JPH08157957A - Production of high strength hot rolled steel plate excellent in stretch flange workability - Google Patents

Production of high strength hot rolled steel plate excellent in stretch flange workability

Info

Publication number
JPH08157957A
JPH08157957A JP33472294A JP33472294A JPH08157957A JP H08157957 A JPH08157957 A JP H08157957A JP 33472294 A JP33472294 A JP 33472294A JP 33472294 A JP33472294 A JP 33472294A JP H08157957 A JPH08157957 A JP H08157957A
Authority
JP
Japan
Prior art keywords
less
temperature
hot
range
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33472294A
Other languages
Japanese (ja)
Inventor
Takahiro Kashima
高広 鹿島
Ichiro Tsukatani
一郎 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33472294A priority Critical patent/JPH08157957A/en
Publication of JPH08157957A publication Critical patent/JPH08157957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a hot rolled steel plate, in which a part or the whole of structure is formed into bainitic ferrite structure and which has excellent stretch-flange formability, by hot-rolling a slab of low carbon steel of specific composition under specific conditions and subjecting the resultant plate to rapid cooling and to coiling. CONSTITUTION: A low carbon steel, which has a composition containing, by weight, 0.02-0.10% C, <1.0% Si, <3.0% Mn, <0.1% P, <0.01% S, and 0.1-1.0% Ti in the range satisfying the inequality in the relations among the contents of C, Ti, N, and S and also containing 0.2-2.0% Cu and <2.0% Ni in the range satisfying the relation of 0.2<Ni/Cu<1.5, is used. A slab of this low carbon steel is heated to >=1100 deg.C and hot-rolled into a plate at >=(Ar3 -50) deg.C finishing temp. This hot rolled plate is cooled rapidly down to 400-750 deg.C at (30 to 100) deg.C/sec cooling rate and then coiled at the temp. By this method, the high strength hot rolled steel plate, in which a part or the whole of structure is composed of bainitic ferrite and which has >=600N/mm<2> tensile strength and >=90% critical bore-expand ratio at bore-expand test, can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、伸びフランジ加工性に
すぐれた引張強度600N/mm級以上の高強度熱延
鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength hot-rolled steel sheet having a tensile strength of 600 N / mm 2 or higher, which is excellent in stretch-flange formability.

【0002】[0002]

【従来の技術】従来、600N/mm級以上の高強度
熱延鋼板を、例えば、バンパーを含む自動車の種々の部
材に用いる場合、そのプレス成形において、特に、伸び
フランジ加工性が要求されている。この伸びフランジ加
工性を向上させる方法としては、特開昭58−4272
6号公報に記載されているように、鋼板の組織をフェラ
イト・ベイナイト組織とする方法や、或いは特開昭57
−70257号公報に記載されているように、フェライ
ト・ベイナイト・マルテンサイト組織とする方法が既に
知られている。このほかにも、特開昭57−23025
号公報に記載されているように、フェライトに微細なパ
ーライトを分散させたり、特開平4−88125号公報
に記載されているように、微細なセメンタイトを生成さ
せる方法が知られている。しかし、従来より知られてい
るこれらの高強度熱延鋼板には、炭化物や第2相が存在
して、伸びフランジ加工性を劣化させるので、その特性
には限界があり、かくして、自動車の種々の部材への成
形に必要な加工性の要求を満たすことができず、薄肉化
による重量低減や、燃費向上のための高強度材の利用が
十分に進展していないのが現状である。
2. Description of the Related Art Conventionally, when a high-strength hot-rolled steel sheet of 600 N / mm 2 grade or higher is used for various members of an automobile, such as a bumper, it is particularly required to have stretch-flange formability in its press forming. There is. As a method for improving the workability of the stretch flange, JP-A-58-4272 is known.
As described in Japanese Patent Laid-Open No. 6-56, a method of changing the structure of a steel sheet to a ferrite-bainite structure, or JP-A-57 / 57
As described in JP-A-70257, a method of forming a ferrite bainite martensite structure is already known. In addition to this, JP-A-57-23025
There is known a method of dispersing fine pearlite in ferrite as described in Japanese Patent Laid-Open Publication No. Hei 4-88125 or generating fine cementite as described in Japanese Patent Laid-Open No. 4-88125. However, these conventionally known high-strength hot-rolled steel sheets have carbides and a second phase, which deteriorate the stretch-flange formability. It is not possible to meet the requirement of workability required for molding into the above member, and the use of high-strength materials for weight reduction due to thinning and improvement of fuel consumption has not been sufficiently advanced under the present circumstances.

【0003】他方、特開平5−271759号公報に
は、実質的にフェライトからなり、そのフェライト組織
中にTiやNbお炭化物を析出させてなる高強度鋼板の
製造方法が記載されているが、このような熱延鋼板にお
いては、転位の析出物のまわりに局部的な集中を起こし
て、約600N/mm級の強度では、逆に穴拡げ値を
大きく低下させる。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 5-271759 discloses a method for producing a high-strength steel sheet which is substantially composed of ferrite and has Ti and Nb carbides precipitated in its ferrite structure. In such a hot-rolled steel sheet, local concentration is caused around dislocation precipitates, and at a strength of about 600 N / mm 2 , conversely, the hole expansion value is greatly reduced.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の60
0N/mm級以上の高強度熱延鋼板における上記した
問題を解決するためになされたものであつて、600N
/mm級以上の高強度化に伴う伸びフランジ加工性の
劣化を防ぎ、高強度であっても、十分な伸びフランジ加
工性を有する熱延鋼板の製造方法を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention provides a conventional 60
A high-strength hot-rolled steel sheet having a grade of 0 N / mm 2 or more was made to solve the above-mentioned problems.
It is an object of the present invention to provide a method for producing a hot-rolled steel sheet having a sufficient stretch-flange formability even when the strength is high, while preventing deterioration of the stretch-flange formability associated with an increase in strength of / mm 2 grade or higher.

