JPH0243818B2 - - Google Patents

Info

Publication number
JPH0243818B2
JPH0243818B2 JP60044632A JP4463285A JPH0243818B2 JP H0243818 B2 JPH0243818 B2 JP H0243818B2 JP 60044632 A JP60044632 A JP 60044632A JP 4463285 A JP4463285 A JP 4463285A JP H0243818 B2 JPH0243818 B2 JP H0243818B2
Authority
JP
Japan
Prior art keywords
alloy
sealing
glass
less
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60044632A
Other languages
Japanese (ja)
Other versions
JPS61204354A (en
Inventor
Norio Juki
Morinori Kamio
Masahiro Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP4463285A priority Critical patent/JPS61204354A/en
Publication of JPS61204354A publication Critical patent/JPS61204354A/en
Priority to JP2609890A priority patent/JPH02236255A/en
Publication of JPH0243818B2 publication Critical patent/JPH0243818B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 本発明は軟質ガラスの封着用合金に関するもの
である。 従来技術と問題点 従来より軟質ガラスとの封着に用いられる合金
として、42%Ni−6%Cr−Fe合金が、熱膨張係
数が軟質ガラスと一致しており、しかも封着強度
がよいことから多く用いられている。この従来の
42%Ni−6%Cr−Fe合金は封着に際し、まず予
備処理として湿潤水素中でCr優先酸化させてお
き、その後大気中でガラスと封着させる。その際
ガラスとの結合力の強いFe3O4が形成され、ガラ
スとの良好な封着強度が得られる。ところが42%
Ni−6%Cr−Fe合金は非鉄元素をNiとCr合せて
48%も含有するため、通常の処理ではFe3O4の形
成が十分に行われずまた、このFe3O4を十分形成
させるには時間がかかりすぎる難点があつた。 発明の構成 本発明はこの点に鑑みてなされたもので、熱膨
張率が低く、ガラス封着性に優れ、しかも効率的
にガラスとの封着ができる合金を提供するもので
ある。すなわち、重量%でNi30〜37%未満、Cr1
〜10%、C0.1%以下、O0.015%以下、N0.025%
以下、P0.05%以下、S0.05%以下、残部Fe及び不
可避的不純物からなるガラス封着用合金、並びに
該合金において、結晶粒度が粒度番号8.0以上で
あるガラス封着用合金に関する。 発明の効果 この結果、従来の優れた低熱膨張性を有する42
%Ni−6%Cr−Fe合金と熱膨張特性が同等で、
しかも非鉄元素が低減することにより、ガラスと
の結合力の強いFe3O4が形成されやすくなつてガ
ラス封着の作業効率が増し総合的な封着性で42%
Ni−6%C−Fe合金を上まわる合金が得られた。 また、本発明合金は高価なNiの含有量が従来
に比べ少ないので、コスト的にも安価になり、極
めて優れた合金である。 次に本発明合金の組成の限定理由について説明
する。 Niはガラスとの適合性すなわちガラスの熱膨
張特性に適合させる元素として最も大きな影響を
与える。Niが30%未満では熱膨張係数が高くな
り熱膨張特性がガラスと適合しなくなる。また37
%以上では非鉄元素の含有量が高くなりすぎて
Fe3O4が形成されにくくなり、また経済的にも不
利になる。このためNi含有量を30〜37%未満と
した。 Crはガラスとの適合性及び封着強度に大きく
影響を与える元素である。Crの含有量が増加す
ると熱膨張係数が大きくなる。そこで、封着に使
用するガラスに合わせてNiとCrの含有量をコン
トロールすることにより本発明合金の熱膨張特性
を最適なものに、微妙に調節するこができる。し
かし、Cr含有量が10%を超えると熱膨張係数が
大きくなりすぎるためガラス封着には適さなくな
る。また、本発明合金のガラスとの封着に先立ち
予備処理として表面に酸化膜を形成させ、この酸
化膜を介してガラスと封着するが、封着強度はこ
の酸化膜と合金地金との密着性にも依存する。酸
化膜と合金地金の密着性を高めるためには予備処
理において、クロムを優先酸化させ、クロム酸化
膜を形成しておくことが必要である。そのために
はCr含有量が1%以上必要である。以上からCr
含有量を1〜10%とした。 Cは0.1%を超えて含有すると封着時にガラス
中に気泡ができやすく封着強度を蓄しく劣化させ
る。このため、C含有量の上限を0.1%に規定し
た。 Oは酸化膜の形成及び封着に大きく影響を及ぼ
す元素で、0.015%を超えて含有すると、酸化膜
にムラが生じ、また酸化膜の緻密性が劣化するた
め封着強度が著しく損なわれる。また、最悪の場
合には封着時にガラス中に気泡を作り好ましくな
い。そのためO含有量の上限を0.015%に規定し
た。 NもO同様封着性に大きく影響を及ぼす元素
で、0.025%を超えて含有すると封着強度が著し
く損なわれるため、N含有量の上限を0.025%に
規定した。 Pは0.05%を超えて含有すると酸化ムラができ
やすいため上限を0.05%に規定した。 Sは0.05%を超えて含有すると酸化ムラができ
やすく、また、酸化膜と地金の密着性も低下する
ため上限を0.05%に規定した。 以上、本発明の合金成分について説明したが、
これらの合金の結晶粒度を適正に制御することに
より、さらに優れた封着性を安定してれることが
確かめられた。すなわち、結晶粒度が粒度番号
8.0以上である場合により優れた封着性を有する。 次に本発明を実施例により詳しく説明する。 実施例 第1表に本発明合金の例と比較例を示す。各合
金は、真空溶解鋳造した後、熱処理と圧延をくり
返し、板厚0.3mmの板材に仕上げた。この試料の
熱膨張係数を測定し、また、封着強度はこの試料
の表面を脱脂した後、湿潤水素中にて1050℃で20
分加熱し表面に酸化膜を形成させた後、ガラスと
封着し、引張強度により密着強度を求めて評価し
た。 試料No.1〜10は本発明合金であり、これに対す
る比較合金がNo.11〜16である。本発明合金は熱膨
張係数α30−350が7〜12×10-5/℃でありガラス
とよく適合しており、密着強度も4.0Kg/mm2以上
と高く封着用合金に適している。これに対して比
較合金No.11〜15は本発明の成分範囲からはずれて
いるため熱膨張係数が高すぎたり低すぎたり、あ
るいは密着強度が十分でなく封着用合金としては
適さない。No.16は42%Ni−6%Cr−Fe合金であ
るが、総合的な密着強度は本発明合金に劣つてい
る。 次に結晶粒度の影響であるが、No.4,9を供試
材とし、試験を行つた結果を第2表に示す。 第2表から結晶粒が小さくなると密着強度が向
上していることがわかる。したがつて、優れた封
着性を安定して得るためには結晶粒度を粒度番号
8.0以上にすることが有効である。 以上述べたように本発明合金は優れた封着性を
有しており、従来42%Ni−6%Cr−Fe合金を十
分代替できる安価な工業的に極めて有用な合金で
ある。
OBJECTS OF THE INVENTION The present invention relates to an alloy for sealing soft glass. Conventional technology and problems As an alloy conventionally used for sealing with soft glass, 42% Ni-6% Cr-Fe alloy has a coefficient of thermal expansion that matches that of soft glass and has good sealing strength. It is often used from This conventional
