JPH02236224A - Production of high tensile steel plate excellent in toughness - Google Patents

Production of high tensile steel plate excellent in toughness

Info

Publication number
JPH02236224A
JPH02236224A JP5760989A JP5760989A JPH02236224A JP H02236224 A JPH02236224 A JP H02236224A JP 5760989 A JP5760989 A JP 5760989A JP 5760989 A JP5760989 A JP 5760989A JP H02236224 A JPH02236224 A JP H02236224A
Authority
JP
Japan
Prior art keywords
steel
ferrite
cooling rate
transformation point
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5760989A
Other languages
Japanese (ja)
Inventor
Takehide Senuma
武秀 瀬沼
Satoshi Akamatsu
聡 赤松
Hiroshi Yada
浩 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5760989A priority Critical patent/JPH02236224A/en
Publication of JPH02236224A publication Critical patent/JPH02236224A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a steel plate well balanced between strength and toughness by continuously casting a molten steel having a composition in which respective contents of C, Mn, and S are specified under specific conditions, applying slight-degree working in which total amount of strain is specified to the resulting cast slab, and then controlling cooling. CONSTITUTION:A steel having a composition consisting of, by weight, <=0.20% C, 0.6-3.0% Mn, 0.002-0.1% S, and the balance Fe with inevitable impurities is refined. The resulting molten steel is continuously cast while controlling average cooling rate in the range from solidification to the Ar3 transformation point to 1-30 deg.C/sec. The resulting cast slab is subjected, in the as-rolled state or in a temp. region of the Ar3 transformation point or above, to slight- degree working, such as light draft rolling of >=one pass in which total amount of strain is regulated to <=0.1 by logarithmic strain. Then, cooling is carried out while controlling average cooling rate from 900 down to 600 deg.C to >=10 deg.C/sec. By this method, the formation of ferrite can be inhibited and a fine ferritic bainite structure can be formed by means of slight-degree working alone. Moreover, if Ti is added to the above steel composition so that the relationship between Ti content and the content of inevitably contained N satisfies Ti>(48/14).N and further 0.0003-0.01% B is added, the intergranular nucleation of ferrite can be inhibited.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鋳造まま或は鋳造後の軽加工例えば軽圧下圧
延によって、優れた強度・靭性バランスを有する鋼板を
製造する方法に関するものである. 口従来の技術] 高い靭性を有する鋼板を製造する方法の基本的な考え方
は、フエライト粒を微細にし、バーライトの生成を抑制
することである。この考え方に従ッテ、低炭素系((≦
0.05wt%r) ニNb,Ti.B等を添加した高
張力Mn鋼 (lJn≧1 . 5 w tU が開発
されてレ)る (丁oyqard Improved 
Ductility andToughness,Cl
imax  Molibdanum  Company
,kyoto,1971,p.101〜117)。この
種の鋼は、低炭素化によりパーライトの生成を抑制し、
Nb,Ti.Mnの添加による制御圧延の効果を利用し
てフエライトの綿粒化を図ったものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a steel plate having an excellent balance of strength and toughness, either as cast or by light processing after casting, such as light reduction rolling. .. [Background Art] The basic idea of a method for manufacturing a steel plate with high toughness is to make ferrite grains fine and suppress the formation of barite. Following this idea, low-carbon systems ((≦
0.05wt%r) NiNb, Ti. High tensile strength Mn steel (lJn≧1.5 wtU) containing B, etc. has been developed.
Ductility and Toughness,Cl
imax Molibdanum Company
, Kyoto, 1971, p. 101-117). This type of steel suppresses the formation of pearlite due to its low carbon content,
Nb, Ti. This is an attempt to turn ferrite into cotton grains by utilizing the effect of controlled rolling by adding Mn.