【0005】[0005]

【課題を解決するための手段】本発明による伸びフラン
ジ加工性にすぐれた高強度熱延鋼板の製造方法は、重量
%で C 0.02〜0.10%、Si 1.0%以下、M
n 3.0%以下、P 0.1%以下、S 0.0
1%以下、Ti 0.1〜1.0%、Cu 0.2〜
2.0%、及びNi 2.0%以下を含み、Tiの添加
量が C<〔(Ti−3.43N−1.5S)/4〕 を満足し、Cu及びNiの添加量が 0.2<Ni/Cu<1.5 を満足し、残部鉄及び不可避的不純物よりなる鋼をスラ
ブとし、加熱した後、(Ar−50)℃以上の温度に
て熱延を終了し、次いで、冷延速度30〜100℃/秒
にて400〜750℃の範囲の温度まで冷却した後、4
00〜750℃の範囲の温度で巻取って、一部又は全部
がベイニティック・フェライト組織を有し、引張強さ6
00N/mm以上の強度と打抜き穴の限界穴拡げ率9
0%以上とを有する伸びフランジ性にすぐれた熱延鋼板
を製造するものである。
A method for producing a high strength hot rolled steel sheet excellent in stretch flange formability according to the present invention is as follows: C 0.02 to 0.10% by weight, Si 1.0% or less, M
n 3.0% or less, P 0.1% or less, S 0.0
1% or less, Ti 0.1 to 1.0%, Cu 0.2 to
2.0% and Ni 2.0% or less, the addition amount of Ti satisfies C <[(Ti-3.43N-1.5S) / 4], and the addition amounts of Cu and Ni are 0. A steel satisfying 2 <Ni / Cu <1.5 and having a balance of iron and unavoidable impurities is used as a slab, and after heating, hot rolling is finished at a temperature of (Ar 3 −50) ° C. or higher, and then, After cooling to a temperature in the range of 400 to 750 ° C at a cold rolling speed of 30 to 100 ° C / sec, 4
It is wound at a temperature in the range of 00 to 750 ° C. and has a bainitic ferrite structure partially or entirely, and a tensile strength of 6
Strength of 00N / mm 2 or more and limit hole expansion rate of punched holes 9
A hot-rolled steel sheet having a stretch flangeability of 0% or more is manufactured.

【0006】本発明によれば、鋼には、上記元素に加え
て、0.1%以下の範囲にてNbを添加してもよい。
According to the present invention, in addition to the above elements, Nb may be added to the steel in the range of 0.1% or less.

【0007】先ず、本発明による伸びフランジ加工性に
すぐれた高強度熱延鋼板の有する組織について説明す
る。本発明による熱延鋼板の有する組織は、ベイニティ
ック・フェライトであり、この組織は、擬ポリゴナル・
フェライトやベイナイト組織とは区別される。一般に、
ベイナイト組織は、転位密度の高いラス状の下部組織と
それに平行若しくは一定の角度を有して析出する炭化物
で構成される。しかしながら、本発明におけるベイニテ
ィック・フェライトとは、下部組織としてラス状の組織
を有するが、通常のベイナイト組織とは異なり、セメン
タイト炭化物が存在しない組織をいう。尚、熱処理条件
によっては、ラス状組織が回復して、明確なサブグレイ
ン境界をもたない転位密度の高いフェライト組織を有す
るものも含まれる。また、擬ポリゴナル・フェライト組
織は、光学顕微鏡組織においては、ベイニティック・フ
ェライト組織と極めて類似するが、透過型電子顕微鏡写
真における下部組織において、擬ポリゴナル・フェライ
ト組織は、明確なサブグレイン境界を有しているため、
上記ラス状組織が熱処理によって回復したベイニティッ
ク・フェライト組織とは異なる。このようなベイニティ
ック・フェライト組織は、ポリゴナル・フェライト組織
と混合しても、引張強さ600N/mm以上を有し、
更に、穴拡げ試験における限界穴拡げ率(λ値)が10
0%以上の特性を有する。
First, the structure of the high-strength hot-rolled steel sheet excellent in stretch flange formability according to the present invention will be described. The structure of the hot-rolled steel sheet according to the present invention is bainitic ferrite, and this structure is pseudopolygonal
Distinguished from ferrite and bainite structures. In general,
The bainite structure is composed of a lath-like lower structure having a high dislocation density and carbides that are parallel to or precipitate at a certain angle. However, the bainitic ferrite in the present invention has a lath-like structure as a lower structure, but unlike a normal bainite structure, means a structure in which cementite carbide does not exist. Depending on the heat treatment conditions, a lath-like structure is recovered and a ferrite structure having a high dislocation density without a clear subgrain boundary is also included. In addition, the pseudopolygonal ferrite structure is very similar to the bainitic ferrite structure in the optical microscope structure, but the pseudopolygonal ferrite structure in the lower structure in the transmission electron micrograph shows clear subgrain boundaries. Because I have
The lath structure is different from the bainitic ferrite structure recovered by heat treatment. Such a bainitic ferrite structure has a tensile strength of 600 N / mm 2 or more even when mixed with a polygonal ferrite structure.
Further, the limit hole expansion ratio (λ value) in the hole expansion test is 10
It has a property of 0% or more.

【0008】また、前述したようなフェライト組織にT
iやNbの炭化物を析出させてなる組織と異なり、ベイ
ニティック・フェライト組織では、転位密度が均一であ
るので、引張強さ600N/mm以上の強度でも、穴
拡げ値の低下がない。
Further, the ferrite structure as described above has a T
Unlike the structure formed by precipitating i or Nb carbides, the bainitic ferrite structure has a uniform dislocation density, so that even if the tensile strength is 600 N / mm 2 or more, the hole expansion value does not decrease.

【0009】図1に擬ポリゴナル・フェライト組織を示
し、図2にポリゴナル・フェライトとベイニティック・
フェライトとからなる組織を示し、図3にベイニティッ
ク・フェライト組織を示す。
FIG. 1 shows the quasi-polygonal ferrite structure, and FIG. 2 shows the polygonal ferrite and bainitic.
A structure composed of ferrite is shown, and a bainitic ferrite structure is shown in FIG.

【0010】次に、本発明による熱延鋼板の有する化学
成分について説明する。Cは、鋼板に所要の強度を与え
るために最も重要な元素である。Cは、γフェライト中
に固溶して、熱延後の冷却中にベイニティック・フェラ
イト組織を生成させる駆動力を持つ故に重要な元素であ
る。更に、ベイニティック・フェライト組織が生成した
後は、TiやNb等の析出物を生成して、伸びフランシ
性を劣化させることなく、強度を上昇させる。
Next, the chemical composition of the hot rolled steel sheet according to the present invention will be described. C is the most important element for giving the required strength to the steel sheet. C is an important element because it has a driving force for forming a bainitic ferrite structure during cooling after hot rolling by forming a solid solution in γ-ferrite. Further, after the bainitic ferrite structure is formed, precipitates such as Ti and Nb are formed to increase the strength without deteriorating the elongation franchicity.

