JPH027387B2 - - Google Patents

Info

Publication number
JPH027387B2
JPH027387B2 JP59268240A JP26824084A JPH027387B2 JP H027387 B2 JPH027387 B2 JP H027387B2 JP 59268240 A JP59268240 A JP 59268240A JP 26824084 A JP26824084 A JP 26824084A JP H027387 B2 JPH027387 B2 JP H027387B2
Authority
JP
Japan
Prior art keywords
less
sealing
oxide film
alloy
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59268240A
Other languages
Japanese (ja)
Other versions
JPS61147850A (en
Inventor
Norio Juki
Masahiro Tsuji
Michio Konishi
Masayoshi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP26824084A priority Critical patent/JPS61147850A/en
Publication of JPS61147850A publication Critical patent/JPS61147850A/en
Publication of JPH027387B2 publication Critical patent/JPH027387B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 本発明は軟質ガラスの封着用合金に関するもの
である。 〔従来の技術〕 従来より軟質ガラスとの封着に用いられる合金
として、Ni−Cr−Fe系合金(42Ni−6Cr−Fe)、
Cr−Fe系合金(18Cr−Feなど)が知られてい
る。このうち42Ni−6Cr−Fe合金は、熱膨張係数
が軟質ガラスとよく一致しており、しかも封着強
度が特に優れていることから種々の封着体に使用
されている。これに対してCr−Fe合金は封着性
の点で劣る欠点がある。すなわち、ガラス封着に
先立ち酸化膜を生成させるが、この酸化膜と地金
の密着性が弱いこと及びこの酸化膜とガラスの濡
れ性が悪いことの2点である。この欠点のため高
品質を要求される部品にはもつぱら42Ni−6Cr−
Fe合金が使用されているのが現状である。しか
し、42Ni−6Cr−Fe合金は高価なNiを42重量%
も含むため非常に高価であり、同等な封着性を有
する安価な材料を求める声が強い。 本発明は、このような要望に応え、Cr−Fe合
金について種々検討を重ねた結果、前述した欠点
を改良し、高い封着性を有し、42Ni−6Cr−Fe合
金に十分代替できる安価な合金を提供するもので
ある。すなわち、重量%でCr15〜30%、C0.002
%以下、O0.015%以下、Ni0.025%以下、
H0.0005%以下、P0.05%以下、S0.05%以下、残
部Fe及び不可避的不純物からなるガラス封着用
合金及び重量%でCr15〜30%、C0.02%以下、
O0.015%以下、N0.025%以下、H0.0005%以下、
P0.05%以下、S0.05%以下、副成分としてSi0.1
〜3%、Mn0.1〜1%、Al0.05〜1%のうち1種
または2種以上、残部Fe及び不可避的不純物か
らなるガラス封着用合金及び重量%でCr15〜30
%、C0.02%以下、O0.015%以下、N0.025%以
下、H0.0005%以下、P0.05%以下、S0.05%以下、
副成分としてTi0.05超〜1%、Zr0.05〜1%、
Nb0.05〜1%、Cu0.01〜2%、Mo0.01〜3%、
Mg0.01〜0.5%、Ca0.01〜0.5%、V0.01〜0.5%、
B0.005〜0.2%のうち1種または2種以上、残部
Fe及び不可避的不純物からなるガラス封着用合
金及び重量%でCr15〜30%、C0.02%以下、
O0.015%以下、N0.025%以下、H0.0005%以下、
P0.05%以下、S0.05%以下、副成分としてSi0.1
〜3%、Mn0.1〜1%、Al0.05〜1%のうち1種
または2種以上及びTi0.05超〜1%、Zr0.05〜1
