JPH02231726A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH02231726A
JPH02231726A JP5233589A JP5233589A JPH02231726A JP H02231726 A JPH02231726 A JP H02231726A JP 5233589 A JP5233589 A JP 5233589A JP 5233589 A JP5233589 A JP 5233589A JP H02231726 A JPH02231726 A JP H02231726A
Authority
JP
Japan
Prior art keywords
region
island
silicon
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5233589A
Other languages
Japanese (ja)
Other versions
JP2522383B2 (en
Inventor
Tsutomu Tashiro
勉 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1052335A priority Critical patent/JP2522383B2/en
Publication of JPH02231726A publication Critical patent/JPH02231726A/en
Application granted granted Critical
Publication of JP2522383B2 publication Critical patent/JP2522383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To perform a high speed switching by using materials having the different qualities in the active base region and in the inactive base region of a transistor. CONSTITUTION:An embedded layer 2 is selectively formed in a silicon substrate 1. An epitaxial growth layer 3 is grown. A ground oxide film 4 is formed by thermal oxidation. A nitride film 5 is further formed. A region which is to become an element is made to remain, and the ground oxide film 4 and the nitride film 5 are removed. An insulating isolation oxide film 6 is formed. Then, a collector lead-out electrode 7 and a first polysilicon film 8 are formed. Thereafter, a CVD oxide film 9 is formed. A PSG film 11 is formed. The epitaxial growth layer 3 is etched. Heat treatment is performed in N2 atmosphere, and an outer base layer 16 is formed. A silicon epitaxial layer 13 is further formed and activated. Thereafter, base and collector electrodes 14 and an aluminum electrode 15 is formed. Thus, high speed switching operation can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路装置に関し、特に接合の浅く、
高速スイッチリング動作に適するバイポーラ型半導体集
積回路装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor integrated circuit device, and particularly to a semiconductor integrated circuit device with shallow junctions,
The present invention relates to a bipolar semiconductor integrated circuit device suitable for high-speed switching operation.

〔従来の技術〕[Conventional technology]