一方、最近、鋼板の製造分野においては、製造コストの
低減のため、工程の簡略化や直行化が強く指向されて鮒
ている。製品厚さに近い厚さの薄帯を連続鋳造によって
得る技術もかかる指向の一つの現れと言える。しかしな
がら、鋳造のままの鋼材のオーステナイト粒径は通常数
mmであり、従来の熱間圧延工程によって達成される鋼
材のオーステナイト粒径に比し極めて粗大であるため、
変態後のフエライト組織も粗くなる傾向がある。これは
、フエライト粒の優先生成サイトが通常オーステナイト
粒界であることに起因している。このような粗大な組織
は、鋼材の強度・靭性バラスを劣化させる。
On the other hand, recently, in the field of manufacturing steel sheets, there has been a strong trend toward simplifying and directing processes in order to reduce manufacturing costs. The technology of obtaining a thin strip with a thickness close to that of the product by continuous casting can be said to be one manifestation of this trend. However, the austenite grain size of as-cast steel is usually several mm, which is extremely coarse compared to the austenite grain size of steel that is achieved through the conventional hot rolling process.
The ferrite structure after metamorphosis also tends to become coarser. This is because the preferential production site of ferrite grains is usually an austenite grain boundary. Such a coarse structure deteriorates the balance of strength and toughness of the steel material.

このような粗大フエライトの生成を抑制し、組織の微細
化を図る方法として、鋼中に微細分散する酸化物等を有
効に利用してオーステナイト粒界でけではなく粒内から
もフエライト変態を起こさせることにより極めて微細な
組織を得る技術が開発されている。
As a method to suppress the formation of such coarse ferrite and refine the structure, it is possible to effectively utilize oxides etc. finely dispersed in steel to induce ferrite transformation not only at the austenite grain boundaries but also from within the grains. A technique has been developed to obtain an extremely fine structure by

このような技術を鋼板の製造に通用した例としては、特
開昭61−213322号公報に開示されているTi系
酸化物を変態の核としたものがあり、鋼中酸化物の粒子
径や分散量について検討されている。
An example of applying such technology to the production of steel sheets is the one disclosed in JP-A No. 61-213322, in which Ti-based oxides are used as the core of transformation, and the particle size of the oxides in steel and The amount of dispersion is being considered.

[発明が解決しようとする課題] 鋳造まま或はオーステナイト域での軽加工たとえば軽圧
下圧延のみで微細なフエライト組織を得るには、前述し
た特開昭61−213322号公報に開示されているよ
うに、溶製工程での酸化物系介在物の正確な制御が必要
である。しかしながら、かかる制御は酸化物形成元素の
添加時期等微妙な操作の相違によりバラツキが大きく、
安定してフエライト組織を微細化するのが難しい。
[Problems to be Solved by the Invention] In order to obtain a fine ferrite structure by light processing of as-cast or austenite region, such as light reduction rolling, as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 61-213322, Therefore, it is necessary to accurately control oxide inclusions during the melting process. However, such control has large variations due to subtle differences in operations such as the timing of addition of oxide-forming elements.
It is difficult to stably refine the ferrite structure.

本発明は、鋳造まま或はオーステナイト域での軽加工た
とえば軽圧下圧延のみでバーライトの生成を抑制し、微
細なフエライト・ベーナイト組織を有する、靭性に優れ
た高張力鋼板を製造する方法を提供することを口的とし
てなされた。
The present invention provides a method for manufacturing a high-strength steel sheet with excellent toughness, which suppresses the formation of barite by only light processing such as light reduction rolling in the as-cast state or in the austenite region, and has a fine ferrite-bainite structure. It was done verbally.