%、Nb0.05〜1%、Cu0.01〜2%、Mo0.01〜3
%、Mg0.01〜0.5%、Ca0.01〜0.5%、V0.01〜0.5
%、B0.005〜0.2%のうち1種または2種以上、
残部Fe及び不可避的不純物からなるガラス封着
用合金並びに該合金において、結晶粒度が粒度番
号8.0以上であるガラス封着用合金に関する。 次に、本発明合金の組成の限定理由について説
明する。 Crはガラスとの適合性すなわちガラスの熱膨
張係数に近似させる元素として大きな影響を与え
る。Crが30%を越えると熱膨張特性がガラスと
適合しなくなり、δ相の析出によつて硬化するた
め加工性も悪化するので封着用合金としては不適
である。Cr含有量を10%程度まで下げることも
可能であるが、少ない場合には熱膨張係数が低下
するので、ガラスに近似するように熱膨張係数を
より安定的に保持するためにはCr含有量15〜30
%が必要である。 Cは0.02%を越えて含有すると封着時にガラス
中に気泡ができやすく、封着強度を著しく劣化さ
せる。このため、C含有量の上限を0.02%に規定
した。 Oは酸化膜の生成及び封着に大きく影響を及ぼ
す元素で、0.015%を越えて含有すると、酸化膜
にムラが生じ、また酸化膜の緻密性が劣化するた
め封着強度が著しく損なわれる。また、最悪の場
合には封着時にガラス中に気泡を作り、満足な封
着性は到底得られない。そのため、O含有量の上
限を0.015%に規定した。 NもO同様封着性に大きく影響を及ぼす元素で
0.025%を越えて含有すると封着強度が著しく損
なわれるため、N含有量の上限を0.025%に規定
した。 Hも封着性に大きく影響を及ぼす元素で0.0005
%を越えて含有すると封着強度が著しく損なわれ
るためH含有量の上限を0.0005%に規定した。 Pは0.05%を越えて含有すると酸化ムラができ
やすいため上限を0.05%に規定した。 Sは0.05%を越えて含有すると酸化ムラができ
やすく、また、酸化膜と地金との密着性も低下す
るため上限を0.05%に規定した。 副成分として、Siは、酸化処理においてCr酸
化物層と地金との間にSiの濃化層を形成し、酸化
膜と地金の密着性を向上させるが、0.1%未満で
は効果がなく、3%を越えて含有すると熱膨張特
性が変化し、また加工性が悪くなり好ましくな
い。 Mnは酸化膜外層にガラスの濡れ性の良い酸化
物を形成し、酸化膜とガラスとの濡れ性を向上さ
せるが、0.1%未満では効果がなく、1%を越え
て含有すると酸化速度が大きくなり、酸化膜が厚
くなりすぎ封着には不適となる。 Alは酸化膜と地金の密着強度を向上させるが、
0.05%未満では効果がなく、1%を越えて含有す
ると熱膨張特性が変化し好ましくない。 また、さらに高い封着性が要求される高度な部
品に使用される材料として封着性を向上させる元
素を微量添加することも効果がある。 すなわち、副成分としてTi0.05超〜1%、
Zr0.05〜1%、Nb0.05〜1%、Cu0.01〜2%、
Mo0.01〜3%、Mg0.01〜0.5%、Ca0.01〜0.5%、
V0.01〜0.5%、B0.005〜0.2%のうち1種または
2種以上を含有するとさらに封着性が改善され
る。 以下にこれらの副成分の添加理由及び成分範囲
限定理由を述べる。 Tiは酸化膜と地金の密着性を向上させるが、
0.05%以下では効果がなく、1%を越えると加工
性が悪くなり、また酸化膜にムラが生じやすくな
る。 Zrは酸化膜と地金の密着性及び酸化膜のガラ
スとの濡れ性を向上させるが、0.05%未満では効
果がなく、1%を越えると加工性を害する。 Nbは酸化膜と地金の密着性を向上させるが、
0.05%未満では効果がなく、1%を越えると加工
性を害する。 Cuは酸化膜を緻密にし封着性を向上させるが、
0.01%未満では効果がなく、2%を越えると酸化
膜が厚くなりすぎ封着に不適となる。 Moは酸化膜と地金の密着性を向上させるが、
0.01%未満では効果がなく、3%を越えると加工
性を害し、また酸化ムラを生じやすくなる。 Mgは酸化膜と地金の密着性及び酸化膜のガラ
スとの濡れ性を向上させるが、0.01%未満では効
果がなく、0.5%を越えると酸化膜が厚くなりす
ぎ好ましくない。 Caは酸化膜と地金の密着性を向上させるが、
0.01%未満では効果がなく、0.5%を越えると酸
化ムラが生じやすくなるため好ましくない。 Vは酸化膜と地金の密着性を向上させるが、
0.01%未満では効果がなく、0.5%を越えると加