近年、高速スイッチング動作するバイポーラトランジス
タは、リソダラフィ技術の進歩で、1、0μmルールで
設計され、さらにエミッターベース間がリソグラフィ技
術の影響を受けないセルフ7ライン技術で形成される様
になり、エミッタ幅として実効的に0.5μm以下の物
も可能になってきている.さらに高速化の為には、水平
方向の縮小だけではなく、垂直方向、すなわち各接合を
浅くすることが必要であるが、従来から言われている様
に、高速化に重要な要素であるベース幅の縮小は、エミ
ッターコレクタ間のパンチスルー問題があり、縮小にも
限界がある。これに対する対策はベース濃度を高くする
事であるが、高くするとエミッタからの注入効率が低下
し、増幅作用が行らなくなってしまう.この為、この問
題を解決する手法として、エミッタ、またはベース、ま
たは両方にバンド幅の異なる材料を使用するヘテU接合
バイポーラトランジスタ(以後、HBTという)が研究
されている。ところで、現在のシリコンを使用するプロ
セスに対する整合性から考えると、エミッタにワイドバ
ンドギャップ材料を使用するか、ベースにナローバンド
ギャップでかつ、シリコンと同一の四族に属する材料を
使用する事力t望ましい。さらに、今後のトランジスタ
のスケーリング(水平方向)を考えると、ナローバンド
ギャップ材料をベースに使用する事が望ましいと考えら
れる。
In recent years, due to advances in lithography technology, bipolar transistors that perform high-speed switching operations have been designed using the 1.0 μm rule, and the emitter-base gap has also been formed using self-7-line technology that is unaffected by lithography technology, resulting in a reduction in emitter width. As a result, it is becoming possible to effectively create objects with a diameter of 0.5 μm or less. Furthermore, in order to increase speed, it is necessary not only to reduce the size in the horizontal direction, but also to make each joint shallower in the vertical direction. There is a problem with the punch-through between the emitter and collector when reducing the width, and there is a limit to the width reduction. A countermeasure against this is to increase the base concentration, but if it is increased, the injection efficiency from the emitter will decrease and the amplification effect will no longer occur. Therefore, as a method to solve this problem, a hetero-U junction bipolar transistor (hereinafter referred to as HBT), which uses materials with different bandwidths for the emitter, base, or both, is being researched. By the way, considering the compatibility with the current process using silicon, it is desirable to use a wide bandgap material for the emitter or a material with a narrow bandgap and belonging to the same group 4 as silicon for the base. . Furthermore, considering future transistor scaling (horizontal direction), it is considered desirable to use a narrow bandgap material as the base.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した様に、HBT用の材料,構造としては、ベース
に対し、ナローバンドギャップの材料、特にシリコンと
ゲルマニウムの混晶を用いるのが最適と考えられる。し
かし、異なる材質の物をベースとして使用し、トランジ
スタを水平方向へ縮小しようとすると、ナローバンドギ
ャップのHBTでセルファライン構造の採用が必要とな
る。ところが、ベース部の引き出し電極の形成方法に有
効なものがなかった。
As mentioned above, it is considered optimal for the HBT material and structure to use a narrow bandgap material, particularly a mixed crystal of silicon and germanium, for the base. However, if a transistor made of a different material is used as a base and the transistor is scaled down in the horizontal direction, it becomes necessary to adopt a self-line structure in a narrow bandgap HBT. However, there was no effective method for forming the lead-out electrode of the base portion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体集積回路装置は、シリコン基板内に選択
的に埋設された、拡散層上に分離された第1導電型のエ
ビタキシャル成長層よりなる第1の島状領域と、この第
1の島状領域内に選択的に形成されたシリコンとゲルマ
ニウムの混晶からなる、厚さが500λ以下の第2導電
型の第2の島状領域と、この第2の島状領域を取り囲み
、かつこの第2の島状領域と接触し、かつ深さがこの第
2の島状領域と同等以上で、かつ第1島状領域内に有る
様に形成された、第2導電型の第3の島状領域と、第2
の島状領域上に第2の島状領域と同等以下の面積を持ち
、第2の島状領域とpn接合を形成するシリコンを主成
分とする第1導電型の第4の島状領域を有する。
A semiconductor integrated circuit device of the present invention includes a first island-like region made of an epitaxial growth layer of a first conductivity type separated on a diffusion layer and selectively buried in a silicon substrate; a second conductivity type second island region having a thickness of 500λ or less and made of a mixed crystal of silicon and germanium selectively formed within the island region; A third conductive type third conductivity type formed in contact with the second island-like region, has a depth equal to or greater than the second island-like region, and is located within the first island-like region. an island-like region and a second
A fourth island-like region of the first conductivity type, which has an area equal to or smaller than the second island-like region and whose main component is silicon and which forms a pn junction with the second island-like region, is formed on the island-like region. have

本発明によれば、ナローバンドギャップHBTのセレフ
ァライン構造における、ベース部の引き出し方法に関し
、新しい提案をするものであり、トランジスタの活性ベ
ース領域と不活性ベース領域とに異なる材質を使用し、
それらをセルファラインで接続した半導体集積回路装置
を得る。
According to the present invention, a new proposal is made regarding a method for drawing out the base part in a cerephaline structure of a narrow bandgap HBT, and the active base region and the inactive base region of the transistor are made of different materials,
A semiconductor integrated circuit device is obtained in which these are connected by a self-line.

〔実施例〕〔Example〕

本発明をよりよく理解する為に、次に実施例をもって説
明する。
In order to better understand the present invention, the present invention will now be described with reference to examples.