When sealing the 42% Ni-6% Cr-Fe alloy, first Cr is preferentially oxidized in wet hydrogen as a preliminary treatment, and then it is sealed with glass in the atmosphere. At this time, Fe 3 O 4 having a strong bonding force with glass is formed, and good sealing strength with glass is obtained. However, 42%
Ni-6%Cr-Fe alloy is made by combining non-ferrous elements with Ni and Cr.
Since Fe 3 O 4 contains as much as 48%, it is difficult to form Fe 3 O 4 sufficiently in normal processing, and it takes too much time to form Fe 3 O 4 sufficiently. Structure of the Invention The present invention has been made in view of this point, and provides an alloy that has a low coefficient of thermal expansion, excellent glass sealing properties, and can be efficiently sealed with glass. i.e. less than 30-37% Ni, Cr1 in weight%
~10%, C0.1% or less, O0.015% or less, N0.025%
The following describes a glass sealing alloy consisting of 0.05% or less of P, 0.05% or less of S, the balance being Fe and unavoidable impurities, and an alloy for glass sealing in which the crystal grain size is 8.0 or more. Effects of the invention As a result, 42
Thermal expansion properties are equivalent to %Ni-6%Cr-Fe alloy,
Moreover, by reducing the amount of non-ferrous elements, Fe 3 O 4 , which has a strong bonding force with glass, is easily formed, increasing the work efficiency of glass sealing and increasing the overall sealing performance by 42%.
An alloy superior to the Ni-6%C-Fe alloy was obtained. Furthermore, the alloy of the present invention has a lower content of expensive Ni than conventional alloys, so it is inexpensive and is an extremely excellent alloy. Next, the reasons for limiting the composition of the alloy of the present invention will be explained. Ni has the greatest influence on compatibility with glass, that is, as an element that adapts to the thermal expansion characteristics of glass. If Ni is less than 30%, the coefficient of thermal expansion will be high and the thermal expansion characteristics will not be compatible with glass. Also 37
% or more, the content of non-ferrous elements becomes too high.
Fe 3 O 4 is difficult to form, and it is also economically disadvantageous. For this reason, the Ni content was set to less than 30 to 37%. Cr is an element that greatly affects compatibility with glass and sealing strength. As the Cr content increases, the coefficient of thermal expansion increases. Therefore, by controlling the contents of Ni and Cr in accordance with the glass used for sealing, the thermal expansion characteristics of the alloy of the present invention can be finely adjusted to the optimum. However, if the Cr content exceeds 10%, the coefficient of thermal expansion becomes too large, making it unsuitable for glass sealing. In addition, prior to sealing the alloy of the present invention with glass, an oxide film is formed on the surface as a preliminary treatment, and the glass is sealed via this oxide film, but the sealing strength is determined by the bonding strength between this oxide film and the alloy base metal. It also depends on the adhesion. In order to improve the adhesion between the oxide film and the alloy base metal, it is necessary to preferentially oxidize chromium and form a chromium oxide film in the preliminary treatment. For this purpose, the Cr content must be 1% or more. From the above, Cr
The content was 1 to 10%. If C is contained in an amount exceeding 0.1%, bubbles are likely to form in the glass during sealing, resulting in poor sealing strength and deterioration. For this reason, the upper limit of the C content was set at 0.1%. O is an element that greatly affects the formation and sealing of an oxide film, and if it is contained in an amount exceeding 0.015%, the oxide film becomes uneven and the density of the oxide film deteriorates, resulting in a significant loss of sealing strength. Furthermore, in the worst case, bubbles may be formed in the glass during sealing, which is undesirable. Therefore, the