[課題を解決するための手段コ 本発明の特徴とする処は、 1 重量%で、C≦0.21、Mn:0.6 〜3.0
%、S:G.002 〜(1.目を含み、残部:Feお
よび不可避的不純物からなる溶鋼を、凝固からAr3変
態点までの平均冷却速度を1〜3ot /sとして連続
鋳造し、鋳造まま或はAr3変態点以上の温度域で総歪
量が対数歪で 1.0以下となる1パス以上の軽加工を
加えた後、 qoo’eからaOO℃までの平均冷却速
度をlot/s以上として冷却することを特徴とする靭
性に優れた高張力鋼板の製造方法。
[Means for Solving the Problems] The features of the present invention are as follows: 1% by weight, C≦0.21, Mn: 0.6 to 3.0
%, S:G. 002 ~ (1) Molten steel consisting of 1. and the rest: Fe and unavoidable impurities is continuously cast at an average cooling rate of 1 to 3 ot/s from solidification to the Ar3 transformation point, and is cast as-cast or at the Ar3 transformation point or higher. It is characterized by applying one or more light processing steps such that the total amount of strain becomes 1.0 or less in logarithmic strain in the temperature range of A method for manufacturing high-strength steel sheets with excellent toughness.

2 重量%テ、C≦0.20%i, Mn+0.6 〜
3.0%F,S:0.002〜0.1kを含みさらに、
不可避的に含まれるNとの関係がTi> (48/14
)・Nを満足する如くTiを添加するとともにBを0.
0003〜0.01零添加し、残部二Feおよび不可避
的不純物からなる溶鋼を、凝固からAr3変態点までの
平均冷却速度を1〜30℃/sとして連続鋳造し、鋳造
まま或は^r,変態点以上の温度域で総歪量が対数歪で
1.0以下となる1パス以上の軽加工を加えた後、 9
00t:から 600’Cまでの平均冷却速度を10℃
/s以上として冷却することを特徴とする靭性に擾れた
高張力鋼板の製造方法。
2 wt%te, C≦0.20%i, Mn+0.6 ~
Contains 3.0% F, S: 0.002 to 0.1k;
The relationship with N that is inevitably included is Ti> (48/14
)・N is added to satisfy Ti and B is added to 0.
Molten steel containing zero addition of 0003 to 0.01 and the remainder Fe and unavoidable impurities is continuously cast at an average cooling rate of 1 to 30°C/s from solidification to the Ar3 transformation point, and cast as-cast or ^r, After applying light processing for one or more passes in which the total strain becomes 1.0 or less in logarithmic strain in the temperature range above the transformation point, 9
00t: Average cooling rate from 600'C to 10°C
A method for producing a high tensile strength steel plate with poor toughness, characterized by cooling at a temperature of 1/s or more.

にある。It is in.

以下に、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の基本となる原理は、上記粒内変態であり、その
核として変態前に鋼中に存在する析出物を有効に利用す
る。このため、粒内変態を利用する技術にあっては、こ
れらの析出挙動を以下に制御するかが重要であり、上記
特開昭61−213322号公報に開示されている技術
では、鋼中の酸化物に注目し主として凝固時の温度制御
の重要性を述べている。
The basic principle of the present invention is the above-mentioned intragranular transformation, and the precipitates present in the steel before the transformation are effectively used as the nucleus. Therefore, in the technology that utilizes intragranular transformation, it is important to control these precipitation behaviors as follows. Focusing on oxides, he mainly discusses the importance of temperature control during solidification.

しかし、本発明者等は、フエライトの粒内核生成のメカ
ニズムを詳細に検討した結果、粒内核生成が粒界核生成
より優先的に起こるためには、ある量以上のMnとSの
添加が必要であることを解明した。これは、鋳造後γ/
α変態が起こる間に生成したMnSの折8物の近傍にM
nの枯渇帯が生じ、それに伴なってこの微小領域でのγ
/α変態温度(Ar3変態点)が高くなり変態が早く起
こるためであることが明らかになった。
However, as a result of a detailed study of the mechanism of intragranular nucleation in ferrite, the present inventors found that in order for intragranular nucleation to occur preferentially over grain boundary nucleation, it is necessary to add a certain amount of Mn and S. It was revealed that this is the case. This is γ/ after casting.
In the vicinity of the folded product of MnS generated during the α transformation, M
A depletion zone of n occurs, and along with this, γ in this small region
It has become clear that this is because the /α transformation temperature (Ar3 transformation point) becomes high and transformation occurs quickly.