【0011】本発明において、Cの添加量はTiの添加
量との関係において、次式 C<〔(Ti−3.43N−1.5S)/4〕 …(1) を満足することが必要である。鋼にTiと共にNbを添
加したときは、Cの添加量はTi及びNbの添加量との
関係において、次式 C<〔(Ti−3.43N−1.5S)/4+Nb/7.75〕 …(2) を満足することが必要である。C量が上記(1)又は
(2)式を満足しないときは、巻取の後も、フェライト
中に固溶Cが残存して、伸びフランジ性を劣化させる。
In the present invention, the amount of C added must satisfy the following formula C <[(Ti-3.43N-1.5S) / 4] (1) in relation to the amount of Ti added. Is. When Nb is added to steel together with Ti, the addition amount of C is expressed by the following formula C <[(Ti-3.43N-1.5S) /4+Nb/7.75] in relation to the addition amounts of Ti and Nb. … It is necessary to satisfy (2). When the amount of C does not satisfy the above formula (1) or (2), the solid solution C remains in the ferrite even after winding, deteriorating the stretch flangeability.

【0012】更に、本発明によれば、ベイニティック・
フェライト組織を得るために、Cは、少なくとも0.0
2%の添加が必要であるが、しかし、添加量が0.10
%を越えるときは、TiやNb等の析出物生成元素を過
剰に添加することが必要となるのみならず、粗大な析出
物を生成したり、或いは固溶Cが残存して、フェライト
中に第2相組織を生成して、伸びフランジ性を劣化させ
る。
Further in accordance with the present invention, a bainitic
In order to obtain a ferrite structure, C is at least 0.0
2% addition is required, but the amount added is 0.10
%, It is not only necessary to excessively add a precipitate-forming element such as Ti or Nb, but also a coarse precipitate is formed or solid solution C remains in the ferrite. A second phase structure is generated to deteriorate stretch flangeability.

【0013】Siは、固溶強化元素として重要な元素で
ある。しかし、1.0%を越えて過多に添加するとき
は、ペイニティック・フェライトの生成を抑制したり、
或いは鋼板の表面に酸化スケールを過度に生成して、製
造上、支障を生じるので、添加量の上限を1.0%とす
る。
Si is an important element as a solid solution strengthening element. However, when it is added in excess of 1.0%, the formation of painitic ferrite is suppressed,
Alternatively, since the oxide scale is excessively generated on the surface of the steel sheet, which causes a problem in manufacturing, the upper limit of the addition amount is set to 1.0%.

【0014】Mnは、本発明による鋼板の組織の生成に
幾分か、寄与する。特に、Mnの添加は、フェライト中
に存在するCの固溶限に影響し、TiCやNbCの析出
物の形態を変え、降伏比を下げる等の効果がある。しか
し、Mnを過度に添加した場合には、ベイナイト組織等
や、Si量とも関連するが、残留γ組織等の第2相組織
を生成して、伸びフランジ性を低下させる。そこて、M
nの添加量の上限の添加量を3.0%とする。
Mn contributes somewhat to the formation of the structure of the steel sheet according to the invention. In particular, the addition of Mn has an effect of affecting the solid solubility limit of C existing in ferrite, changing the form of TiC and NbC precipitates, and lowering the yield ratio. However, when Mn is excessively added, a bainite structure or the like and a second phase structure such as a residual γ structure, which is related to the amount of Si, are generated and the stretch flangeability is deteriorated. There, M
The upper limit of the amount of n added is 3.0%.

【0015】Pは、固溶強化のための元素として重要で
ある。しかし、過度に添加するときは、点溶接性等の他
の性質を劣化させるので、上限を0.1%とする。S
は、伸びフランジ加工性を劣化させる硫化物を生成する
ので、可能な限りに低減することが必要である。しか
し、本発明における伸びフランジ加工性の向上を考慮し
て、その上限を0.005%とする。
P is important as an element for solid solution strengthening. However, when excessively added, other properties such as spot weldability are deteriorated, so the upper limit is made 0.1%. S
Generates sulfide that deteriorates stretch-flange formability, so it is necessary to reduce it as much as possible. However, considering the improvement of the stretch flange formability in the present invention, the upper limit is set to 0.005%.

【0016】Tiは、熱延終了後の巻取り中にTiCを
生成させて、固溶C量を低減させるために添加される。
Tiは、上記効果を有効に得るためには、少なくとも
0.1%の添加が必要である。しかし、C量及びN量と
のバランスにおいて、炭窒化析出物を形成する限度以上
に添加すると、固溶Tiが残存し、特性の劣化を起こす
ので、添加量の上限を1.0%とする。
Ti is added to form TiC during winding after hot rolling and reduce the amount of solid solution C.
In order to effectively obtain the above effects, Ti needs to be added at least 0.1%. However, in the balance between the amount of C and the amount of N, if added in excess of the limit for forming carbonitride precipitates, solid solution Ti remains and the characteristics deteriorate. Therefore, the upper limit of the added amount is set to 1.0%. .

【0017】Nbも、Tiと同様に、熱延終了後の巻取
り中にNbCを生成させて、固溶C量を低減させる効果
を有する。しかし、過度に添加するときは、再結晶温度
を高め、必要な材質を得ることができないので、添加量
の上限を0.1%とする。
Like Ti, Nb also has the effect of reducing NbC during the winding after hot rolling to reduce the amount of solute C. However, when it is added excessively, the recrystallization temperature is raised and the necessary material cannot be obtained, so the upper limit of the addition amount is made 0.1%.

【0018】Cuは、ポリゴナル・フェライト変態を抑
える元素である。従って、Cuの添加によって、熱延
後、比較的遅い速度で冷却しても、ポリゴナル・フェラ
イトの生成が抑えられ、ベイニティック・フェライトが
生成する。しかし、Cuは、Niと共に複合添加しない
ときには、ε−Cuが生成するので、固溶Cuとしての
上記効果は生じない。よって、本発明においては、Cu
はNiと共に複合添加することが必要である。このよう
に、Niと複合添加して、上記固溶Cuとしての効果を
有効に得るためには、Cuは少なくとも0.2%を添加
することが必要である。しかし、2.0%を越えて過多
に添加しても、上記効果が飽和するので、添加量の上限
を2.0%とする。
Cu is an element that suppresses polygonal ferrite transformation. Therefore, the addition of Cu suppresses the formation of polygonal ferrite and forms bainitic ferrite even after cooling at a relatively slow rate after hot rolling. However, when Cu is not added together with Ni, ε-Cu is generated, so the above effect as solid solution Cu does not occur. Therefore, in the present invention, Cu
Requires complex addition with Ni. As described above, in order to effectively obtain the effect as the solid solution Cu by adding Ni together, it is necessary to add at least 0.2% of Cu. However, the above effect is saturated even if it is added in excess of 2.0%, so the upper limit of the amount added is set to 2.0%.