upper limit of O content was set at 0.015%. Like O, N is an element that greatly affects the sealing properties, and if it is contained in an amount exceeding 0.025%, the sealing strength is significantly impaired, so the upper limit of the N content was set at 0.025%. If P exceeds 0.05%, oxidation unevenness tends to occur, so the upper limit was set at 0.05%. When S is contained in an amount exceeding 0.05%, oxidation unevenness tends to occur, and the adhesion between the oxide film and the base metal also decreases, so the upper limit was set at 0.05%. The alloy components of the present invention have been explained above, but
It has been confirmed that by appropriately controlling the grain size of these alloys, even better sealing properties can be stably achieved. In other words, the grain size is the grain size number
If it is 8.0 or more, it has better sealing properties. Next, the present invention will be explained in detail with reference to examples. Examples Table 1 shows examples and comparative examples of the alloy of the present invention. Each alloy was vacuum melted and cast, then heat treated and rolled repeatedly to create a plate with a thickness of 0.3 mm. The thermal expansion coefficient of this sample was measured, and the sealing strength was determined after degreasing the surface of this sample, and then holding it in wet hydrogen at 1050℃ for 20 minutes.
After heating for several minutes to form an oxide film on the surface, it was sealed with glass, and the adhesion strength was determined and evaluated based on the tensile strength. Samples Nos. 1 to 10 are alloys of the present invention, and comparative alloys are Nos. 11 to 16. The alloy of the present invention has a coefficient of thermal expansion α30-350 of 7 to 12×10 -5 /°C and is well compatible with glass, and has a high adhesion strength of 4.0 Kg/mm 2 or more, making it suitable as an alloy for sealing. On the other hand, Comparative Alloys Nos. 11 to 15 are out of the compositional range of the present invention, so their thermal expansion coefficients are too high or too low, or their adhesion strength is insufficient, making them unsuitable as sealing alloys. No. 16 is a 42% Ni-6% Cr-Fe alloy, but its overall adhesion strength is inferior to that of the alloy of the present invention. Next, regarding the influence of crystal grain size, Table 2 shows the results of tests conducted using sample materials No. 4 and 9. It can be seen from Table 2 that as the crystal grains become smaller, the adhesion strength improves. Therefore, in order to stably obtain excellent sealing properties, the crystal grain size must be determined by the grain size number.
It is effective to set it to 8.0 or higher. As described above, the alloy of the present invention has excellent sealing properties and is an inexpensive, industrially extremely useful alloy that can sufficiently replace the conventional 42% Ni-6% Cr-Fe alloy.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%でNi30〜37%未満、Cr1〜10%、C0.1
%以下、O0.015%以下、N0.025%以下、P0.05%
以下、S0.05%以下、残部Fe及び不可避的不純物
からなるガラス封着用合金。 2 結晶粒度が粒度番号8.0以上である特許請求
の範囲第1項記載のガラス封着用合金。
[Claims] 1. Ni30 to less than 37% by weight, Cr1 to 10%, C0.1
% or less, O0.015% or less, N0.025% or less, P0.05%
The following is an alloy for glass sealing consisting of S0.05% or less, the balance being Fe and unavoidable impurities. 2. The glass sealing alloy according to claim 1, wherein the crystal grain size is 8.0 or more.
JP4463285A 1985-03-08 1985-03-08 Alloy for sealing glass Granted JPS61204354A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4463285A JPS61204354A (en) 1985-03-08 1985-03-08 Alloy for sealing glass
JP2609890A JPH02236255A (en) 1985-03-08 1990-02-07 Alloy for glass sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4463285A JPS61204354A (en) 1985-03-08 1985-03-08 Alloy for sealing glass