上記MnS析出物近傍のMnの枯渇帯におけるMn濃度
は、Mnsの析出挙動と密接な関係があり、本発明者等
はこの析出挙動を明らかにするために、Mnsの析出モ
デルを作成し、これを用いてMn,S,C量および冷却
速度などパラメータとしてフエライトの粒内核生成を可
能ならしめる条件を求めることに成功した。本発明者等
は、これらの計算結果に基づいて実験を行ない、特別な
酸化物制御を行なうことなしに、通常の溶製工程の後に
、上記パラメータを制御することにより、安定して微細
な変態組織を形成する技術を確立した。
The Mn concentration in the Mn depletion zone near the MnS precipitate is closely related to the Mns precipitation behavior, and in order to clarify this precipitation behavior, the present inventors created a Mns precipitation model and Using this method, we succeeded in finding the conditions that enable intragranular nucleation of ferrite using parameters such as the amounts of Mn, S, and C and the cooling rate. The present inventors conducted experiments based on these calculation results, and found that by controlling the above parameters after the normal melting process without performing any special oxide control, stable and fine transformation could be achieved. Established technology for forming organizations.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

先ず、本発明における鋼の成分の限定理由を説明する。First, the reasons for limiting the components of steel in the present invention will be explained.

Cは、鋼材の強度を高めるために必要不可欠な元素であ
るが, 0.20零を超える過剰な量を添加すると、バ
ーライトの生成や、製品の溶接性を劣化させる問題を惹
起する。
C is an essential element for increasing the strength of steel materials, but when added in an excessive amount exceeding 0.20, it causes problems such as the formation of barite and deterioration of the weldability of the product.

一方、C含有量の下限については特に限定しないが、 
C量が極端に低くなると、フエライト変態時の界面の成
長速度が非常に高くなる。
On the other hand, the lower limit of C content is not particularly limited, but
When the C content becomes extremely low, the growth rate of the interface during ferrite transformation becomes extremely high.

従って、 Cは0.005!6以上とすることが望まし
い。
Therefore, it is desirable that C be 0.005!6 or more.

Mnは、本発明における成分系にあって最も重要な元素
の1つであり、Mn含有量が0,晴未満では、前述した
MnS近傍のMnの枯渇量が十分小さくならずフエライ
トの粒内核生成が十分起こらなくなる。一方、3.0!
6を超えるMnの添加は、製品の強度・靭性バランスを
劣化させる。
Mn is one of the most important elements in the component system of the present invention, and if the Mn content is less than 0.0%, the amount of Mn depleted near MnS described above will not become sufficiently small, resulting in intragranular nucleation of ferrite. does not occur enough. On the other hand, 3.0!
Addition of Mn exceeding 6 deteriorates the strength/toughness balance of the product.

S含有量を0.002〜0.196の範囲内に限定した
のは、 Sを0.002%i以上添加しないと、MnS
析出物が十分生成せずに粒内核生成サイトが少なくなり
、フエライトの微細化が十分達成ざれないからである。
The reason for limiting the S content to within the range of 0.002 to 0.196 is that if S is not added at 0.002%i or more, MnS
This is because the precipitates are not sufficiently generated and the number of intragranular nucleation sites decreases, making it impossible to achieve sufficient refinement of ferrite.

一方、製品の加工性を確保するためには、 S含有量は
0.1零以下でなければならない。
On the other hand, in order to ensure product processability, the S content must be 0.1 zero or less.

Tiを丁i> (4B/+4)・Nの関係を満足するよ
うに添加するのは、鋼中のNをTiNの形で析出させて
固INをなくし、 BがBNの形で析出することなく固
溶状態で粒界に偏析することを可能にし、フエライトの
粒界核生成を抑制するためである。
The reason why Ti is added to satisfy the relationship of D > (4B/+4)・N is that N in the steel is precipitated in the form of TiN, eliminating solid IN, and B is precipitated in the form of BN. This is to enable ferrite to segregate at grain boundaries in a solid solution state, thereby suppressing grain boundary nucleation of ferrite.