【0019】Niは、上述したように、ε−Cuの生成
を抑える効果を有して、Cuと共に複合添加した鋼を本
発明に従って比較的低温まで冷却保持することによっ
て、高い伸びフランジ性を有するベイニティック・フェ
ライト組織を生成させることができる。CuとNiとを
複合添加しない場合、ε−Cuが析出する温度は500
〜750℃であり、上述した固溶Cuの効果を得ること
ができない。
As described above, Ni has the effect of suppressing the formation of ε-Cu, and has a high stretch-flangeability by keeping the steel compounded with Cu together with cooling according to the present invention to a relatively low temperature. A bainitic ferrite structure can be generated. When Cu and Ni are not added together, the temperature at which ε-Cu precipitates is 500.
Since it is 750 degreeC, the effect of solid solution Cu mentioned above cannot be acquired.

【0020】このように、Niがε−Cuの析出を抑え
る効果は、CuとNiとを同量添加した場合が最も大き
いが、しかし、実用上、CuとNiは、次式 0.2<Ni/Cu<1.5 …(3) を満足すれば、十分に高強度で高い伸びフランジ性を有
するベイニティック・フェライト組織を得ることができ
る。従って、本発明においては、Cuの場合と同様に、
Ni添加量の上限も2.0%とする。
As described above, Ni has the greatest effect of suppressing the precipitation of ε-Cu when Cu and Ni are added in the same amount. However, in practice, Cu and Ni have the following formula 0.2 < If Ni / Cu <1.5 (3) is satisfied, a bainitic ferrite structure having sufficiently high strength and high stretch flangeability can be obtained. Therefore, in the present invention, as in the case of Cu,
The upper limit of the amount of Ni added is also 2.0%.

【0021】本発明によれば、Nbとは別に、又はNb
と共に、Mo、Cr及びVよりなる群から選ばれる少な
くとも1種の元素を添加することができる。これらの元
素は、強化元素として有効である。しかし、これらの元
素を過多に添加するときは、延性を劣化させるので、そ
れぞれの元素の添加量の上限を1.0%とする。
According to the invention, separately from Nb or Nb
At the same time, at least one element selected from the group consisting of Mo, Cr and V can be added. These elements are effective as strengthening elements. However, if these elements are excessively added, ductility is deteriorated, so the upper limit of the addition amount of each element is set to 1.0%.

【0022】Caは、伸びフランジ加工性を劣化させる
硫化物を低減する効果を有する。そこで、本発明によれ
ば、必要に応じて、20ppm以下の範囲でCaを添加
して、SをCaSとして除去することができる。このよ
うにして、Caを添加しても、このCaは、伸びフラン
ジ加工性を劣化させるものではない。
Ca has the effect of reducing sulfides which deteriorate the stretch flange formability. Therefore, according to the present invention, S can be removed as CaS by adding Ca in the range of 20 ppm or less, if necessary. Thus, even if Ca is added, the Ca does not deteriorate the stretch flange formability.

【0023】本発明によれば、上述したような化学成分
を有し、残部鉄及び不可避的不純物よりなる鋼をスラブ
とし、これを1100℃以上の温度に加熱した後、(A
−50)℃以上の温度にて熱延を終了し、次いで、
冷延速度30〜100℃/秒にて400〜750℃の範
囲の温度まで冷却した後、400〜750℃の範囲の温
度で巻取る、即ち、400〜750℃の範囲のある温度
まで冷却した後、その温度で巻取ることによって、一部
又は全部がベイニティック・フェライト組織を有し、引
張強さ600N/mm以上の強度と打抜き穴の限界穴
拡げ率90%以上とを有する伸びフランジ加工性にすぐ
れた熱延鋼板を得ることができる。
According to the present invention, a steel having the above-mentioned chemical composition and the balance of iron and unavoidable impurities is made into a slab, which is heated to a temperature of 1100 ° C. or higher and then (A
hot rolling is completed at a temperature of r 3 −50) ° C. or higher, and
After cooling to a temperature in the range of 400 to 750 ° C. at a cold rolling speed of 30 to 100 ° C./second, it is wound at a temperature in the range of 400 to 750 ° C., that is, cooled to a temperature in the range of 400 to 750 ° C. Then, by winding at that temperature, a part or all of which has a bainitic ferrite structure and has a tensile strength of 600 N / mm 2 or more and an elongation of 90% or more of the limit hole expansion rate of punched holes. A hot rolled steel sheet having excellent flange formability can be obtained.

【0024】本発明の方法において、スラブ加熱温度は
1100℃以上とする。スラブ加熱温度を1100℃以
上とすることによって、TiCやNbCをγ域にて十分
固溶させることができ、他方、1100℃よりも低いと
きは、r域にてTiCやNbCが粗大に析出し、熱延終
了後の冷却中に、ベイニティック・フェライト組織を生
成させる駆動力となる固溶Cがなくなる。
In the method of the present invention, the slab heating temperature is set to 1100 ° C. or higher. By setting the slab heating temperature to 1100 ° C. or higher, TiC or NbC can be sufficiently dissolved in the γ range, while when it is lower than 1100 ° C., TiC or NbC is coarsely precipitated in the r range. During the cooling after the hot rolling, the solid solution C, which is the driving force for generating the bainitic ferrite structure, disappears.

【0025】熱延においては、仕上熱延をAr直上の
温度で終了することが望ましい。Ar直上の温度で
は、組織が均一で細粒なr粒となっており、熱延後も均
一組織を有するフェライト粒を得ることができるからで
ある。Ar点以下のα+γ域で圧延を行なうときは、
α粒中に歪みが加わり、不均一な加工α粒が残存しやす
い。しし、圧延温度がAr点以下であっても、(Ar
−50)℃までであれば、α相の体積率も少なく、ま
た、加工度合いも低いため、伸びフランジ性やその他の
性質を劣化させることはない。従って、本発明において
は、熱延仕上温度を(Ar−50)℃以上の温度とす
る。
In hot rolling, it is desirable to finish hot rolling at a temperature just above Ar 3 . This is because at a temperature just above Ar 3 , the structure is a fine r-grain with a uniform structure, and ferrite particles having a uniform structure can be obtained even after hot rolling. When rolling in the α + γ range of 3 Ar or less,
Strain is added to the α grains, and unevenly processed α grains are likely to remain. However, even if the rolling temperature is below the Ar 3 point, (Ar
If up to 3 -50) ° C., the volume fraction of α phase is small and also, the processing degree since also low, does not degrade the stretch flangeability and other properties. Accordingly, in the present invention, the hot rolling finishing temperature and (Ar 3 -50) ℃ or higher.