工性を害し、また、酸化ムラを生じやすくなる。 Bは酸化膜と地金の密着性及び酸化膜とガラス
の濡れ性を向上させるが、0.005%未満では効果
がなく、0.2%を越えると酸化ムラを生じやすく
なる。 以上、本発明の合金成分について説明したが、
これらの合金の結晶粒度を適正に制御することに
より、さらに優れた封着性を安定して得られるこ
とが確かめられた。すなわち、結晶粒度が粒度番
号8.0以上である場合に、より優れた封着性を有
する。 次に本発明を実施例により詳しく説明する。 〔実施例〕 第1表及び第2表に本発明合金と比較例を示
す。 各合金は、真空高周波誘導溶解炉により溶解鋳
造した後、熱処理と圧延をくり返し、板厚0.5mm
の板材に仕上げた。この試料の表面を脱脂した
後、湿潤水素中にて950℃で2時間加熱し、表面
に酸化膜を形成させた後、ガラスとの封着試験に
供した。 密着強度は、ガラスを封着した後、引張試験に
よつて測定した。 試料No.1〜43は本発明合金であり、これに対す
る比較合金がNo.44〜50である。本発明合金は密着
強度2.7Kg/mm2以上を示し封着用合金に適してい
る。なかでも、Si、Mn、Al、を含有させたNo.3
〜10及びTi等の元素を添加したNo.11〜26は密着
強度2.9Kg/mm2以上、Si、Mn、Al及びTi等の元
素を添加したNo.27〜43は密着強度4.0Kg/mm2以上
を示し、封着用合金に最適である。これに対して
比較合金は、C、O、N、H含有量が本発明の許
容量を越えるものがあり、そのため密着強度が
1.0Kg/mm2しかなく、また、Si、Mn、Al及びTi
等の元素を添加しても高々2.0Kg/mm2にしかなら
ないため封着用合金には適さない。 次に、結晶粒度の影響であるが、No.1、6、
25、40を供試材とし、試験を行つた結果を第3表
に示す。 第3表から結晶粒が小さくなると密着強度が向
上していることがわかる。したがつて、優れた封
着性を安定して得るためには結晶粒度を粒度番号
8.0以上にすることが有効である。 以上、述べたように本発明合金は優れた封着性
を有しており、従来42Ni−6Cr−Fe合金が使用さ
れていた、高品質を要求される部品にも十分使用
でき、しかも42Ni−6Cr−Fe合金よりもはるかに
安価に製造できる工業的に極めて有用な合金であ
る。
[Object of the Invention] The present invention relates to an alloy for sealing soft glass. [Prior art] As alloys conventionally used for sealing with soft glass, Ni-Cr-Fe alloys (42Ni-6Cr-Fe),
Cr-Fe alloys (18Cr-Fe, etc.) are known. Among these, the 42Ni-6Cr-Fe alloy is used in various sealed bodies because its coefficient of thermal expansion closely matches that of soft glass and its sealing strength is particularly excellent. On the other hand, Cr--Fe alloys have the disadvantage of poor sealing properties. That is, although an oxide film is formed prior to glass sealing, there are two problems: the adhesion between this oxide film and the base metal is weak, and the wettability between this oxide film and the glass is poor. Due to this drawback, 42Ni−6Cr− is often used for parts that require high quality.
Currently, Fe alloys are used. However, the 42Ni−6Cr−Fe alloy contains 42% by weight of expensive Ni.
