxide film and the alloy base metal, it is necessary to preferentially oxidize chromium and form a chromium oxide film in the preliminary treatment. For this purpose, the Cr content must be 1
% or more is required. Based on the above, the Cr content was set to 1 to 10%.

Cは0.1%を超えて含有すると封着時にガラス中に気
泡ができやすく封着強度を著しく劣化させる。このため
、C含有量の上限を 0.1%に規定した. ○は酸化膜の形成及び封着に大きく影響を及ぼす元素で
、 0.015%を超えて含有すると、酸化膜にムラが
生じ、また酸化膜の緻密性が劣化するため封着強度が著
しく損なわれる。また、最悪の場合には封着時にガラス
中に気泡を作り好ましくない.そのためO含有量の上限
を 0.015%に規定した. Nも0同様封着性に大きく影響を及ぼす元素で、0.○
25%を超えて含有すると封着強度が著しく損なわれる
ため、N含有量の上限を 0.025%に規定した。
When C is contained in an amount exceeding 0.1%, bubbles are likely to be formed in the glass during sealing, and the sealing strength is significantly deteriorated. For this reason, the upper limit of C content was set at 0.1%. ○ is an element that greatly affects the formation and sealing of the oxide film, and if it is contained in excess of 0.015%, the oxide film will become uneven and the density of the oxide film will deteriorate, resulting in a significant loss of sealing strength. It will be done. In addition, in the worst case, bubbles may form in the glass during sealing, which is undesirable. Therefore, the upper limit of O content was set at 0.015%. Like 0, N is also an element that greatly affects sealing properties. ○
If the N content exceeds 25%, the sealing strength will be significantly impaired, so the upper limit of the N content was set at 0.025%.

Pは 0.05%を超えて含有すると酸化ムラができや
すいため上限を 0.05%に規定した。
If P exceeds 0.05%, oxidation unevenness tends to occur, so the upper limit was set at 0.05%.

Sは 0.05%を超えて含有すると酸化ムラができや
すく、また、酸化膜と地金の密着性も低下するため上限
を 0.05%に規定した。
If S exceeds 0.05%, oxidation unevenness tends to occur, and the adhesion between the oxide film and the base metal decreases, so the upper limit was set at 0.05%.

次に副成分として、Stは酸化処理においてCr酸化物
層と地金との間にSiの濃化層を形成し、酸化膜と地金
の密着性を向上させるが0.1%未満では効果がなく、
1%を超えて含有すると熱膨張特性が変化し、また加工
性が悪くなり好ましくない。
Next, as a subcomponent, St forms a Si concentrated layer between the Cr oxide layer and the base metal during oxidation treatment, improving the adhesion between the oxide film and the base metal, but it is not effective if it is less than 0.1%. There is no
If the content exceeds 1%, the thermal expansion characteristics will change and workability will deteriorate, which is not preferable.

Mnは酸化膜外層にガラスの濡れ性の良い酸化物を形成
し、酸化膜とガラスとの濡れ性を向上させるが、0.1
%未満では効果がなく、 1%を超えて含有すると酸化
速度が大きくなり、酸化膜が厚くなりすぎ封着には適さ
なくなる。
Mn forms an oxide with good glass wettability on the outer layer of the oxide film and improves the wettability between the oxide film and glass, but 0.1
If the content is less than 1%, there is no effect, and if the content exceeds 1%, the oxidation rate increases and the oxide film becomes too thick, making it unsuitable for sealing.

Alは酸化膜と合金地金の密着強度を向上させるが、 
0.05%未満では効果がなく、1%を超えて含有する
と熱膨張特性が変化し好ましくない。
Al improves the adhesion strength between the oxide film and the alloy base metal, but
If it is less than 0.05%, there is no effect, and if it is more than 1%, the thermal expansion characteristics change, which is not preferable.

また、さらに封着性を向上させる元素を微量添加するこ
とも効果がある。すなわち、副成分としてT i 0.
0 5超〜l%、Zr0,05〜1%、Nbo.05〜
1%、Cu0.01〜2%、MO0.01〜3%、Mg
0.01〜0.5%、Cab.01〜0.5%、V 0
.01〜0.5%、80.005〜0.2%のうち1種
または2種以上を含有するとさらに封着性が改善される
It is also effective to add a trace amount of an element that further improves the sealing properties. That is, T i 0.
05 to 1%, Zr0.05 to 1%, Nbo. 05~
1%, Cu0.01-2%, MO0.01-3%, Mg
0.01-0.5%, Cab. 01-0.5%, V0
.. When one or more of 01 to 0.5% and 80.005 to 0.2% is contained, the sealing property is further improved.