【0026】熱延終了後の冷却速度は、30〜100℃
/秒の範囲とする。冷却速度が30℃/秒よりも遅いと
きは、ポリゴナル・フェライト組織が生成し、ベイニテ
ィック・フェライト組織が生成しない。他方、冷却速度
が100℃/秒を越えるときは、伸びフランジ加工性を
劣化させるマルテンサイト組織が生成しやすくなる。こ
のようにして、熱延後、400〜750℃の範囲の温度
まで冷却した後、400〜750℃の範囲の温度で巻取
る。
The cooling rate after the hot rolling is 30 to 100 ° C.
/ Second range. When the cooling rate is slower than 30 ° C./sec, a polygonal ferrite structure is formed and a bainitic ferrite structure is not formed. On the other hand, when the cooling rate exceeds 100 ° C./second, a martensite structure that deteriorates stretch flange formability is likely to be formed. Thus, after hot rolling, after cooling to a temperature in the range of 400 to 750 ° C., it is wound at a temperature in the range of 400 to 750 ° C.

【0027】本発明において規定する範囲外の通常の成
分系を有する鋼を上記400〜750℃の範囲の温度に
保持すれば、ベイナイト組織を生成したり、或いはe−
Cuの析出が起こって、伸びフランジ加工性を劣化させ
る。しかしながら、本発明に従って、所定量のNiとC
uとを複合添加した成分系を有する鋼を上記条件にて熱
延し、冷却した後、400〜750℃の範囲の温度に保
持することによって、セメンタイト炭化物を有しない高
強度で伸びフランジ加工性にすぐれたベイニティック・
フェライト組織を生成させることができる。750℃よ
り高い温度では体積率100%でポリゴナル・フェライ
ト組織が生成し、また、400℃よりも低いときは、マ
ルテンサイト組織が生成して、伸びフランジ性を急激に
劣化させるので、目的とする高強度で高い伸びフランジ
加工性を有する熱延鋼板を得ることができない。
If a steel having an ordinary composition outside the range specified in the present invention is kept at a temperature in the range of 400 to 750 ° C., a bainite structure is formed or e-
Precipitation of Cu occurs and deteriorates stretch flange formability. However, according to the invention, a certain amount of Ni and C
A steel having a component system in which u is added in combination is hot-rolled under the above conditions, cooled, and then held at a temperature in the range of 400 to 750 ° C., so that high-strength stretch-flange formability without cementite carbide is obtained. Excellent bainitic
A ferrite structure can be generated. When the temperature is higher than 750 ° C, a polygonal ferrite structure is formed with a volume ratio of 100%, and when the temperature is lower than 400 ° C, a martensite structure is generated, which rapidly deteriorates stretch flangeability. It is impossible to obtain a hot-rolled steel sheet having high strength and high stretch-flange formability.

【0028】[0028]

【発明の効果】以上のように、本発明の方法によれば、
所定の化学成分を添加したスラブを所定の条件の下に熱
延し、冷却し、巻取ることによって、一部又は全部がベ
イニティック・フェライト組織を有し、引張強さが60
0N/mm以上で、打抜き穴の限界穴拡げ率が90%
以上である伸びフランジ加工性にすぐれた熱延鋼板の得
ることができる。
As described above, according to the method of the present invention,
A slab to which a predetermined chemical component is added is hot-rolled under predetermined conditions, cooled, and wound to have a bainitic ferrite structure partially or wholly and a tensile strength of 60.
With 0 N / mm 2 or more, the limit hole expansion rate of punched holes is 90%
It is possible to obtain a hot-rolled steel sheet having excellent stretch flange formability as described above.

【0029】[0029]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples.

【0030】実施例1 表1に用いた鋼種の化学成分を示す。これらの鋼は真空
溶解にて溶製した。表1において、鋼AからEはC量の
影響を、鋼B、F及びGは前記(1)式又は(2)式に
よって規定されるTi及びNbとの関連におけるC量の
影響を、鋼HからJはCu添加量の効果を、鋼KからN
はNi/Cuの効果を、また、鋼OからSは各添加元素
の効果を調べるための鋼種である。
Example 1 Table 1 shows the chemical composition of the steel types used. These steels were melted by vacuum melting. In Table 1, Steels A to E show the influence of the C content, and Steels B, F and G show the influence of the C content in relation to Ti and Nb defined by the formula (1) or (2). H to J show the effect of the added amount of Cu, steel K to N
Is a steel type for examining the effect of Ni / Cu, and steels O to S are steel types for examining the effect of each additive element.

【0031】熱間圧延は、スラブを1250℃の温度に
30分間保持した後、熱延終了温度をおよそ900〜7
50℃まで変化させ、板厚30mmから板厚2.5mm
まで圧延した。更に、空冷やミスト冷却(3〜80℃/
秒程度)にて500℃から800℃の温度範囲の巻取処
理相当の温度まで冷却し、その温度で1時間保持した。
この後、炉冷にて常温まで冷却した。
In hot rolling, the slab is held at a temperature of 1250 ° C. for 30 minutes and then the hot rolling end temperature is set to about 900 to 7.
Change from 50 ℃ to a plate thickness of 30mm to 2.5mm
Rolled up. Furthermore, air cooling and mist cooling (3-80 ° C /
It was cooled to a temperature corresponding to the winding treatment in the temperature range of 500 ° C. to 800 ° C. for about 1 second and kept at that temperature for 1 hour.
Then, it cooled to normal temperature by furnace cooling.

