JPH02234493A - Multi-layered board and manufacture thereof - Google Patents

Multi-layered board and manufacture thereof

Info

Publication number
JPH02234493A
JPH02234493A JP5567689A JP5567689A JPH02234493A JP H02234493 A JPH02234493 A JP H02234493A JP 5567689 A JP5567689 A JP 5567689A JP 5567689 A JP5567689 A JP 5567689A JP H02234493 A JPH02234493 A JP H02234493A
Authority
JP
Japan
Prior art keywords
layer
conductor layer
intermediate insulating
insulating substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5567689A
Other languages
Japanese (ja)
Inventor
Kazuaki Sato
和昭 佐藤
Tomitoshi Sugawara
菅原 臣敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5567689A priority Critical patent/JPH02234493A/en
Publication of JPH02234493A publication Critical patent/JPH02234493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To restrict the formation of a stepped potion due to multi-layering and hence improve flatness by forming a first layer conductor layer and further forming conductor layers on and after a second layer in an intermediate insulating layer. CONSTITUTION:An insulating substrate 11 is formed by etching and other methods, and a first layer conductor layer 31 connected to a via 13 of the insulating substrate 11 is buried in the insulating substrate 11 so as to be flush with the surface of the insulating substrate 11 to flatten the first layer. Further, a conductor layer formation part is formed in which part a conductor layer 63 is buried in laminated intermediate insulating layers 41, and is buried in the intermediate insulating layer 41 including a via communicating a lower layer conductor layer 31 so as to flush with the surface of the intermediate insulating layer 41 to flatten said each layer. The processing is repeated in response to the number of multi-layers. Hereby, a stepped portion produced owing to multilayers is prevented from being formed to improve the flatness.

Description

【発明の詳細な説明】 〔概 要〕 多層基板の製造方法に関し、 多層化による段差を解消し、平坦性を高めることを目的
とし、 絶縁基板上に所定のパターンを有する導体層を多層形成
する多層基板の製造方法において、絶縁基板内に設けら
れるビアに対応する位置に、第一層の導体層が形成され
る導体層形成部を堀り下げる工程と、絶縁基板の導体層
形成部に、第一層の導体層を絶縁基板の表面と同一面内
に埋め込み形成する工程と、下層の導体層に導通ずるビ
アおよび導体層が埋め込まれる導体層形成部を有する中
間絶縁層を積層する工程と、中間絶縁層のビアおよび導
体層形成部に、導体層を中間絶縁層の表面と同一面内に
埋め込み形成する工程とを含む。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a multilayer substrate, the purpose is to eliminate steps caused by multilayering and improve flatness, and the method involves forming multiple conductor layers having a predetermined pattern on an insulating substrate. In a method for manufacturing a multilayer board, a step of digging down a conductor layer forming portion in which a first conductor layer is formed at a position corresponding to a via provided in an insulating substrate; A step of embedding a first conductor layer in the same plane as the surface of an insulating substrate, and a step of laminating an intermediate insulating layer having a conductor layer forming portion in which the conductor layer is embedded and a via that conducts to the lower conductor layer. , a step of embedding a conductor layer in the via and conductor layer forming portion of the intermediate insulating layer in the same plane as the surface of the intermediate insulating layer.

〔産業上の利用分野〕[Industrial application field]

本発明は、多層基板の平坦性を高めるための製造方法に
関する. 〔従来の技術〕 多層基板は、ベースとなる絶縁基板(セラミック基板)
上に第一層の薄膜パターン(導体層)を所定の方法によ
り作成し、その上に各層の薄膜パターンを接続するビア
(via hole)を有する中間絶縁層(ポリイミド
)を形成し、以下各層の薄膜パターンと中間絶縁層を交
互に積層し、最終的に外の部品とのコンタクトをとる薄
膜パッドをのせ、焼成して完成させている。
The present invention relates to a manufacturing method for improving the flatness of a multilayer substrate. [Conventional technology] A multilayer board is based on an insulating board (ceramic board).
A first layer thin film pattern (conductor layer) is created on top by a predetermined method, and an intermediate insulating layer (polyimide) having via holes connecting the thin film patterns of each layer is formed thereon. Thin film patterns and intermediate insulating layers are alternately laminated, and finally, thin film pads are placed to make contact with external components, and the product is completed by firing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、近年の多層基板は、実装される電子部品の高
速度化および高密度化に伴って、電力供給を良好にする
ために各導体層を厚くする傾向にある。
Incidentally, in recent years, multilayer boards have tended to have thicker conductor layers in order to improve power supply as electronic components to be mounted have become faster and more dense.