以下にこれらの副成分の添加理由及び成分範囲の限定理
由を述べる。
The reason for adding these subcomponents and the reason for limiting the range of the components will be described below.

Tiは酸化膜と地金の密着性を向上させるが、0.05
%以下では効果がなく、 1%を超えると加工性が悪く
なり、また酸化膜にムラが生じやすくなる. Zrは酸化膜と地金の密着性及び酸化膜のガラスとの濡
れ性を向上させるが、 0.05%未満では効果がなく
、1%を超えると加工性を害する。
Ti improves the adhesion between the oxide film and the base metal, but at 0.05
If it is less than 1%, there is no effect, and if it exceeds 1%, workability deteriorates and the oxide film tends to become uneven. Zr improves the adhesion between the oxide film and the base metal and the wettability of the oxide film with the glass, but if it is less than 0.05% it has no effect, and if it exceeds 1% it impairs workability.

Nbは酸化膜と地金の密着性を向上させるが、0.05
%未満では効果がなく、 1%を超えると加工性を害す
る。
Nb improves the adhesion between the oxide film and the base metal, but 0.05
If it is less than 1%, it will have no effect, and if it exceeds 1%, it will impair workability.

Cuは酸化膜を緻密にし封着性を向上させるが、0.0
1%未満では効果がなく、 2%を超えると酸化膜が厚
くなりすぎ封着に不適となる。
Cu makes the oxide film dense and improves the sealing property, but 0.0
If it is less than 1%, there is no effect, and if it exceeds 2%, the oxide film becomes too thick and becomes unsuitable for sealing.

Moは酸化膜と地金の密着性を向上させるが、0.○l
%未満では効果がなく、 3%を超えると加工性を害し
、また酸化ムラを生じやすくなる。
Mo improves the adhesion between the oxide film and the base metal, but 0. ○l
If it is less than 3%, it is ineffective, and if it exceeds 3%, it impairs workability and tends to cause uneven oxidation.

Mgは酸化膜と地金の密着性及び酸化膜のガラスとの濡
れ性を向上させるが、 0.01%未満では効果がなく
、 0.5%を超えると酸化膜が厚くなりすぎ好ましく
ない. Caは酸化膜と地金の密着性を向上させるが、0.01
%未満では効果がなく、 0.5%を超えると酸化ムラ
が生じやすくなるため好ましくない。
Mg improves the adhesion between the oxide film and the base metal and the wettability of the oxide film with the glass, but if it is less than 0.01%, it has no effect, and if it exceeds 0.5%, the oxide film becomes too thick, which is not desirable. Ca improves the adhesion between the oxide film and the base metal, but at 0.01
If it is less than 0.5%, there is no effect, and if it exceeds 0.5%, oxidation unevenness tends to occur, which is not preferable.

■は酸化膜と地金の密着性を向上させるが、0.01%
未満では効果がなく、0.5%を超えると加工性を害し
、また、酸化ムラを生じやすくなる。
■ improves the adhesion between the oxide film and the base metal, but 0.01%
If it is less than 0.5%, there is no effect, and if it exceeds 0.5%, workability is impaired and oxidation unevenness tends to occur.

Bは酸化膜と地金の密着性及び酸化膜とガラスの濡れ性
を向上させるが、 0.005%未満では効果がなく、
 0.2%を超えると酸化ムラを生じやすくなる。
B improves the adhesion between the oxide film and the base metal and the wettability between the oxide film and the glass, but it has no effect if it is less than 0.005%.
If it exceeds 0.2%, oxidation unevenness tends to occur.

以上、本発明の合金成分について説明したが,これらの
合金の結晶粒度を適正に制御することにより、さらに優
れた封着性を安定して得られることが確かめられた。す
なわち、結晶粒度が粒度番号8.0以上である場合によ
り優れた封着性を有する。
The alloy components of the present invention have been described above, and it has been confirmed that even better sealing properties can be stably obtained by appropriately controlling the grain size of these alloys. That is, when the crystal grain size is 8.0 or more, excellent sealing properties are obtained.

次に本発明を実施例により詳しく説明する。Next, the present invention will be explained in detail with reference to examples.