B添加量の下限は、粒界核生成を抑制するのに必要な最
小量であるO.OQO2’4であり、上限は、製品の加
工性の劣化が顕在化するO.Olkである。
The lower limit of the amount of B added is the minimum amount of O.B. required to suppress grain boundary nucleation. OQO2'4, and the upper limit is OQO2'4 at which deterioration of product processability becomes apparent. It's Olk.

そのほかに、製品の強度確保のために、Ni.Si,C
r,Mo,Cu,Nb,P等を添加することは、本発明
の趣旨を損なうものではない。
In addition, in order to ensure the strength of the product, Ni. Si,C
Addition of r, Mo, Cu, Nb, P, etc. does not impair the spirit of the present invention.

次に、製造条件の限定理由について説明する。Next, the reason for limiting the manufacturing conditions will be explained.

鋳造過程における、?8鋼の凝固から^r3変態点まで
の平均冷却速度の下限を1℃/sとしたのは、これ未満
の平均冷却速度で冷却すると、MnS近傍のMnの濃度
分布が、拡散時間が十分であることのためにγ/α変態
時には既に平滑化され、Mnの枯渇帯でのMn濃度が母
相の濃度と大差がなくなり、フエライトの粒内核生成が
顕著に起こらないからである。一方、溶鋼の凝固からA
r3変態点までの平均冷却速度の上限を30℃/sとし
たのは、これを超える平均冷却速度冷却すると、Mnが
枯渇帯を形成するに必要十分な拡散時間が得られず、冷
却が遅過ぎる場合と同様に、フエライトの粒内核生成が
十分に起こらないからである。即ち、MnS近傍にγ/
α変態点を顕著に上げるに必要なMnの枯渇帯を形成す
るために、1〜30℃/sの適正な冷却速度範囲が存在
する。
In the casting process? The lower limit of the average cooling rate from solidification to the ^r3 transformation point for Steel 8 was set at 1°C/s because if the average cooling rate is lower than this, the concentration distribution of Mn near MnS will change due to insufficient diffusion time. This is because the Mn concentration in the Mn depletion zone is not much different from the parent phase concentration because it is already smoothed during the γ/α transformation, and intragranular nucleation of ferrite does not occur significantly. On the other hand, from the solidification of molten steel, A
The reason why the upper limit of the average cooling rate to the r3 transformation point was set at 30°C/s is that if the average cooling rate exceeds this, sufficient diffusion time for Mn to form a depletion zone will not be obtained, and cooling will be slow. This is because, as in the case of too much ferrite, intragranular nucleation of ferrite does not occur sufficiently. That is, γ/ in the vicinity of MnS
An appropriate cooling rate range of 1 to 30° C./s exists to form the Mn depletion zone necessary to significantly raise the α transformation point.

一方、製品の表面性状ならびに板厚精度の向上のために
、加工たとえば圧延を行う場合は、材質の劣化が生じな
いAr,変態点以上の温度域で行わなければならない。
On the other hand, when processing, such as rolling, is carried out to improve the surface quality and plate thickness accuracy of the product, it must be carried out at a temperature above the Ar transformation point, which does not cause deterioration of the material.

そして、その加工量たとえば合計圧下量は、対数歪で1
.0以下にする必要がある。
The processing amount, for example, the total reduction amount is 1 in logarithmic strain.
.. It needs to be less than 0.