【0032】表2及び表3は、用いた鋼種とその熱間圧
延条件、冷却条件及び巻取条件と共に、得られた熱延鋼
板の機械的性質及び組織を示す。組織の表示において、
PFはポリゴナル・フェライト、BFはベイニティック
・フェライト、Mはマルテンサイト、Bはベイナイトを
示す。表2及び表3において、鋼1から5はC量の影響
を、鋼6から8は前記(1)式又は(2)式によって規
定されるTi及びNbとの関連におけるC量の影響を、
鋼9から17はCu添加量とNi/Cuの影響を、鋼1
8から22は各種添加元素の影響を、それぞれ示してい
る。更に、鋼23から28は巻取温度の影響を、また、
鋼29から38は冷却条件の影響を示している。
Tables 2 and 3 show the steel types used, their hot rolling conditions, cooling conditions and winding conditions, as well as the mechanical properties and microstructure of the hot rolled steel sheets obtained. In displaying the organization,
PF is polygonal ferrite, BF is bainitic ferrite, M is martensite, and B is bainite. In Tables 2 and 3, Steels 1 to 5 show the influence of the C content, and Steels 6 to 8 show the influence of the C content in relation to Ti and Nb defined by the formula (1) or (2).
For steels 9 to 17, the effects of Cu addition amount and Ni / Cu
8 to 22 show the influences of various additive elements, respectively. Furthermore, the steels 23 to 28 are affected by the winding temperature,
Steels 29 to 38 show the effect of cooling conditions.

【0033】得られた熱延鋼板の伸びフランジ加工性
は、上記の熱間圧延を行なった後の2.5mm板厚の材
料から縦横70mmの正方形の試験片を採取し、その中
央にクリアランス0.15mmの10mm径の打抜き穴
をあけ、先端角60°の円錐ポンチでこの穴を拡げて、
穴の縁にクラックが発生する限界の穴径から計算される
限界穴拡げ率(λ値)で評価した。
The stretch-flange formability of the obtained hot-rolled steel sheet was determined by sampling a square test piece of 70 mm in length and width from the material having a plate thickness of 2.5 mm after the above hot rolling, and having 0 clearance in the center. Drill a punching hole with a diameter of 10 mm of 15 mm and expand this hole with a conical punch with a tip angle of 60 °.
The evaluation was made by the critical hole expansion rate (λ value) calculated from the critical hole diameter at which cracks were generated at the hole edges.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】化学成分及び熱延条件と得られる鋼板の機
械的性質との関係を一層明確に示すために、図4にC量
と機械的性質との関係を、図5に(Ti+Nb)/C
と引張強さとの関係を、図6に(Ti+Nb)/Cと
限界穴拡げ率(λ値)との関係を、図7にNi/Cu比
と限界穴拡げ率(λ値)との関係を、図8にCu量と限
界穴拡げ率(λ値)との関係を、図9に巻取温度と引張
強さとの関係を、図10に巻取温度と限界穴拡げ率(λ
値)との関係を、図11に冷却速度と引張強さとの関係
を、また、図12に冷却速度と限界穴拡げ率(λ値)と
の関係を、それぞれ示す。但し、(Ti+Nb)/C
は、〔(Ti−3.43N−1.5S)/4+Nb/
7.75〕/Cを意味する。
In order to more clearly show the relationship between the chemical composition and hot rolling conditions and the mechanical properties of the obtained steel sheet, the relationship between the C content and the mechanical properties is shown in FIG. 4 and (Ti * + Nb) in FIG. / C
6 shows the relationship between (Ti * + Nb) / C and the limit hole expansion ratio (λ value) in FIG. 6, and FIG. 7 shows the relationship between the Ni / Cu ratio and the limit hole expansion ratio (λ value). FIG. 8 shows the relationship between the Cu amount and the limit hole expansion ratio (λ value), FIG. 9 shows the relationship between the winding temperature and tensile strength, and FIG. 10 shows the winding temperature and the limit hole expansion ratio (λ value).
Value), FIG. 11 shows the relationship between the cooling rate and the tensile strength, and FIG. 12 shows the relationship between the cooling rate and the critical hole expansion ratio (λ value). However, (Ti * + Nb) / C
Is [(Ti-3.43N-1.5S) / 4 + Nb /
7.75] / C is meant.

【図面の簡単な説明】[Brief description of drawings]

【図1】は擬ポリゴナル・フェライト組織を示す電子顕
微鏡写真、
FIG. 1 is an electron micrograph showing a pseudopolygonal ferrite structure,

【図2】はポリゴナル・フェライトとベイニティック・
フェライトとからなる組織の電子顕微鏡写真、
[Figure 2] Polygonal ferrite and bainitic
Electron micrograph of the structure consisting of ferrite,

【図3】はベイニティック・フェライト組織を示す電子
顕微鏡写真である。
FIG. 3 is an electron micrograph showing a bainitic ferrite structure.

【図4】はC量と機械的性質との関係を示すグラフ、FIG. 4 is a graph showing the relationship between C content and mechanical properties,

【図5】は(Ti+Nb)/Cと引張強さとの関係を
示すグラフ、
FIG. 5 is a graph showing the relationship between (Ti * + Nb) / C and tensile strength,

【図6】は(Ti+Nb)/Cと限界穴拡げ率(λ
値)との関係を示すグラフ、
FIG. 6 is (Ti * + Nb) / C and the limit hole expansion ratio (λ
Value), a graph showing the relationship with

【図7】はNi/Cu比と限界穴拡げ率(λ値)との関
係を示すグラフ、
FIG. 7 is a graph showing the relationship between the Ni / Cu ratio and the critical hole expansion ratio (λ value),

【図8】はCu量と限界穴拡げ率(λ値)との関係を示
すグラフ、
FIG. 8 is a graph showing the relationship between the Cu amount and the critical hole expansion ratio (λ value),

【図9】は巻取温度と引張強さとの関係を示すグラフ、FIG. 9 is a graph showing the relationship between winding temperature and tensile strength,

【図10】は巻取温度と限界穴拡げ率(λ値)との関係
を示すグラフ、
FIG. 10 is a graph showing the relationship between the winding temperature and the limiting hole expansion ratio (λ value),

【図11】は冷却速度と引張強さとの関係を示すグラ
フ、
FIG. 11 is a graph showing the relationship between cooling rate and tensile strength,

【図12】は冷却速度と限界穴拡げ率(λ値)との関係
を示すグラフである。
FIG. 12 is a graph showing the relationship between the cooling rate and the limit hole expansion rate (λ value).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical indication C22C 38/58