したがって、従来の製造方法による多層基板では、下層
の薄膜パターンの影響.により上層部の薄膜パターンの
段差が大きくなって中間絶縁層の熱膨張で断線を生じや
すくなり、またその重畳により外層導体層の平坦性も悪
化するので、多層時における各層パターンの平坦化が大
きな課題になっている. 一方、各層ごとの平坦化を図るために、中間絶縁層のポ
リイミドに平坦性をもたせる方法が近年開発されつつあ
る。すなわち、ボリアミド酸をエステル化し分子量を大
きくし・て樹脂成分量を増大させ、薄膜パターンの凹凸
を吸収し平坦性を向上させる方法であるが、そのような
ポリイミドは従来のイオン結合タイプのボリアミド酸と
同程度の密着性が容易に得られず、絶縁層の眉間剥離を
生じさせる問題点がある。
Therefore, in multilayer substrates manufactured using conventional manufacturing methods, the influence of the underlying thin film pattern is high. This increases the level difference in the thin film pattern in the upper layer, making it more likely to cause disconnection due to thermal expansion of the intermediate insulating layer, and the flatness of the outer conductor layer deteriorates due to the overlap, so the flatness of each layer pattern becomes large when multilayering. This has become an issue. On the other hand, in order to planarize each layer, a method of imparting flatness to polyimide as an intermediate insulating layer has been developed in recent years. In other words, polyimide is esterified to increase its molecular weight and increase the amount of resin components to absorb the unevenness of the thin film pattern and improve its flatness. It is not easy to obtain the same level of adhesion as the conventional method, and there is a problem in that the insulating layer peels off between the eyebrows.

また、このようなポリイミドを用いても平坦性は完全で
はなく、現在のところ数μm程度の段差が生ずる. 本発明は、多層化による段差を解消し、平坦性を高める
ことができる多層基板の製造方法およびその多層基板を
提供することを目的とする.〔課題を解決するための手
段〕 第1図は、本発明の原理説明図である。
Further, even when such polyimide is used, the flatness is not perfect, and at present, a step difference of several μm occurs. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a multilayer substrate that can eliminate steps caused by multilayering and improve flatness, and the multilayer substrate. [Means for Solving the Problems] FIG. 1 is a diagram illustrating the principle of the present invention.

絶縁基板上に所定のパターンを有する導体層を多層形成
する多層基板の本発明による製造方法は、第一の工程で
、絶縁基板内に設けられるビアに対応する位置に、第一
層の導体層が形成される導体層形成部を堀り下げる。
The method of manufacturing a multilayer substrate according to the present invention, in which conductor layers having a predetermined pattern are formed in multiple layers on an insulating substrate, includes, in a first step, a conductor layer of the first layer being formed in a position corresponding to a via provided in the insulating substrate. Dig down the conductor layer forming area where the conductor layer will be formed.

第二の工程では、絶縁基板の導体層形成部に、第一層の
導体層を絶縁基板の表面と同一面内に埋め込み形成する
In the second step, a first conductor layer is embedded in the conductor layer forming portion of the insulating substrate in the same plane as the surface of the insulating substrate.

第三゛の工程では、下層の導体層に導通ずるビアおよび
導体層が埋め込まれる導体層形成部を有する中間絶縁層
を積層する。
In the third step, an intermediate insulating layer is laminated which has a conductor layer forming portion in which a via and a conductor layer are embedded, which are electrically connected to the underlying conductor layer.