IL皿 第1表に本発明合金の例と比較例を示す。各合金は、真
空溶解鋳造した後、熱処理と圧延をくり返し、板厚0.
3Mの板材に仕上げた。この試料の熱膨張係数を測定し
、また、封着強度はこの試料の表面を脱脂した後、湿潤
水素中にて1050℃で20分加熱し表面に酸化膜を形
成させた後、ガラスと封着し、引張試験により密着強度
を求めて評価した. 試料患1〜l8は本発明合金であり、これに対する比較
合金がNcL19〜26である。本発明合金は熱膨張係
数α30−350が7〜12X10−’/’Cでありガ
ラスとよく適合しており、密着強度も4 . 0 kg
 / mm ”以上と高く封着用合金に適している。な
かでもTi等の元素を添加したNa8〜l8は密着強度
5,Okg/順゛以上を示し、封着用合金に最適である
。これに対して比較合金Nαl9〜25は本発明の成分
範囲からはずれているため熱膨張係数が高すぎたり低す
ぎたり、あるいは密着強度が十分でなく封着用合金とし
ては適さない。徹26は42%Ni−6%Cr−Fe合
金であるが、総合的な密着強度は本発明合金に劣ってい
る. 次に結晶粒度の影響であるが、隘4、l7を供試材とし
、試験を行った結果を第2表に示す。
IL Dish Table 1 shows examples and comparative examples of the alloy of the present invention. After each alloy is vacuum melted and cast, heat treatment and rolling are repeated to produce a plate with a thickness of 0.
Finished with 3M board. The thermal expansion coefficient of this sample was measured, and the sealing strength was determined by degreasing the surface of this sample, heating it in wet hydrogen at 1050°C for 20 minutes to form an oxide film on the surface, and then sealing it with glass. The adhesion strength was determined and evaluated using a tensile test. Samples Nos. 1 to 18 are alloys of the present invention, and comparative alloys thereof are NcL19 to 26. The alloy of the present invention has a coefficient of thermal expansion α30-350 of 7 to 12X10-'/'C, is well compatible with glass, and has an adhesion strength of 4. 0 kg
/mm'' or more, making it suitable for sealing alloys.Among them, Na8 to l8 to which elements such as Ti are added exhibits an adhesion strength of 5,000 kg/mm or more, making it ideal for sealing alloys. Comparative alloys Nαl9 to 25 are out of the composition range of the present invention, so their thermal expansion coefficients are too high or too low, or their adhesion strength is insufficient, making them unsuitable as sealing alloys. Toru 26 has 42% Ni- Although it is a 6% Cr-Fe alloy, its overall adhesion strength is inferior to that of the alloy of the present invention.Next, regarding the influence of grain size, the results of tests using No. 4 and No. 17 as test materials are as follows. Shown in Table 2.

第2表から結晶粒が小さくなると密着強度が向上してい
ることがわかる。したがって、優れた封着性を安定して
得るためには結晶粒度を粒度番号8.0以上にすること
が有効である。
It can be seen from Table 2 that as the crystal grains become smaller, the adhesion strength improves. Therefore, in order to stably obtain excellent sealing properties, it is effective to set the crystal grain size to a grain size number of 8.0 or more.

金を十分代替できる安価な工業的に極めて有用な合金で
ある。
It is an inexpensive, industrially extremely useful alloy that can fully replace gold.