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】重量%で C 0.02〜0.10%、 Si 1.0%以下、 Mn 3.0%以下、 P 0.1%以下、 S 0.01%以下、 Ti 0.1〜1.0%、 Cu 0.2〜2.0%、及びNi 2.0%以下を含
み、Tiの添加量が C<〔(Ti−3.43N−1.5S)/4〕 を満足し、Cu及びNiの添加量が 0.2<Ni/Cu<1.5 を満足し、残部鉄及び不可避的不純物よりなる鋼をスラ
ブとし、これを1100℃以上の温度に加熱した後、
(Ar−50)℃以上の温度にて熱延を終了し、次い
で、冷延速度30〜100℃/秒にて400〜750℃
の範囲の温度まで冷却した後、400〜750℃の範囲
の温度で巻取ることを特徴とする、一部又は全部がベイ
ニティック・フェライト組織を有し、引張強さ600N
/mm以上の強度と打抜き穴の限界穴拡げ率90%以
上とを有する伸びフランジ加工性にすぐれた熱延鋼板の
製造方法。
1. By weight%, C 0.02 to 0.10%, Si 1.0% or less, Mn 3.0% or less, P 0.1% or less, S 0.01% or less, Ti 0.1. To 1.0%, Cu 0.2 to 2.0%, and Ni 2.0% or less, and the addition amount of Ti satisfies C <[(Ti-3.43N-1.5S) / 4]. However, after adding a Cu and Ni content satisfying 0.2 <Ni / Cu <1.5 and making the slab a steel consisting of balance iron and unavoidable impurities and heating it to a temperature of 1100 ° C. or higher,
Hot rolling is terminated at a temperature of (Ar 3 -50) ° C or higher, and then 400 to 750 ° C at a cold rolling rate of 30 to 100 ° C / sec.
After being cooled to a temperature in the range of 100 to 750 ° C., it is wound at a temperature in the range of 400 to 750 ° C., partially or entirely having a bainitic ferrite structure and having a tensile strength of 600 N.
/ Mm 2 or more and a method for producing a hot-rolled steel sheet excellent in stretch flange formability having a punched hole limit hole expansion ratio of 90% or more.
【請求項2】重量%で C 0.02〜0.10%、 Si 1.0%以下、 Mn 3.0%以下、 P 0.1%以下、 S 0.01%以下、 Ti 0.1〜1.0%、 Nb 0.1%以下、 Cu 0.2〜2.0%、及びNi 2.0%以下を含
み、Ti及びNbの添加量が C<〔(Ti一3.43N−1.5S)/4+Nb/
7.75〕 を満足し、Cu及びNiの添加量が 0.2<Ni/Cu<1.5 を満足し、残部鉄及び不可避的不純物よりなる鋼をスラ
ブとし、これを1100℃以上の温度に加熱した後、
(Ar−50)℃以上の温度にて熱延を終了し、次い
で、冷延速度30〜100℃/秒にて400〜750℃
の範囲の温度まで冷却した後、400〜750℃の範囲
の温度で巻取ることを特徴とする、一部又は全部がベイ
ニティック・フェライト組織を有し、引張強さ600N
/mm以上の強度と打抜き穴の限界穴拡げ率90%以
上とを有する伸びフランジ加工性にすぐれた熱延鋼板の
製造方法。
2. By weight%, C 0.02 to 0.10%, Si 1.0% or less, Mn 3.0% or less, P 0.1% or less, S 0.01% or less, Ti 0.1. .About.1.0%, Nb 0.1% or less, Cu 0.2 to 2.0%, and Ni 2.0% or less, and the addition amount of Ti and Nb is C <[(Ti-1.43N- 1.5S) / 4 + Nb /
7.75], the addition amounts of Cu and Ni satisfy 0.2 <Ni / Cu <1.5, and the balance steel and unavoidable impurities are used as slabs, and the slab is used at a temperature of 1100 ° C or higher. After heating to
Hot rolling is terminated at a temperature of (Ar 3 -50) ° C or higher, and then 400 to 750 ° C at a cold rolling rate of 30 to 100 ° C / sec.
After being cooled to a temperature in the range of 100 to 750 ° C., it is wound at a temperature in the range of 400 to 750 ° C., partially or entirely having a bainitic ferrite structure and having a tensile strength of 600 N.
/ Mm 2 or more and a method for producing a hot-rolled steel sheet excellent in stretch flange formability having a punched hole limit hole expansion ratio of 90% or more.
【請求項3】重量%で (a)C 0.02〜0.10%、 Si 1.0%以下、 Mn 3.0%以下、 P 0.1%以下、 S 0.01%以下、 Ti 0.1〜1.0%、 Cu 0.2〜2.0%、及びNi 2.0%以下を含
み、更に、 (b)Mo 1.0%以下、 Cr 1.0%以下、及びV 1.0%以下よりなる
群から選ばれる少なくとも1種の元素を含み、Tiの添
加量が C<〔(Ti一3.43N−1.5S)/4〕 を満足し、Cu及びNiの添加量が 0.2<Ni/Cu<1.5 を満足し、残部鉄及び不可避的不純物よりなる鋼をスラ
ブとし、これを1100℃以上の温度に加熱した後、
(Ar−50)℃以上の温度にて熱延を終了し、次い
で、冷延速度30〜100℃/秒にて400〜750℃
の範囲の温度まで冷却した後、400〜750℃の範囲
の温度で巻取ることを特徴とする、一部又は全部がベイ
ニティック・フェライト組織を有し、引張強さ600N
/mm以上の強度と打抜き穴の限界穴拡げ率90%以
上とを有する伸びフランジ加工性にすぐれた熱延鋼板の
製造方法。
3. In weight%, (a) C 0.02 to 0.10%, Si 1.0% or less, Mn 3.0% or less, P 0.1% or less, S 0.01% or less, Ti 0.1 to 1.0%, Cu 0.2 to 2.0%, and Ni 2.0% or less, and (b) Mo 1.0% or less, Cr 1.0% or less, and V. Addition of Cu and Ni containing at least one element selected from the group consisting of 1.0% or less, and the addition amount of Ti satisfies C <[(Ti-1.43N-1.5S) / 4] The amount of the steel satisfies 0.2 <Ni / Cu <1.5, and the steel consisting of the balance iron and unavoidable impurities is used as a slab.
Hot rolling is terminated at a temperature of (Ar 3 -50) ° C or higher, and then 400 to 750 ° C at a cold rolling rate of 30 to 100 ° C / sec.
After being cooled to a temperature in the range of 100 to 750 ° C., it is wound at a temperature in the range of 400 to 750 ° C., partially or entirely having a bainitic ferrite structure and having a tensile strength of 600 N.
/ Mm 2 or more and a method for producing a hot-rolled steel sheet excellent in stretch flange formability having a punched hole limit hole expansion ratio of 90% or more.
【請求項4】重量%で (a)C 0.02〜0.10%、 Si 1.0%以下、 Mn 3.0%以下、 P 0.1%以下、 S 0.01%以下、 Ti 0.1〜1.0%、 Nb 0.1%以下、 Cu 0.2〜2.0%、及びNi 2.0%以下を含
み、更に、 (b)Mo 1.0%以下、 Cr 1.0%以下、及びV 1.0%以下よりなる
群から選ばれる少なくとも1種の元素を含み、Tiの添
加量が C<〔(Ti−3.43N−1.5S)/4+Nb/
7.75〕 を満足し、Cu及びNiの添加量が 0.2<Ni/Cu<1.5 を満足し、残部鉄及び不可避的不純物よりなる鋼をスラ
ブとし、これを1100℃以上の温度に加熱した後、
(Ar−50)℃以上の温度にて熱延を終了し、次い
で、冷延速度30〜100℃/秒にて400〜750℃
の範囲の温度まで冷却した後、400〜750℃の範囲
の温度で巻取ることを特徴とする、一部又は全部がベイ
ニティック・フェライト組織を有し、引張強さ600N
/mm以上の強度と打抜き穴の限界穴拡げ率90%以
上とを有する伸びフランジ加工性にすぐれた熱延鋼板の
製造方法。
4. In weight%, (a) C 0.02 to 0.10%, Si 1.0% or less, Mn 3.0% or less, P 0.1% or less, S 0.01% or less, Ti 0.1 to 1.0%, Nb 0.1% or less, Cu 0.2 to 2.0%, and Ni 2.0% or less, and (b) Mo 1.0% or less, Cr 1 0.0% or less, and at least one element selected from the group consisting of V 1.0% or less, and the addition amount of Ti is C <[(Ti-3.43N-1.5S) / 4 + Nb /
7.75], the addition amounts of Cu and Ni satisfy 0.2 <Ni / Cu <1.5, and the balance steel and unavoidable impurities are used as slabs, and the slab is used at a temperature of 1100 ° C or higher. After heating to
Hot rolling is terminated at a temperature of (Ar 3 -50) ° C or higher, and then 400 to 750 ° C at a cold rolling rate of 30 to 100 ° C / sec.
After being cooled to a temperature in the range of 100 to 750 ° C., it is wound at a temperature in the range of 400 to 750 ° C., partially or entirely having a bainitic ferrite structure and having a tensile strength of 600 N.
/ Mm 2 or more and a method for producing a hot-rolled steel sheet excellent in stretch flange formability having a punched hole limit hole expansion ratio of 90% or more.
【請求項5】鋼が(a)及び(b)の元素に加えて、更
に、(c)Ca 20ppm以下を含む請求項1乃至4
いずれかに記載の熱延鋼板の製造方法。
5. A steel containing, in addition to the elements (a) and (b), (c) Ca in an amount of 20 ppm or less.
The method for manufacturing a hot rolled steel sheet according to any one of claims.
JP33472294A 1994-12-06 1994-12-06 Production of high strength hot rolled steel plate excellent in stretch flange workability Pending JPH08157957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33472294A JPH08157957A (en) 1994-12-06 1994-12-06 Production of high strength hot rolled steel plate excellent in stretch flange workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33472294A JPH08157957A (en) 1994-12-06 1994-12-06 Production of high strength hot rolled steel plate excellent in stretch flange workability