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2609990A Division JPH02236256A (en) 1990-02-07 1990-02-07 Alloy for sealing glass
JP2609890A Division JPH02236255A (en) 1985-03-08 1990-02-07 Alloy for glass sealing

Publications (2)

Publication Number Publication Date
JPS61204354A JPS61204354A (en) 1986-09-10
JPH0243818B2 true JPH0243818B2 (en) 1990-10-01

Family

ID=12696797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4463285A Granted JPS61204354A (en) 1985-03-08 1985-03-08 Alloy for sealing glass

Country Status (1)

Country Link
JP (1) JPS61204354A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155353A (en) * 1981-03-20 1982-09-25 Daido Steel Co Ltd Fe-ni alloy good in hot workability
JPS60159157A (en) * 1984-01-30 1985-08-20 Nippon Yakin Kogyo Co Ltd Fe-ni alloy having excellent hot workability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155353A (en) * 1981-03-20 1982-09-25 Daido Steel Co Ltd Fe-ni alloy good in hot workability
JPS60159157A (en) * 1984-01-30 1985-08-20 Nippon Yakin Kogyo Co Ltd Fe-ni alloy having excellent hot workability

Also Published As

Publication number Publication date
JPS61204354A (en) 1986-09-10

Similar Documents

Publication Publication Date Title
JPH11343528A (en) High-strength beta-type titanium alloy
JPS6270540A (en) Cu-alloy lead material for semiconductor device
JPH0243818B2 (en)
JPS6215622B2 (en)
JPH0480111B2 (en)
JPH0468380B2 (en)
JPH04350147A (en) Alloy for glass sealing
JPS6151622B2 (en)
JPS6244526A (en) Manufacture of alloy for sealing glass
JPH11335758A (en) High strength titanium alloy excellent in cold ductility
JPH01218795A (en) Al alloy brazing filler metal having high fillet strength
JPS6239233B2 (en)
JPS6270541A (en) Cu-alloy lead material for semiconductor device
JPH0665737B2 (en) Metal plate for glass sealing
JPH0253502B2 (en)
JPS60200943A (en) Aluminum alloy having superior strength and workability
JPH0625778A (en) Titanium alloy excellent in corrosion resistance nonoxidizing acid and workability
JPH0441631A (en) High strength cu alloy for lead frame of semiconductor device
JPH027387B2 (en)
JPS58171546A (en) Al alloy as fin material for heat exchanger with superior drooping resistance and sacrificial anode effect
JPH0543970A (en) High strength aluminum alloy plating substrate
JPS6270542A (en) Cu-alloy lead material for semiconductor device
JPS6338545A (en) High strength conductive copper alloy
JPH04160112A (en) Production of lead frame material
JPS5964749A (en) Soft glass sealing alloy