なぜならば、本発明におけるように粒内変態現象にとっ
て、粒界から生成するフエライトの形或は、組織の粗大
化、不均一化に繋がるため、そのサイトとなる粒界面積
は可及的に少ないことが望ましいからである。このよう
な立場では、加工によって再結晶が進行しオーステナイ
ト粒径が小さくなることは不利であるしまた、未再結晶
域での加工は粒界に歪を蓄積させ、粒界の変態に対する
活性化を促すことになるためやはり好ましくない。
This is because, as in the present invention, the intragranular transformation phenomenon leads to the coarsening and non-uniformity of the shape of ferrite generated from the grain boundaries, and the coarsening and non-uniformity of the structure, so the grain boundary area serving as the site for this phenomenon is as small as possible. This is because it is desirable. In this situation, it is disadvantageous that recrystallization progresses and the austenite grain size decreases due to processing, and processing in non-recrystallized areas accumulates strain at grain boundaries, which increases the activation of grain boundaries for transformation. This is still undesirable because it encourages

上記のような、粒界からのフエライト生成を回避するた
めの臨界オーステナイト粒径はおおよそ200μmであ
り、凝固時に形成される初期粒径から考えて、総歪量が
対数歪で1.0以下となる加工であればこの条件を満足
し得る。
As mentioned above, the critical austenite grain size to avoid ferrite formation from grain boundaries is approximately 200 μm, and considering the initial grain size formed during solidification, the total strain should be 1.0 or less in terms of logarithmic strain. This condition can be satisfied if the processing is as follows.

また、変態時の冷却速度については、あまり低いと粒界
で生成したフエライトが成長し組織が粗大化するため、
900℃から6On℃までを急冷する。この温度範囲で
生成する粒界生成フエライトの変態を制御し、変態の過
冷度が十分高くなった600℃近傍より粒内変態を起こ
させることが必要である。これらのことから、本発明に
おいては900℃から600℃の温度範囲における冷却
速度を10℃/s以上と限定する。
In addition, regarding the cooling rate during transformation, if the cooling rate is too low, ferrite generated at grain boundaries will grow and the structure will become coarse.
Rapidly cool from 900°C to 6On°C. It is necessary to control the transformation of the grain boundary-generated ferrite generated in this temperature range, and to cause the intragranular transformation to occur from around 600° C., when the degree of supercooling of the transformation has become sufficiently high. For these reasons, in the present invention, the cooling rate in the temperature range of 900°C to 600°C is limited to 10°C/s or more.

[実 施 例コ 第1表に、真空溶解によって製造した供試鋼の化学成分
を示す. 第2表に、製造条件および製品の強度、破而遷穆温度(
vTrs)の値を示す。
[Example Table 1 shows the chemical composition of the test steel manufactured by vacuum melting. Table 2 shows the manufacturing conditions, product strength, and breakdown temperature (
vTrs).

本発明の方法で製造したNo.2.3,7,9.10お
よびl2は、MnSを核にした微細な針状フェライトが
生成しており、優れた靭性を示した。試料No.9は、
Ti,Bが添加されていないため、粒界からもフエライ
トが生成しており、Ti,Bを含有する同成分の試料N
o.2よりも若干破面遷穆温度( vTrs )の値が
高い.しかし、本発明の範囲外の試料に比べると、優れ
た靭性を示している。
No. produced by the method of the present invention. In samples 2.3, 7, 9.10, and 12, fine acicular ferrite with MnS as the nucleus was formed and exhibited excellent toughness. Sample No. 9 is
Since Ti and B are not added, ferrite is also generated from the grain boundaries, and sample N with the same composition contains Ti and B.
o. The value of fracture surface transition temperature (vTrs) is slightly higher than that of No. 2. However, it shows superior toughness compared to samples outside the scope of the present invention.

凝固からAr=変態点までの平均冷却速度が1〜30℃
/sの範囲に入っていない試料No.1.4,8.11
および13では、粒内フェライトの生成が十分起こらず
組織の粗大化を生じた。
Average cooling rate from solidification to Ar=transformation point is 1-30℃
Sample No. that is not within the range of /s. 1.4, 8.11
In No. 1 and No. 13, the generation of intragranular ferrite did not occur sufficiently, resulting in coarsening of the structure.