However, there is a strong demand for inexpensive materials with equivalent sealing properties. In response to these demands, and as a result of various studies on Cr-Fe alloys, the present invention has been developed to improve the above-mentioned drawbacks, to have high sealing properties, and to be an inexpensive substitute for 42Ni-6Cr-Fe alloys. It provides alloys. i.e. Cr15-30% by weight%, C0.002
% or less, O 0.015% or less, Ni 0.025% or less,
A glass sealing alloy consisting of H0.0005% or less, P0.05% or less, S0.05% or less, the balance Fe and unavoidable impurities, and Cr15-30% by weight, C0.02% or less,
O 0.015% or less, N 0.025% or less, H 0.0005% or less,
P0.05% or less, S0.05% or less, Si0.1 as a subcomponent
~3%, Mn0.1~1%, Al0.05~1%, one or more of them, the balance being Fe and unavoidable impurities, and Cr15~30 by weight%
%, C0.02% or less, O0.015% or less, N0.025% or less, H0.0005% or less, P0.05% or less, S0.05% or less,
As subcomponents: Ti >0.05~1%, Zr0.05~1%,
Nb0.05~1%, Cu0.01~2%, Mo0.01~3%,
Mg0.01~0.5%, Ca0.01~0.5%, V0.01~0.5%,
One or more types among B0.005-0.2%, balance
An alloy for glass sealing consisting of Fe and unavoidable impurities, and Cr15-30% by weight, C0.02% or less,
O 0.015% or less, N 0.025% or less, H 0.0005% or less,
P0.05% or less, S0.05% or less, Si0.1 as a subcomponent
~3%, Mn0.1~1%, Al0.05~1%, one or more of them, and more than Ti0.05 ~1%, Zr0.05~1
%, Nb0.05~1%, Cu0.01~2%, Mo0.01~3
%, Mg0.01~0.5%, Ca0.01~0.5%, V0.01~0.5
%, one or more of B0.005-0.2%,
The present invention relates to an alloy for glass sealing consisting of the balance Fe and unavoidable impurities, and an alloy for glass sealing having a crystal grain size of 8.0 or more. Next, the reasons for limiting the composition of the alloy of the present invention will be explained. Cr has a great influence on compatibility with glass, that is, as an element that approximates the coefficient of thermal expansion of glass. If the Cr content exceeds 30%, the thermal expansion properties are no longer compatible with glass, and the processability deteriorates due to hardening due to precipitation of the δ phase, making it unsuitable as a sealing alloy. It is possible to lower the Cr content to around 10%, but if it is too low, the thermal expansion coefficient will decrease, so in order to maintain a more stable thermal expansion coefficient to approximate that of glass, the Cr content must be lowered. 15-30
%is necessary. If C is contained in excess of 0.02%, bubbles are likely to form in the glass during sealing, significantly degrading the sealing strength. For this reason, the upper limit of the C content was set at 0.02%. O is an element that greatly affects the formation of an oxide film and sealing, and if it is contained in an amount exceeding 0.015%, the oxide film becomes uneven and the density of the oxide film deteriorates, resulting in a significant loss of sealing strength. Furthermore, in the worst case, bubbles are created in the glass during sealing, making it impossible to obtain satisfactory sealing performance. Therefore, the upper limit of the O content was set at 0.015%. Like O, N is an element that greatly affects sealing properties.