第1図(a)〜(e)は本発明の第1の実施例の主要工
程の断面図である.まず、第1図(a)の様に、シリコ
ン基板1内に選択的に埋込層2をAsドープシリ力フィ
ルム塗布,押し込み拡散工程を経て形成する。さらに、
エビタキシャル成長層3を厚さ1.0μmで成長し、そ
の上に熱酸化により、膜厚500人の下敷き酸化膜4を
形成する。さらに膜厚1000人の窒化膜5を形成し、
ホトリソグラフィ技術により将来、素子となる領域を残
し、下敷き酸化膜4と窒化巻5を除去し、その後絶縁分
離酸化膜6を、膜厚が約1.2μmになる様に形成する
. 続いて第1図(b,)に示す様に熱拡散によりコレクタ
引出し電極7を形成し、将来ベースの引−き出し電極と
なる膜厚3000人のポロンをドーピングした第1ボリ
シリ膜8を形成する。その後にCVD成長法により、カ
バーとして膜厚3000人のCVD酸化膜9を形成する
FIGS. 1(a) to 1(e) are cross-sectional views of the main steps of the first embodiment of the present invention. First, as shown in FIG. 1(a), a buried layer 2 is selectively formed in a silicon substrate 1 through an As-doped silicon film coating and indentation diffusion process. moreover,
An epitaxial growth layer 3 is grown to a thickness of 1.0 μm, and an underlying oxide film 4 with a thickness of 500 μm is formed thereon by thermal oxidation. Furthermore, a nitride film 5 with a thickness of 1000 is formed,
Using photolithography technology, the underlying oxide film 4 and the nitride film 5 are removed, leaving a region that will become an element in the future, and then an insulating isolation oxide film 6 is formed to a thickness of about 1.2 μm. Next, as shown in FIG. 1(b), a collector lead-out electrode 7 is formed by thermal diffusion, and a first polysilicon film 8 doped with 3000 ml of poron is formed, which will become the base lead-out electrode in the future. do. Thereafter, a CVD oxide film 9 with a thickness of 3,000 wafers is formed as a cover by a CVD growth method.

さらに第1図(c)に示す様に、将来エミッタ電極と、
活性ベース領域を形成する所に写真食刻法により第1ポ
リシリ膜8とCVD酸化膜9をエッチングして開口部を
設け、ベース引き出し電極ボリシリ膜と、エミッタ電極
ポリシリ膜を絶縁分離する為のBSG膜を膜厚3000
人で付着し、その後RIE法により、BSG膜を開口部
の側壁に残すようにエッチングを行ない、図に示すBS
G膜11を形成する。さらに、側壁にBSG膜11を残
した開口部をRIE法を使用して将来シリコンとゲルマ
ニウムの混晶を成長する領域のエビタキシャル成長層3
を深さ400人でエッチングし、その後、N,中で熱処
理を行ない外部ベース層16を形成した所である。
Furthermore, as shown in Fig. 1(c), the future emitter electrode,
The first polysilicon film 8 and CVD oxide film 9 are etched by photolithography at the location where the active base region is to be formed to form an opening, and a BSG is formed to insulate and separate the base extraction electrode polysilicon film and the emitter electrode polysilicon film. Film thickness 3000
The BSG film is attached by hand, and then etched by RIE method so as to leave the BSG film on the side wall of the opening.
A G film 11 is formed. Furthermore, the opening with the BSG film 11 left on the side wall is used to form an epitaxial growth layer 3 in a region where a mixed crystal of silicon and germanium will be grown in the future using the RIE method.
The outer base layer 16 was formed by etching to a depth of 400 mm and then heat-treating in nitrogen.

続いて第1図(d)に示す様にポロンを1o19/dド
ーピングしたシリコンとゲルマニウムの混晶(シリコン
:ゲルマニウム=7:3の混晶)を選択的に成長し、さ
らにその上に、Asを1oH/dドーピングしたシリコ
ンエピタキシャル層13を成長し、ランプアニール,9
00℃,10秒行なって活性化する.その後、ベースと
コレクタの電極14を写真食刻法により形成する.さら
に第1図(e)に示す様にアルミニウム電極15を形成
し本発明のトランジスタが完成する。
Next, as shown in FIG. 1(d), a mixed crystal of silicon and germanium doped with 1019/d of poron (silicon: germanium = 7:3 mixed crystal) is selectively grown, and then As is grown on top of it. A silicon epitaxial layer 13 doped with 10H/d is grown, and lamp annealed, 9
Activate at 00℃ for 10 seconds. Thereafter, the base and collector electrodes 14 are formed by photolithography. Further, as shown in FIG. 1(e), an aluminum electrode 15 is formed to complete the transistor of the present invention.