第四の工程では、中間絶縁層のビアおよび導体層形成部
に、導体層を中間絶縁層の表面と同一面内に埋め込み形
成する. 以下、第三の工程および第四の工程を繰り返し、多層化
を行う。
In the fourth step, a conductor layer is embedded in the via and conductor layer forming portion of the intermediate insulating layer in the same plane as the surface of the intermediate insulating layer. Thereafter, the third step and fourth step are repeated to form multiple layers.

なお、中間絶縁層は、感光性ポリイミドを使用し、リピ
ート露光法あるいはリピートコーティング法により形成
することが好ましい。
Note that the intermediate insulating layer is preferably formed using photosensitive polyimide by a repeat exposure method or a repeat coating method.

また、絶縁基板および第一層の導体層上に二酸化珪素層
を成膜し、その上に積層される中間絶縁層の導通ビア内
の二酸化珪素層をエッチング除去する工程を含むことが
好ましい。
Further, it is preferable to include a step of forming a silicon dioxide layer on the insulating substrate and the first conductor layer, and etching away the silicon dioxide layer in the conductive via of the intermediate insulating layer laminated thereon.

また、多層基板は、絶縁基板内に設けられるビアに対応
する位置に、絶縁基板の表面と同一面内に形成された導
体層と、下層の導体層に導通ずるビアを有し、積層され
る中間絶縁層と、中間絶縁層のビアに対応する位置に、
中間絶縁層の表面と同一面内に形成された導体層とを備
えた構造である。
In addition, a multilayer board has a conductor layer formed in the same plane as the surface of the insulating substrate at a position corresponding to the via provided in the insulating substrate, and a via that is electrically connected to the lower conductor layer, and is laminated. At the positions corresponding to the intermediate insulating layer and the vias in the intermediate insulating layer,
This structure includes a conductor layer formed in the same plane as the surface of the intermediate insulating layer.

〔作 用] 本発明は、絶縁基板をエッチングその他の方法により堀
り下げ、絶縁基板内にその表面と同一面になるように、
絶縁基板のビアに接続される第一層の導体層を埋め込み
形成することにより、第一層の平坦化を図ることができ
る。
[Function] According to the present invention, an insulating substrate is dug down by etching or other method, and the insulating substrate is flush with the surface thereof.
By embedding the first conductive layer connected to the vias of the insulating substrate, the first layer can be planarized.

また、積層される中間絶縁層内に導体層が埋め込まれる
導体層形成部を形成し、下層の導体層に導通ずるビアを
含めて、中間絶縁層内にその表面と同一面になるように
各層の導体層を埋め込み形成することにより、各層ごと
の平坦化を図ることができる.なお、多層数に応じてこ
の処理を繰り返す。
In addition, a conductor layer forming part is formed in which the conductor layer is embedded in the intermediate insulating layer to be laminated, and each layer is flush with the surface of the intermediate insulating layer, including vias that conduct to the lower conductor layer. By embedding the conductor layer, each layer can be flattened. Note that this process is repeated depending on the number of layers.

〔実施例〕〔Example〕

以下、図面に基づいて本発明の実施例について詳細に説
明する. 第2図は、本発明の一実施例製造方法の各工程を説明す
る断面図である。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 2 is a sectional view illustrating each step of a manufacturing method according to an embodiment of the present invention.

第2図(1)は、ガラスセラミックその他の絶縁基板(
以下、「セラミック」という。)11であり、その内部
(反対側)からの信号通路となるビア金属13を有する
Figure 2 (1) shows a glass ceramic or other insulating substrate (
Hereinafter referred to as "ceramic". ) 11, and has a via metal 13 that serves as a signal path from the inside (opposite side).

第2図(2)は、とア金属に接続される第一層の薄膜パ
ターンの形成部の状態を示す。
FIG. 2(2) shows the state of the first layer thin film pattern forming part connected to the metal.