If the N content exceeds 0.025%, the sealing strength will be significantly impaired, so the upper limit of the N content was set at 0.025%. H is also an element that greatly affects the sealing property and has a value of 0.0005
The upper limit of the H content was set at 0.0005% because the sealing strength would be significantly impaired if the H content exceeded 0.0005%. If P exceeds 0.05%, oxidation unevenness tends to occur, so the upper limit was set at 0.05%. If S exceeds 0.05%, oxidation unevenness tends to occur, and the adhesion between the oxide film and the base metal decreases, so the upper limit was set at 0.05%. As a subcomponent, Si forms a concentrated layer of Si between the Cr oxide layer and the base metal during oxidation treatment, improving the adhesion between the oxide film and the base metal, but if it is less than 0.1%, it has no effect. If the content exceeds 3%, the thermal expansion characteristics will change and workability will deteriorate, which is not preferable. Mn forms an oxide with good wettability of glass in the outer layer of the oxide film and improves the wettability between the oxide film and glass, but it has no effect if it is less than 0.1%, and the oxidation rate increases if it is contained in more than 1%. As a result, the oxide film becomes too thick, making it unsuitable for sealing. Al improves the adhesion strength between the oxide film and the base metal, but
If the content is less than 0.05%, there is no effect, and if the content exceeds 1%, the thermal expansion characteristics change, which is not preferable. Furthermore, it is also effective to add a trace amount of an element that improves sealing properties to materials used in advanced parts that require even higher sealing properties. That is, more than 0.05 to 1% of Ti as a subcomponent,
Zr0.05~1%, Nb0.05~1%, Cu0.01~2%,
Mo0.01~3%, Mg0.01~0.5%, Ca0.01~0.5%,
When one or more of V0.01-0.5% and B0.005-0.2% is contained, the sealing property is further improved. The reason for adding these subcomponents and the reason for limiting the range of the components will be described below. Ti improves the adhesion between the oxide film and the base metal, but
If it is less than 0.05%, there is no effect, and if it exceeds 1%, workability becomes poor and the oxide film tends to become uneven. Zr improves the adhesion between the oxide film and the base metal and the wettability of the oxide film with the glass, but if it is less than 0.05% it has no effect, and if it exceeds 1% it impairs workability. Nb improves the adhesion between the oxide film and the base metal, but
If it is less than 0.05%, it has no effect, and if it exceeds 1%, it impairs processability. Cu densifies the oxide film and improves sealing properties, but
If it is less than 0.01%, there is no effect, and if it exceeds 2%, the oxide film becomes too thick and is unsuitable for sealing. Mo improves the adhesion between the oxide film and the base metal, but
If it is less than 0.01%, it is ineffective, and if it exceeds 3%, it impairs workability and tends to cause uneven oxidation. Mg improves the adhesion between the oxide film and the base metal and the wettability of the oxide film with glass, but if it is less than 0.01%, it is ineffective, and if it exceeds 0.5%, the oxide film becomes too thick, which is undesirable. Ca improves the adhesion between the oxide film and the base metal, but
If it is less than 0.01%, there is no effect, and if it exceeds 0.5%, oxidation unevenness tends to occur, which is not preferable. V improves the adhesion between the oxide film and the base metal, but
If it is less than 0.01%, it is ineffective, and if it exceeds 0.5%, it impairs workability and tends to cause uneven oxidation. B improves the adhesion between the oxide film and the base metal and the wettability between the oxide film and the glass, but if it is less than 0.005% it has no effect, and if it exceeds 0.2% it tends to cause oxidation unevenness. The alloy components of the present invention have been explained above, but
It was confirmed that even better sealing properties could be stably obtained by appropriately controlling the grain size of these alloys. That is, when the crystal grain size is grain size number 8.0 or more, it has better sealing properties. Next, the present invention will be explained in detail with reference to examples. [Example] Tables 1 and 2 show the alloy of the present invention and comparative examples. Each alloy is melted and cast in a vacuum high-frequency induction melting furnace, then heat treated and rolled repeatedly to produce a plate with a thickness of 0.5 mm.
Finished in board material. After degreasing the surface of this sample, it was heated in wet hydrogen at 950° C. for 2 hours to form an oxide film on the surface, and then subjected to a sealing test with glass. Adhesion strength was measured by a tensile test after sealing the glass. Samples Nos. 1 to 43 are alloys of the present invention, and comparative alloys are Nos. 44 to 50. The alloy of the present invention exhibits an adhesion strength of 2.7 Kg/mm 2 or more and is suitable as an alloy for sealing. Among them, No. 3 containing Si, Mn, and Al
~10 and Nos. 11 to 26 with added elements such as Ti have an adhesion strength of 2.9Kg/mm2 or more , and Nos. 27 to 43 with additions of elements such as Si, Mn, Al, and Ti have an adhesion strength of 4.0Kg/mm 2 or more, making it ideal for sealing alloys. On the other hand, some comparative alloys have C, O, N, and H contents that exceed the allowable amounts of the present invention, and therefore have poor adhesion strength.