Publications (1)

Publication Number Publication Date
JPH08157957A true JPH08157957A (en) 1996-06-18

Family

ID=18280489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33472294A Pending JPH08157957A (en) 1994-12-06 1994-12-06 Production of high strength hot rolled steel plate excellent in stretch flange workability

Country Status (1)

Country Link
JP (1) JPH08157957A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427283B1 (en) * 2001-09-14 2004-04-14 현대자동차주식회사 The composition and its manufacturing process of ultra-high strength steel sheets
JP2009057620A (en) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd Seam welded pipe for hydroform and its raw material steel sheet, and manufacturing methods therefor
US7749338B2 (en) * 2002-12-24 2010-07-06 Nippon Steel Corporation High burring, high strength steel sheet excellent in softening resistance of weld heat affected zone and method of production of same
KR101320131B1 (en) * 2010-06-25 2013-10-23 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel sheet having excellent formability and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427283B1 (en) * 2001-09-14 2004-04-14 현대자동차주식회사 The composition and its manufacturing process of ultra-high strength steel sheets
US7749338B2 (en) * 2002-12-24 2010-07-06 Nippon Steel Corporation High burring, high strength steel sheet excellent in softening resistance of weld heat affected zone and method of production of same
JP2009057620A (en) * 2007-09-03 2009-03-19 Sumitomo Metal Ind Ltd Seam welded pipe for hydroform and its raw material steel sheet, and manufacturing methods therefor
KR101320131B1 (en) * 2010-06-25 2013-10-23 제이에프이 스틸 가부시키가이샤 High-strength hot-rolled steel sheet having excellent formability and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100430983B1 (en) Steel sheet and method therefor
CA2086283C (en) Low-yield-ratio high-strength hot-rolled steel sheet and method of manufacturing the same
JP5798740B2 (en) High-strength cold-rolled steel sheet with excellent formability and manufacturing method
CN112292472B (en) High-strength steel sheet having excellent collision resistance and method for producing same
JPH0711382A (en) High strength hot rolled steel plate excellent in stretch flanging property and its production
US6554918B2 (en) High-strength hot-rolled steel sheet superior in stretch flange formability and method for production thereof
US20040118489A1 (en) Dual phase hot rolled steel sheet having excellent formability and stretch flangeability
CN112739834A (en) Hot-rolled steel sheet and method for producing same
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH1180890A (en) High strength hot rolled steel plate and its production
JP3947354B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JPH08157957A (en) Production of high strength hot rolled steel plate excellent in stretch flange workability
JP2000144259A (en) High strength hot rolled steel sheet excellent in stretch flanging property and its production
JP4205892B2 (en) High-strength hot-rolled steel sheet excellent in press formability and punching workability and manufacturing method thereof
KR101153696B1 (en) Steel Sheet having Excellent Yield Strength and Stretch Flange Ability and Manufacturing Method Thereof
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
KR101657835B1 (en) High strength hot-rolled steel sheet having excellent press formability and method for manufacturing the same
JPH022929B2 (en)
JP2562964B2 (en) Manufacturing method of hot rolled high strength steel sheet for heavy working
KR102075642B1 (en) High strenghth hot-rolled plated steel sheet having excellent hole flangeability, and method of manufacturing the same
JPS604248B2 (en) Manufacturing method for hot-rolled non-temperature high-strength steel sheets
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JP3873579B2 (en) Manufacturing method of high formability hot-rolled steel sheet