薄膜パターン形成部は、まずセラミック11の表面を研
磨した後に、耐プラズマレジストを厚膜で塗布し露光現
像してパターンを形成する。続いて、イオンミリング装
置を用いてセラミック11?よびビア金属13をともに
所定の厚さだけミリングし、さらにRrE(リアクティ
ブ・イオン・エッチング)装置を用い、所定のガス(C
F.+0■)でエッチングすると、とア金属13の頭部
が残った状態でエッチングされ、第一層の薄膜パターン
の形成部ができる。
The thin film pattern forming section first polishes the surface of the ceramic 11, then applies a thick film of plasma-resistant resist, and forms a pattern by exposing and developing the resist. Next, using an ion milling device, ceramic 11? and via metal 13 to a predetermined thickness, and then using a RrE (reactive ion etching) device, a predetermined gas (C
F. +0■), the top portion of the metal 13 is etched away, and a portion for forming the first layer thin film pattern is formed.

なお、この工程は、セラミック面と同一面内に第一層の
薄膜パターンを形成させる目的とともに、焼成して得ら
れたビア金属の焼結密度が粗になりやすく、ボイドその
他の欠陥が生じているために、掘り下げた部分に低融点
金属ペーストにて栓をし欠陥を修復する目的で行われる
Note that this process is used not only to form a first layer thin film pattern in the same plane as the ceramic surface, but also to avoid the possibility that the sintered density of the via metal obtained by firing becomes coarse and voids and other defects occur. This is done to repair the defect by plugging the dug-out area with a low-melting metal paste.

続いて、セラミックl1の表面に塗布したレジスト層を
その剥離液で除去し、さらにセラミック中に混合されて
いて露出し、イオンミリングおよびエッチングされなか
ったアルミナ(Altos)をフレオンその他の有機溶
剤で超音波洗浄し除去する。
Next, the resist layer applied to the surface of the ceramic 11 is removed using the stripping solution, and the exposed alumina (Altos) that was mixed in the ceramic but was not ion-milled or etched is superimposed using Freon or other organic solvent. Remove with sonic cleaning.

第2図(3)は、ビア金属に接続される第一層の薄膜パ
ターン31およびセラミック11の表面処理の状態を示
す。
FIG. 2(3) shows the state of surface treatment of the first layer thin film pattern 31 and ceramic 11 connected to the via metal.

第一層の薄膜パターン31は、その形成部に低融点金属
ペーストをスキージーでセラミック表面より充填し、そ
のパターン以外の表面に付着した低融点金属ペーストを
拭き取り、さらに550〜600゜Cで焼成して作成す
る。また、その表面で金属化した低融点金属ペーストは
ボリシングにより研磨し、セラミックl1と同一面にな
るようにする。
The thin film pattern 31 of the first layer is formed by filling the formation area with a low melting point metal paste from the ceramic surface using a squeegee, wiping off the low melting point metal paste adhering to the surface other than the pattern, and then baking at 550 to 600°C. Create it. Further, the low melting point metal paste metallized on the surface is polished by boring to make it flush with the ceramic l1.

なお、低融点金属ペーストは、ビア金属13とのミスマ
ッチを防“止するために同一の金属を使用することが望
ましい。
Note that it is desirable to use the same metal as the low melting point metal paste in order to prevent mismatch with the via metal 13.

続いて、その上に形成される中間絶縁層のポリイミドと
低融点金属ペーストの銅との拡散を防止するために、リ
フトオフ法によりクロム層33を第一層の薄膜パターン
31の上に形成し、さらにセラミック中の酸化ナトリウ
ムとポリイミドとの拡散を防止するために、薄膜パター
ンを含めたセラミック11の全面に二酸化珪素層35を
スバッタ形成する. 第2図(4)は、第一層の薄膜パターン31の上に形成
される中間絶縁層41および第二層の薄膜パターンの形
成部の状態を示す。
Subsequently, in order to prevent diffusion of the polyimide of the intermediate insulating layer formed thereon and the copper of the low melting point metal paste, a chromium layer 33 is formed on the first layer thin film pattern 31 by a lift-off method. Furthermore, in order to prevent the diffusion of sodium oxide and polyimide in the ceramic, a silicon dioxide layer 35 is spatter-formed over the entire surface of the ceramic 11 including the thin film pattern. FIG. 2(4) shows the state of the intermediate insulating layer 41 formed on the first layer thin film pattern 31 and the formation portion of the second layer thin film pattern.