また、合計圧下率が7096の試料No.5は、粒界か
ら粗大なフエライトが生成し、靭性が悪かった. 900℃から600℃までの温度域における平均冷却速
度が5℃八と低かった試料No.6でも同様に粒界から
粗大なフエライトが生成し、破面遷移温度( vTrs
 )の値を高める結果になった。
In addition, sample No. with a total rolling reduction of 7096. In No. 5, coarse ferrite was formed from the grain boundaries and the toughness was poor. Sample No. had a low average cooling rate of 5°C in the temperature range from 900°C to 600°C. 6, coarse ferrite is similarly generated from the grain boundaries, and the fracture surface transition temperature (vTrs
) resulted in an increase in the value of

比較として、鋼Eを1250℃に加熱し、合計圧下率9
3.情で850℃で仕上げた制御圧延材の抗張力および
破面遷移温度(vTrs)の値を求めた。
For comparison, steel E was heated to 1250°C and the total reduction rate was 9.
3. The tensile strength and fracture surface transition temperature (vTrs) of a control-rolled material finished at 850°C were determined.

抗張力は78kg/mm’、破面遷移温度(vTrs)
の値は−93℃であった。この値と試料No.12の比
較から明らかな如く、本発明による鋼は、鋳造と簡単な
加工という低コストかつ簡潔なプロセスであるにも拘ら
ず、制御圧延材とほぼ同等の靭性を示す。而して、薄肉
連続鋳造プロセスにおいても、本発明によるときは、従
来技術による鋼板と同等の特性を有するW4仮を製造す
ることができる。
Tensile strength is 78 kg/mm', fracture surface transition temperature (vTrs)
The value was -93°C. This value and sample No. As is clear from the comparison of No. 12, the steel according to the present invention exhibits almost the same toughness as the controlled rolled material despite the low cost and simple process of casting and simple processing. Accordingly, even in a thin-walled continuous casting process, according to the present invention, it is possible to produce a W4 material having properties equivalent to those of steel sheets produced by the prior art.

[発明の効果コ 以上述べたように、本発明は、低コスト化を狙ったプロ
セスの極限である薄肉連続鋳造プロセスによるときも、
従来技術によって得られた鋼板に比べて遜色のない強度
・靭性バランスを有する鋼板の製造を可能にし、高い工
業的価値がある。
[Effects of the invention] As described above, the present invention has the advantage that even when using a thin-wall continuous casting process, which is the ultimate process aiming at cost reduction,
It makes it possible to manufacture steel plates with a balance of strength and toughness that is comparable to steel plates obtained by conventional techniques, and has high industrial value.

他4名4 others

Claims (1)

【特許請求の範囲】 1 重量%で、C≦0.20%、Mn:0.6〜3.0
%、S:0.002〜0.1%を含み、残部:Feおよ
び不可避的不純物からなる溶鋼を、凝固からAr_3変
態点までの平均冷却速度を1〜30℃/sとして連続鋳
造し、鋳造まま或はAr_3変態点以上の温度域で総歪
量が対数歪で1.0以下となる1バス以上の軽加工を加
えた後、900℃から600℃までの平均冷却速度を1
0℃/s以上として冷却することを特徴とする靭性に優
れた高張力鋼板の製造方法。 2 重量%で、C≦0.20%、Mn:0.6〜3.0
%、S:0.002〜0.1%を含みさらに、不可避的
に含まれるNとの関係がTi>(48/14)・Nを満
足する如くTiを添加するとともにBを0.0003〜
0.01%添加し、残部:Feおよび不可避的不純物か
らなる溶鋼を、凝固からAr_3変態点までの平均冷却
速度を1〜30℃/sとして連続鋳造し、鋳造まま或は
Ar_3変態点以上の温度域で総歪量が対数歪で1.0
以下となる1バス以上の軽加工を加えた後、900℃か
ら600℃までの平均冷却速度を10℃/s以上として
冷却することを特徴とする靭性に優れた高張力鋼板の製
造方法。
[Claims] 1% by weight, C≦0.20%, Mn: 0.6-3.0
%, S: 0.002 to 0.1%, and the remainder: Fe and unavoidable impurities. Molten steel is continuously cast at an average cooling rate of 1 to 30°C/s from solidification to Ar_3 transformation point. After applying light processing for one or more baths in which the total strain becomes 1.0 or less in terms of logarithmic strain in the temperature range above or above the Ar_3 transformation point, the average cooling rate from 900℃ to 600℃ is reduced to 1.
A method for producing a high tensile strength steel plate with excellent toughness, characterized by cooling at 0° C./s or more. 2% by weight, C≦0.20%, Mn: 0.6-3.0
%, S: 0.002 to 0.1%, and furthermore, Ti is added so that the relationship with N that is unavoidably included satisfies Ti>(48/14)・N, and B is added from 0.0003 to 0.1%.
Molten steel with 0.01% addition and the balance consisting of Fe and unavoidable impurities is continuously cast at an average cooling rate of 1 to 30°C/s from solidification to the Ar_3 transformation point, and is cast as-cast or at a temperature above the Ar_3 transformation point. The total strain in the temperature range is 1.0 in terms of logarithmic strain.
A method for manufacturing a high-strength steel sheet with excellent toughness, which comprises performing one or more light workings as described below, and then cooling at an average cooling rate of 10°C/s or more from 900°C to 600°C.
JP5760989A 1989-03-09 1989-03-09 Production of high tensile steel plate excellent in toughness Pending JPH02236224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5760989A JPH02236224A (en) 1989-03-09 1989-03-09 Production of high tensile steel plate excellent in toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5760989A JPH02236224A (en) 1989-03-09 1989-03-09 Production of high tensile steel plate excellent in toughness