It is only 1.0Kg/ mm2 , and Si, Mn, Al and Ti
Even if such elements are added, the amount will be only 2.0Kg/mm 2 at most, so it is not suitable as a sealing alloy. Next, regarding the influence of grain size, No. 1, 6,
Table 3 shows the results of tests conducted using 25 and 40 as test materials. It can be seen from Table 3 that as the crystal grains become smaller, the adhesion strength improves. Therefore, in order to stably obtain excellent sealing properties, the crystal grain size must be determined by the grain size number.
It is effective to set it to 8.0 or higher. As mentioned above, the alloy of the present invention has excellent sealing properties, and can be fully used in parts that require high quality, for which 42Ni-6Cr-Fe alloys were conventionally used. It is an industrially extremely useful alloy that can be manufactured much cheaper than 6Cr-Fe alloy.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%でCr15〜30%、C0.02%以下、O0.015
%以下、N0.025%以下、H0.0005%以下、P0.05
%以下、S0.05%以下、残部Fe及び不可避的不純
物からなるガラス封着用合金。 2 合金の結晶粒度が粒度番号8.0以上である特
許請求の範囲第1項記載のガラス封着用合金。 3 重量%でCr15〜30%、C0.02%以下、O0.015
%以下、N0.025%以下、H0.0005%以下、P0.05
%以下、S0.05%以下、副成分としてSi0.1〜3
%、Mn0.1〜1%、Al0.05〜1%のうち1種また
は2種以上、残部Fe及び不可避的不純物からな
るガラス封着用合金。 4 合金の結晶粒度が粒度番号8.0以上である特
許請求の範囲第3項記載のガラス封着用合金。 5 重量%でCr15〜30%、C0.02%以下、O0.015
%以下、N0.025%以下、H0.0005%以下、P0.05
%以下、S0.05%以下、副成分としてTi0.05超〜
1%、Zr0.05〜1%、Nb0.05〜1%、Cu0.01〜
2%、Mo0.01〜3%、Mg0.01〜0.5%、Ca0.01〜
0.5%、V0.01〜0.5%、B0.005〜0.2%のうち1種
または2種以上、残部Fe及び不可避的不純物か
らなるガラス封着用合金。 6 合金の結晶粒度が粒度番号8.0以上である特
許請求の範囲第5項記載のガラス封着用合金。 7 重量%でCr15〜30%、C0.02%以下、O0.015
%以下、N0.025%以下、H0.0005%以下、P0.05
%以下、S0.05%以下、副成分としてSi0.1%〜3
%、Mn0.1〜1%、Al0.05〜1%のうち1種また
は2種以上及びTi0.05超〜1%、Zr0.05〜1%、
Nb0.05〜1%、Cu0.01〜2%、Mo0.01〜3%、
Mg0.01〜0.5%、Ca0.01〜0.5%、V0.01〜0.5%、
B0.005〜0.2%のうち1種または2種以上、残部
Fe及び不可避的不純物からなるガラス封着用合
金。 8 合金の結晶粒度が粒度番号8.0以上である特
許請求の範囲第7項記載のガラス封着用合金。
[Claims] 1. Cr15-30%, C0.02% or less, O0.015 in weight%
% or less, N0.025% or less, H0.0005% or less, P0.05
% or less, S0.05% or less, balance Fe and unavoidable impurities. 2. The glass sealing alloy according to claim 1, wherein the crystal grain size of the alloy is grain size number 8.0 or more. 3 Cr15-30% by weight, C0.02% or less, O0.015
% or less, N0.025% or less, H0.0005% or less, P0.05
% or less, S0.05% or less, Si0.1-3 as a subcomponent
%, Mn0.1-1%, Al 0.05-1%, and one or more of them, the balance being Fe and unavoidable impurities. 4. The glass sealing alloy according to claim 3, wherein the crystal grain size of the alloy is grain size number 8.0 or more. 5 Cr15-30% by weight, C0.02% or less, O0.015
% or less, N0.025% or less, H0.0005% or less, P0.05
% or less, S0.05% or less, Ti over 0.05 as a subcomponent
1%, Zr0.05~1%, Nb0.05~1%, Cu0.01~
2%, Mo0.01~3%, Mg0.01~0.5%, Ca0.01~
A glass sealing alloy consisting of one or more of 0.5%, V0.01-0.5%, and B0.005-0.2%, with the balance being Fe and inevitable impurities. 6. The glass sealing alloy according to claim 5, wherein the crystal grain size of the alloy is grain size number 8.0 or more. 7 Cr15-30% by weight, C0.02% or less, O0.015