中間絶縁層4lには、感光性ポリイミドを使用し、リピ
ート露光法あるいはリピートコーティング法により、第
二層の薄膜パターンが埋め込まれる薄膜パターン形成部
、および第一層の薄膜パターン31に導通ずるビアの形
成部を作成する.すなわち、リピート露光法は、感光性
ポリイミドに例えばネガ型を用いた場合には、まず第3
図(1)に示す斜線部(第二層の薄膜パターン)をマス
クして所定のA露光量にて露光し、さらに第3図(2)
に示す斜線部(第一層の薄膜パターンに導通ずるビア)
をマスクして所定の%露光量にて露光した後に現像する
ことにより、第3図(3)に示すような導通ビアを有す
る中間絶縁層の薄膜パターン形成部を作成する方法であ
る。
The intermediate insulating layer 4l is made of photosensitive polyimide, and is formed by a repeat exposure method or a repeat coating method to form a thin film pattern forming portion in which the thin film pattern of the second layer is embedded, and a via that is electrically connected to the thin film pattern 31 of the first layer. Create a forming part. In other words, in the repeat exposure method, when a negative type photosensitive polyimide is used, the third exposure method is first applied.
The shaded area (thin film pattern of the second layer) shown in Figure (1) is masked and exposed at a predetermined exposure amount A, and then as shown in Figure 3 (2).
Shaded area shown in (via that conducts to the thin film pattern of the first layer)
In this method, a thin film pattern forming portion of an intermediate insulating layer having conductive vias as shown in FIG. 3(3) is created by masking and exposing at a predetermined % exposure amount and then developing.

また、リピートコーティング法は、第4図(1)に示す
第一層の薄膜パターンに導通ずるビアの形成部を除去し
て仮焼きを行い、続いて第4図(2)に示す第二層の薄
膜パターン形成部を除去した後に本焼きを行うことによ
り、導通ビアを有する中間絶?層の薄膜パターン形成部
を作成する方法である。
In addition, in the repeat coating method, the via formation portion that is electrically connected to the thin film pattern of the first layer shown in Figure 4 (1) is removed and calcined, and then the second layer shown in Figure 4 (2) is coated. By performing final firing after removing the thin film pattern forming part, an intermediate insulation with conductive vias can be created. This is a method of creating a thin film pattern forming portion of the layer.

なお、第2図(4)において、中間絶縁層4lの形成後
は、導通ビアの底部に二酸化珪素層35があるので、所
定の方法(CF4 + NZ + 0■のプラズマエッ
チング)によりそれを除去する。
In addition, in FIG. 2 (4), after the formation of the intermediate insulating layer 4l, there is a silicon dioxide layer 35 at the bottom of the conductive via, so it is removed by a predetermined method (CF4 + NZ + 0■ plasma etching). do.

第2図(5)は、第二層の薄膜パターンの形成のために
、第2図(4)に示す状態の基板全面に、クロム・チタ
ン・銅の3層膜を連続でスパッタし作成されたメッキベ
ース5lを示す。なお、クロムは中間絶縁層41のポリ
イミドとの密着性を高め、チタンはクロムと銅との接着
効果を高めるために使用される。
Figure 2 (5) shows that a three-layer film of chromium, titanium, and copper is successively sputtered onto the entire surface of the substrate in the state shown in Figure 2 (4) in order to form a second layer thin film pattern. The plated base 5L is shown. Note that chromium is used to enhance the adhesion to the polyimide of the intermediate insulating layer 41, and titanium is used to enhance the adhesion effect between chromium and copper.