Publications (1)

Publication Number Publication Date
JPH02236224A true JPH02236224A (en) 1990-09-19

Family

ID=13060603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5760989A Pending JPH02236224A (en) 1989-03-09 1989-03-09 Production of high tensile steel plate excellent in toughness

Country Status (1)

Country Link
JP (1) JPH02236224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646656A1 (en) 1993-04-26 1995-04-05 Nippon Steel Corporation Sheet steel excellent in flanging capability and process for producing the same
US6585030B2 (en) 2000-09-29 2003-07-01 Nucor Corporation Method of producing steel strip
US11655519B2 (en) 2017-02-27 2023-05-23 Nucor Corporation Thermal cycling for austenite grain refinement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0646656A1 (en) 1993-04-26 1995-04-05 Nippon Steel Corporation Sheet steel excellent in flanging capability and process for producing the same
US6585030B2 (en) 2000-09-29 2003-07-01 Nucor Corporation Method of producing steel strip
US6818073B2 (en) 2000-09-29 2004-11-16 Nucor Corporation Method of producing steel strip
US11655519B2 (en) 2017-02-27 2023-05-23 Nucor Corporation Thermal cycling for austenite grain refinement

Similar Documents

Publication Publication Date Title
JP3800836B2 (en) Manufacturing method of steel with excellent strength and toughness
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JP2002256379A (en) Steel for high heat input welding
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPH02236224A (en) Production of high tensile steel plate excellent in toughness
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH083635A (en) Production of steel plate excellent in toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JPH06279848A (en) Yield point controlled shape steel
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
JP2543459B2 (en) High strength hot rolled steel sheet with good workability and weldability
JP2682691B2 (en) High strength steel sheet manufacturing method
JPS61213322A (en) Production of steel plate
JPS5828327B2 (en) Method for producing ultra-low carbon high tensile strength steel with extremely excellent ductility
JPH05230529A (en) Production of high strength hot rolled steel plate excellent in workability and weldability
JPH0617125A (en) Production of hot rolled steel plate for line pipe
JP3043518B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPH0445223A (en) Production of thick tough steel plate free from segregation
JPH08283844A (en) Production of thick four resistant steel plate excellent in toughness
JPH01176030A (en) Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method
JPH08157957A (en) Production of high strength hot rolled steel plate excellent in stretch flange workability
JPH04350119A (en) Production of thick steel plate having homogeneous quality
JPH05331538A (en) Manufacture of thick high toughness and high tensile strength steel plate excellent in toughness on central part of plate thickness