% or less, N0.025% or less, H0.0005% or less, P0.05
% or less, S0.05% or less, Si0.1% to 3 as a subcomponent
%, one or more of Mn0.1-1%, Al0.05-1%, Ti over 0.05-1%, Zr0.05-1%,
Nb0.05~1%, Cu0.01~2%, Mo0.01~3%,
Mg0.01~0.5%, Ca0.01~0.5%, V0.01~0.5%,
One or more types among B0.005-0.2%, balance
Glass sealing alloy consisting of Fe and unavoidable impurities. 8. The glass sealing alloy according to claim 7, wherein the crystal grain size of the alloy is grain size number 8.0 or more.
JP26824084A 1984-12-21 1984-12-21 Alloy for sealing glass Granted JPS61147850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26824084A JPS61147850A (en) 1984-12-21 1984-12-21 Alloy for sealing glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26824084A JPS61147850A (en) 1984-12-21 1984-12-21 Alloy for sealing glass

Publications (2)

Publication Number Publication Date
JPS61147850A JPS61147850A (en) 1986-07-05
JPH027387B2 true JPH027387B2 (en) 1990-02-16

Family

ID=17455845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26824084A Granted JPS61147850A (en) 1984-12-21 1984-12-21 Alloy for sealing glass

Country Status (1)

Country Link
JP (1) JPS61147850A (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNUAL BOOK OF ASTM STANDARDS=1981 *
TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME=1963 *

Also Published As

Publication number Publication date
JPS61147850A (en) 1986-07-05

Similar Documents

Publication Publication Date Title
JPH0321622B2 (en)
JPH11229095A (en) Nonoriented silicon steel sheet for high frequency use and its production
JPH027387B2 (en)
JPS6244526A (en) Manufacture of alloy for sealing glass
JPS6151622B2 (en)
JPS61147851A (en) Alloy for sealing glass
JPH02236255A (en) Alloy for glass sealing
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPS6244525A (en) Manufacture of alloy for sealing glass
JPS62287047A (en) Ferrous alloy for semiconductor device lead
JPH04231418A (en) Production of lead frame material
JPS6227550A (en) Alloy for sealing glass
JPH0288746A (en) High permeability magnetic material
JPS6270542A (en) Cu-alloy lead material for semiconductor device
JPH04350147A (en) Alloy for glass sealing
JPS6142776B2 (en)
JPH04160112A (en) Production of lead frame material
JPH0468380B2 (en)
JPH05156392A (en) Bent member for damper
JPH09194938A (en) Production of formed part of ferritic stainless steel, excellent in magnetic property
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JPH04221039A (en) Alloy material for lead frame and its production
JPH0413828A (en) Al alloy foil for al electrolytic capacitor cathode
JPS61264149A (en) Aluminum alloy sheet for can superior in formability
KR100502854B1 (en) Chromuium-based stainless steel of good bonding ability to glass and acid resistance after high heat treatment