続いて、第二層の薄膜パターンが形成される部分(電着
部)のみを露出させるように、第2図(6)に示すレジ
スト層61を作成し、中間絶縁層41の表面と同一面に
なるように銅メッキおよびニッケルメッキを行い、第二
層の薄膜パターン63を作成する。なお、銅およびニッ
ケルはそれぞれ平坦性が向上するように光沢剤などでレ
ベリング特性を調整する。
Next, a resist layer 61 as shown in FIG. 2(6) is created so as to expose only the part where the thin film pattern of the second layer is to be formed (electrodeposition part), and is placed on the same surface as the surface of the intermediate insulating layer 41. Copper plating and nickel plating are performed to form a second layer thin film pattern 63. Note that the leveling properties of copper and nickel are adjusted using a brightening agent or the like so that the flatness of each is improved.

次に、レジスト層61を除去し、第二層の薄膜パターン
63外のメッキベース5lを除去するために、第二層の
薄膜パターン63をフォトレジストで保護してエッチン
グを行う。
Next, in order to remove the resist layer 61 and remove the plating base 5l outside the second layer thin film pattern 63, the second layer thin film pattern 63 is protected with a photoresist and etched.

第2図(7)は、中間絶縁層41に形成された第二層の
薄膜パターン63の状態を示す。
FIG. 2(7) shows the state of the second layer thin film pattern 63 formed on the intermediate insulating layer 41.

第二層の薄膜パターン63はニッケル面になっているの
で、その上に積層される中間絶縁層のポリイミドとの密
着性を向上させるために、第一層の薄膜パターン31の
ときと同様のリフトオフ法により、銅層7lを第二層の
薄膜パターン63の上にスバッタ形成する。
Since the second layer thin film pattern 63 has a nickel surface, in order to improve the adhesion with the polyimide of the intermediate insulating layer laminated thereon, a lift-off film similar to that used for the first layer thin film pattern 31 is applied. A copper layer 7l is sputter-formed on the second layer thin film pattern 63 by a method.

以上の工程で、セラミック11上に、第一層の薄膜パタ
ーン31、中間絶縁層41、第二層の薄膜パターン63
の形成が完了するが、多層化は第2図(4)〜第2図(
7)の工程を繰り返すことにより行われる。
In the above steps, the first layer thin film pattern 31, the intermediate insulating layer 41, and the second layer thin film pattern 63 are formed on the ceramic 11.
The formation of is completed, but the multilayering is as shown in Fig. 2 (4) to Fig. 2 (
This is carried out by repeating the step 7).

このように本発明による製造方法は、各層の薄膜パター
ンをセラミックl1あるいは中間絶縁層41に埋め込み
、さらにセラミック11あるいは中間絶縁層41のポリ
イミドと薄膜パターンとの密着性を図りながら、中間絶
縁層41を平坦面に積層させていくことにより、多層化
における平坦化を実現させている。
In this manner, the manufacturing method according to the present invention embeds the thin film pattern of each layer in the ceramic 11 or the intermediate insulating layer 41, and further improves the adhesion between the polyimide of the ceramic 11 or the intermediate insulating layer 41 and the thin film pattern. By stacking the layers on a flat surface, flattening of the multilayer structure is realized.

なお本実施例は、各工程における各部の形成方法および
その手順の一例を示したものであり、使用されている金
属の種類も含めて同等の作用をするものであれば、本発
明の実施は可能である。
This example shows an example of the method and procedure for forming each part in each step, and the present invention can be implemented as long as it has the same effect, including the type of metal used. It is possible.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明によれば、第一層の導体層(薄
膜パターン)を絶縁基板内に形成し、第二層以降の導体
層(薄膜パターン)を中間絶縁層(ポリイミド)内に形
成することにより、多層化による段差の発生を最小限に
抑え平坦性を高めることができる。
As described above, according to the present invention, the first conductor layer (thin film pattern) is formed within the insulating substrate, and the second and subsequent conductor layers (thin film pattern) are formed within the intermediate insulating layer (polyimide). By doing so, it is possible to minimize the occurrence of steps caused by multilayering and improve flatness.