第2図(a)〜(e)は本発明の第2の実施例の主要工
程の断面図である.第2図(a)は第1図(a)と同様
にして、シリコン基板21上に、埋込層22を選択的に
形成し、続いてエビタキシャル層23を形成、選択的に
トランジスタとしての素子領域を残す様に絶縁分離酸化
膜26を形成した所である。
FIGS. 2(a) to 2(e) are cross-sectional views of the main steps of the second embodiment of the present invention. In FIG. 2(a), in the same manner as in FIG. 1(a), a buried layer 22 is selectively formed on a silicon substrate 21, followed by an epitaxial layer 23, and selectively formed as a transistor. This is where an insulating isolation oxide film 26 is formed so as to leave the element region.

さらに第2図(b)に示す様にコレクタ引き出し電極2
7、ボロンをドーピングした第1ポリシリ膜28,CV
D酸化膜29を形成し、さらにN2雰囲気中で熱処理を
し、将来外部ベース領域となRIE法により、第1ポリ
シリ膜28とCVD酸化膜29をエッチングし、第1の
実施例と同様に開口部の側壁にエミッターベース間分離
用のCVDSiOz膜31をRIE法により残し、続い
て第2図(b)で拡散した、P+拡散層31を開口部の
部分だけRIE法によりエッチングする。その後は第1
の実施例と同様にして、シリコンとゲルマニウムの混晶
32,Asをドープしたシリコンエピタキシャル層33
を成長し、コンタクト34を開口し、第2図(e)に示
す様にアルミ電極35を形成し、本実施例のトランジス
タは完成する。
Furthermore, as shown in FIG. 2(b), the collector extraction electrode 2
7. First polysilicon film 28 doped with boron, CV
A D oxide film 29 is formed, and then heat treated in an N2 atmosphere, and the first polysilicon film 28 and CVD oxide film 29, which will become an external base region in the future, are etched by the RIE method to form an opening in the same manner as in the first embodiment. A CVDSiOz film 31 for emitter-base separation is left on the side wall of the opening by RIE, and then the P+ diffusion layer 31 diffused in FIG. 2(b) is etched by RIE only at the opening. After that, the first
In the same manner as in the embodiment, a silicon-germanium mixed crystal 32 and an As-doped silicon epitaxial layer 33 are formed.
A contact 34 is opened, and an aluminum electrode 35 is formed as shown in FIG. 2(e), thereby completing the transistor of this example.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明を使用すれば、従来のシリコン
プロセスに容易に整合できる、セレファライン構造でエ
ミッターベースのpn接合が形成できる微細な、かつ高
速スイッチング可能なトランジスタが提供できる。なお
、今回の実施例はシリコンとゲルマニウムの混晶の割合
がシリコン:ゲルマニウム=7:3であったが、この割
合を変える事により、ベース側のバンドギャップの状態
を変え、より立上り電圧(V,)の低いトランジスタ、
すなわち水平方向のスヶーリングに適したトランジスタ
も提供できる。
As described above, by using the present invention, it is possible to provide a fine and high-speed switching transistor in which an emitter-based pn junction can be formed with a cerephaline structure, which can be easily adapted to a conventional silicon process. In this example, the ratio of silicon and germanium mixed crystal was silicon:germanium = 7:3, but by changing this ratio, the state of the band gap on the base side was changed, and the rise voltage (V ,) low transistor,
In other words, a transistor suitable for scaling in the horizontal direction can also be provided.