以下余白Margin below

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でNi30〜37%未満、Cr1〜10%
、C0.1%以下、O0.015%以下、N0.025
%以下、P0.05%以下、S0.05%以下、副成分
としてSi0.1〜1%、Mn0.1〜1%、Al0.
05〜1%のうち1種または2種以上、残部Fe及び不
可避的不純物からなるガラス封着用合金。
(1) Ni 30 to less than 37%, Cr 1 to 10% by weight
, C0.1% or less, O0.015% or less, N0.025
% or less, P 0.05% or less, S 0.05% or less, Si 0.1-1%, Mn 0.1-1%, Al 0.
An alloy for glass sealing consisting of one or more of 05 to 1%, the balance being Fe and unavoidable impurities.
(2)重量%でNi30〜37%未満、Cr1〜10%
、C0.1%以下、O0.015%以下、N0.025
%以下、P0.05%以下、S0.05%以下、副成分
としてSi0.1〜1%、Mn0.1〜1%、Al0.
05〜1%のうち1種または2種以上及びTi0.05
超〜1%、Zr0.05〜1%、Nb0.05〜1%、
Cu0.01〜2%、Mo0.01〜3%、Mg0.0
1〜0.5%、Ca0.01〜0.5%、V0.01〜
0.5%、B0.005〜0.2%のうち1種または2
種以上、残部Fe及び不可避的不純物からなるガラス封
着用合金。
(2) Ni 30 to less than 37%, Cr 1 to 10% by weight
, C0.1% or less, O0.015% or less, N0.025
% or less, P 0.05% or less, S 0.05% or less, Si 0.1-1%, Mn 0.1-1%, Al 0.
One or more of Ti0.05 to 1% and Ti0.05
Super ~1%, Zr0.05~1%, Nb0.05~1%,
Cu0.01-2%, Mo0.01-3%, Mg0.0
1-0.5%, Ca0.01-0.5%, V0.01-
0.5%, one or two of B0.005-0.2%
An alloy for glass sealing consisting of at least one species, the balance Fe and unavoidable impurities.
(3)結晶粒度が粒度番号8.0以上である特許請求の
範囲第(1)項乃至第(2)項記載のガラスの封着用合
金。
(3) The alloy for sealing glass according to claims (1) and (2), wherein the crystal grain size is 8.0 or more.
JP2609890A 1985-03-08 1990-02-07 Alloy for glass sealing Granted JPH02236255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2609890A JPH02236255A (en) 1985-03-08 1990-02-07 Alloy for glass sealing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4463285A JPS61204354A (en) 1985-03-08 1985-03-08 Alloy for sealing glass
JP2609890A JPH02236255A (en) 1985-03-08 1990-02-07 Alloy for glass sealing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4463285A Division JPS61204354A (en) 1985-03-08 1985-03-08 Alloy for sealing glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20730991A Division JPH04350147A (en) 1991-07-25 1991-07-25 Alloy for glass sealing

Publications (2)

Publication Number Publication Date
JPH02236255A true JPH02236255A (en) 1990-09-19
JPH0480111B2 JPH0480111B2 (en) 1992-12-17

Family

ID=26363836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2609890A Granted JPH02236255A (en) 1985-03-08 1990-02-07 Alloy for glass sealing

Country Status (1)

Country Link
JP (1) JPH02236255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534277A (en) * 2007-03-30 2010-11-04 アルセロールミタル−ステンレス・アンド・ニツケル・アロイ Austenitic iron / nickel / chromium / copper alloy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057916A (en) * 1973-09-21 1975-05-20
JPS5947359A (en) * 1982-09-08 1984-03-17 Toshiba Corp Member for seal bonding
JPS6033337A (en) * 1983-08-05 1985-02-20 Nisshin Steel Co Ltd High ni-fe alloy for electronic parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5057916A (en) * 1973-09-21 1975-05-20
JPS5947359A (en) * 1982-09-08 1984-03-17 Toshiba Corp Member for seal bonding
JPS6033337A (en) * 1983-08-05 1985-02-20 Nisshin Steel Co Ltd High ni-fe alloy for electronic parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534277A (en) * 2007-03-30 2010-11-04 アルセロールミタル−ステンレス・アンド・ニツケル・アロイ Austenitic iron / nickel / chromium / copper alloy

Also Published As

Publication number Publication date
JPH0480111B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JPS63109130A (en) Copper alloy for electronic equipment
US3746536A (en) Sealing alloy
JPH02236255A (en) Alloy for glass sealing
JPH02236256A (en) Alloy for sealing glass
JPS6244526A (en) Manufacture of alloy for sealing glass
JPH04350147A (en) Alloy for glass sealing
JPS6151622B2 (en)
JPH0243818B2 (en)
JPS61119648A (en) Sintered composite target material
JPS5964749A (en) Soft glass sealing alloy
JPH027387B2 (en)
JPH03197641A (en) Lead frame material
JPH0543970A (en) High strength aluminum alloy plating substrate
JPH0288746A (en) High permeability magnetic material
JPS6244525A (en) Manufacture of alloy for sealing glass
JPS62287047A (en) Ferrous alloy for semiconductor device lead
JPS61147852A (en) Alloy for sealing glass
JPH04160112A (en) Production of lead frame material
JPS6227550A (en) Alloy for sealing glass
JPS62278248A (en) Oxidation-resistant fe-cr-al alloy
JPS6338545A (en) High strength conductive copper alloy
JPH06287715A (en) High strength lead frame material and its production
JPH04250613A (en) Aluminum foil for electrolytic capacitor electrode
JPS58171546A (en) Al alloy as fin material for heat exchanger with superior drooping resistance and sacrificial anode effect
JPH059633A (en) High strength aluminum alloy substrate to be plated