したがって、信鎖性が高く高密度の多層基板を容易に製
造することができる。
Therefore, a multilayer substrate with high reliability and high density can be easily manufactured.

また、多層化による段差の解消が容易であ゛るので、横
方向の応力に弱いスパッタ膜を用いることができ、オー
ルドライプロセス化の実現も可能である。
In addition, since it is easy to eliminate the level difference due to multilayering, a sputtered film that is weak against lateral stress can be used, and an all-dry process can be realized.

また、絶縁基板内に設けられるビアの焼成における欠陥
の補修ができるので、ビアボイドによる薄膜パターンの
ふくれおよび断線を防止することができ、実用的には極
めて有用である。
Furthermore, since defects in firing of vias provided in an insulating substrate can be repaired, blistering and disconnection of thin film patterns due to via voids can be prevented, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は本発明の一実施例製造方法の各工程を説明する
断面図、 第3図はリピート露光法を説明する図、第4図はリピー
トコーティング法を説明する図である。 4l 7l はクロム層、 は二酸化珪素層、 は中間絶縁層、 はメッキベース、 はレジスト層、 は第二層の薄膜パターン、 は銅層である。 図において、 11はガラスセラミックその他の絶縁基板(セラミック
)、 13はビア金属、 31は第一層の薄膜パターン、 リピート露光法を説明する図 第3図 本発明の原理説明図 第1図 リピートコーティング法を説明する図 第4図 本発明の一実施例製造方法の各工程を説明する断面図第
2図
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a sectional view explaining each step of a manufacturing method according to an embodiment of the present invention, Fig. 3 is a diagram explaining the repeat exposure method, and Fig. 4 is a repeat coating. FIG. 4l 7l is a chromium layer, is a silicon dioxide layer, is an intermediate insulating layer, is a plating base, is a resist layer, is a second layer thin film pattern, is a copper layer. In the figure, 11 is a glass ceramic or other insulating substrate (ceramic), 13 is a via metal, 31 is a thin film pattern of the first layer, Figure 3 is a diagram explaining the repeat exposure method, Figure 1 is a diagram explaining the principle of the present invention, and Figure 1 is a repeat coating. Fig. 4 is a cross-sectional view illustrating each step of the manufacturing method according to an embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁基板上に所定のパターンを有する導体層を多
層形成する多層基板の製造方法において、絶縁基板内に
設けられるビアに対応する位置に、第一層の導体層が形
成される導体層形成部を堀り下げる工程と、 絶縁基板の導体層形成部に、第一層の導体層を前記絶縁
基板の表面と同一面内に埋め込み形成する工程と、 下層の導体層に導通するビアおよび導体層が埋め込まれ
る導体層形成部を有する中間絶縁層を積層する工程と、 中間絶縁層のビアおよび導体層形成部に、導体層を前記
中間絶縁層の表面と同一面内に埋め込み形成する工程と を含むことを特徴とする多層基板の製造方法。
(1) In a method for manufacturing a multilayer board in which a multilayer conductor layer having a predetermined pattern is formed on an insulating substrate, a first conductor layer is formed in a position corresponding to a via provided in the insulating substrate. a step of digging down the formation portion; a step of embedding a first conductor layer in the conductor layer formation portion of the insulating substrate in the same plane as the surface of the insulating substrate; and a step of forming a via conductive to the lower conductor layer; a step of laminating an intermediate insulating layer having a conductor layer forming part in which the conductor layer is embedded; and a step of embedding the conductor layer in the via and the conductor layer forming part of the intermediate insulating layer in the same plane as the surface of the intermediate insulating layer. A method for manufacturing a multilayer board, comprising:
(2)中間絶縁層は、感光性ポリイミドを使用し、リピ
ート露光法あるいはリピートコーティング法により形成
する特許請求の範囲第(1)項に記載の多層基板の製造
方法。
(2) The method for manufacturing a multilayer substrate according to claim (1), wherein the intermediate insulating layer is formed using photosensitive polyimide by a repeat exposure method or a repeat coating method.
(3)絶縁基板および第一層の導体層上に二酸化珪素層
を成膜し、その上に積層される中間絶縁層の導通ビア内
の二酸化珪素層をエッチング除去する工程を含む特許請
求の範囲第(1)項に記載の多層基板の製造方法。
(3) Claims that include the step of forming a silicon dioxide layer on the insulating substrate and the first conductor layer, and etching away the silicon dioxide layer in the conductive via of the intermediate insulating layer laminated thereon. The method for manufacturing a multilayer substrate according to item (1).
(4)絶縁基板内に設けられるビアに対応する位置に、
絶縁基板の表面と同一面内に形成された導体層と、 下層の導体層に導通するビアを有し、積層される中間絶
縁層と、 中間絶縁層のビアに対応する位置に、中間絶縁層の表面
と同一面内に形成された導体層と を備えたことを特徴とする多層基板。
(4) At the position corresponding to the via provided in the insulating substrate,
A conductive layer formed in the same plane as the surface of the insulating substrate, an intermediate insulating layer that has vias that conduct to the lower conductive layer, and is laminated, and an intermediate insulating layer at a position corresponding to the via in the intermediate insulating layer. A multilayer board comprising a conductor layer formed in the same plane as the surface of the board.
JP5567689A 1989-03-07 1989-03-07 Multi-layered board and manufacture thereof Pending JPH02234493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5567689A JPH02234493A (en) 1989-03-07 1989-03-07 Multi-layered board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5567689A JPH02234493A (en) 1989-03-07 1989-03-07 Multi-layered board and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02234493A true JPH02234493A (en) 1990-09-17