・・・コンタクト,15.35・・・・・・アルミ電極
... Contact, 15.35 ... Aluminum electrode.

Claims (1)

【特許請求の範囲】[Claims] シリコン基板内に選択的に埋設された拡散層上に設けら
れ絶縁分離された第1導電型のシリコン層よりなる第1
の島状領域と、該第1の島状領域内に選択的に形成され
たシリコンとゲルマニウムの混晶からなる第2導電型の
第2の島状領域と、該第2の島状領域を取り囲み、かつ
、該第2島状領域と接触し、かつ深さが該第2島状領域
と同等以上で、かつ前記第1島状領域内に有る様に形成
された前記第2導電型のシリコンで成る第3の島状領域
と、前記第2の島状領域の上に接して前記第2の島状領
域とpn接合を形成するシリコンを主構成物とした前記
第1導電型の第4の島状領域を有することを特徴とする
半導体集積回路装置。
A first conductivity type silicon layer provided on a diffusion layer selectively buried in a silicon substrate and insulated from the silicon layer.
a second island region of a second conductivity type made of a mixed crystal of silicon and germanium selectively formed in the first island region; of the second conductivity type that surrounds and is in contact with the second island-like region, has a depth equal to or greater than the second island-like region, and is located within the first island-like region. a third island-like region made of silicon; and a third island-like region of the first conductivity type mainly composed of silicon, which is in contact with the second island-like region and forms a pn junction with the second island-like region. 1. A semiconductor integrated circuit device having four island-like regions.
JP1052335A 1989-03-03 1989-03-03 Semiconductor integrated circuit device and manufacturing method thereof Expired - Lifetime JP2522383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052335A JP2522383B2 (en) 1989-03-03 1989-03-03 Semiconductor integrated circuit device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052335A JP2522383B2 (en) 1989-03-03 1989-03-03 Semiconductor integrated circuit device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02231726A true JPH02231726A (en) 1990-09-13
JP2522383B2 JP2522383B2 (en) 1996-08-07

Family

ID=12911927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052335A Expired - Lifetime JP2522383B2 (en) 1989-03-03 1989-03-03 Semiconductor integrated circuit device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2522383B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205033A (en) * 1989-02-03 1990-08-14 Hitachi Ltd Bipolar transistor and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205033A (en) * 1989-02-03 1990-08-14 Hitachi Ltd Bipolar transistor and manufacture thereof

Also Published As

Publication number Publication date
JP2522383B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
EP0462270B1 (en) Method of using a semiconductor device comprising a substrate having a dielectrically isolated semiconductor island
JPH05206151A (en) Semiconductor device
US20050196931A1 (en) Self-aligned lateral heterojunction bipolar transistor
JP2654607B2 (en) Method for manufacturing semiconductor device
JPS6119171A (en) Vertical npn transistor structure
JPH01102961A (en) Vertical type semiconductor device having side wall emitter
JPH02231726A (en) Semiconductor integrated circuit device
JP2528559B2 (en) Method for manufacturing lateral bipolar transistor
JPS61214569A (en) Semiconductor device
WO1994027324A1 (en) A lateral bipolar transistor with variable base width and a method for controlling the base width
JP3068510B2 (en) Semiconductor device
KR0149434B1 (en) A bipolar transistor and method of fabricating the same
JPH04112539A (en) Manufacture of semiconductor device
JPH03159245A (en) Lateral transistor
JPS6185863A (en) Semiconductor integrated circuit device
JPS61288467A (en) Semiconductor device and manufacture thereof
JPH04241422A (en) Semiconductor integrated circuit device
JPH04262569A (en) Semiconductor device
JPS6084873A (en) Semiconductor device
JPH04105325A (en) Semiconductor integrated circuit device
JPH05226347A (en) Semiconductor device
JPH0653310A (en) Semiconductor device and its manufacture method
JPH02102541A (en) Semiconductor device
JPH02152240A (en) Manufacture of semiconductor device
JPH05102171A (en) Semiconductor device and its manufacture