Family

ID=13005489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5567689A Pending JPH02234493A (en) 1989-03-07 1989-03-07 Multi-layered board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02234493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022519A (en) * 2012-07-17 2014-02-03 Saitama Univ Photon detector using superconduction tunnel junction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022519A (en) * 2012-07-17 2014-02-03 Saitama Univ Photon detector using superconduction tunnel junction

Similar Documents

Publication Publication Date Title
US7521779B2 (en) Roughened printed circuit board
US6323435B1 (en) Low-impedance high-density deposited-on-laminate structures having reduced stress
CN102856213B (en) Thin film multilayer wiring manufacturing method based on LTCC (Low Temperature Co-Fired Ceramic) base plate
TW202109622A (en) Method for producing printed circuit boards and printed circuit boards produced in accordance with the method
US4769309A (en) Printed circuit boards and method for manufacturing printed circuit boards
US6629366B1 (en) Method of producing a multilayer wiring board
JP2777020B2 (en) Wiring layer flattening method
KR20130031592A (en) Method for manuracturing printed circuit board with via and fine pitch circuit and printed circuit board by the same method
JP2836616B2 (en) Method of forming conductor wiring pattern
JPH02234493A (en) Multi-layered board and manufacture thereof
TWI708542B (en) Adhesive copper foil build-up process
JPH05145230A (en) Method of forming conductor pattern on glass-ceramic board
JP2001135918A (en) Manufacturing method for double-sided thin-film wiring board
JPS6244880B2 (en)
KR100468195B1 (en) A manufacturing process of multi-layer printed circuit board
JPH03225894A (en) Manufacture of printed wiring board
KR20010072144A (en) Method for forming low-impedance high-density deposited-on-laminate structures having reduced stress
JPH03108798A (en) Multilayer wiring board and manufacture thereof
JPH06268377A (en) Manufacture of multilayer interconnection board
TW423034B (en) Method for forming low-impedance high-density deposited-on-laminate structures having reduced stress
JP2875029B2 (en) Method for manufacturing multilayer thin film substrate
JP2849163B2 (en) Manufacturing method of electronic circuit board
JP2005203561A (en) Manufacturing method of multilayer wiring substrate
JP2003513456A (en) Manufacturing method of laminated printed circuit board
JP2010192637A (en) Multilayer wiring board and method of manufacturing the same, and wafer batch contact board