JPH02230773A - Thin film transistor element array - Google Patents

Thin film transistor element array

Info

Publication number
JPH02230773A
JPH02230773A JP4992589A JP4992589A JPH02230773A JP H02230773 A JPH02230773 A JP H02230773A JP 4992589 A JP4992589 A JP 4992589A JP 4992589 A JP4992589 A JP 4992589A JP H02230773 A JPH02230773 A JP H02230773A
Authority
JP
Japan
Prior art keywords
thin film
element array
insulating film
film transistor
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4992589A
Other languages
Japanese (ja)
Inventor
Yuko Hiura
樋浦 祐子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4992589A priority Critical patent/JPH02230773A/en
Publication of JPH02230773A publication Critical patent/JPH02230773A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin film transistor element array whose gate leak current is small by forming enbloc a gate insulating film on the whole surface of a substrate. CONSTITUTION:After a source electrode 10 and a drain electrode 11 are formed on a substrate 3, the pattern thin film of an a-Si:H film as a semiconductor layer 9 is formed by photochemically decomposing disilane gas with ArF laser 1. Then the glass substrate 3 is carried into a CVD chamber 7, and an SiN film is subjected to plasma CVD using silane and ammonia as material gas, thereby forming a gate insulating film 12. By sputtering, a chromium film is formed on the glass substrate 3, and a gate electrode 13 is formed by patterning. An element array of this structure is almost free from leak current from a gate electrode, and excellent element operation is realized for a long time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜トランジスタ素子アレイに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor element array.

[従来の技術およびその課題1 液晶ディスプレイの画素駆動等に用いられる薄膜トラン
ジスタ素子アレイは、基板上に多数個の薄膜トランジス
タを一括形成することが要求される。従来このような薄
膜トランジスタ素子アレイは、砂田により、1985年
,プロシーディング・オブ・インターナショナル・ディ
スプレイ・リサーチ−]ンファレンス( Procee
ding of Iritel’rla−tional
 Display Research Confere
nce) , 66真に報告ざれているように、例えば
順スタガ構造の場合、基板上に必要な数だけのソース,
トレイン電極を形成した俊、基板仝而に非晶質シリコン
層、引き続いてゲート絶縁膜層を形成し、ゲート電極を
形成した後にフォトリソグラフィーおよびエッチングに
よって各薄膜トランジスタに分割するという方法で製作
されてきた。
[Prior art and its problems 1] A thin film transistor element array used for driving pixels of a liquid crystal display, etc. requires forming a large number of thin film transistors at once on a substrate. Conventionally, such a thin film transistor element array was described by Sunada in 1985, Proceedings of International Display Research Conference (Procee
ding of Iritel'rla-tional
Display Research Conference
For example, in the case of a staggered structure, as many sources as necessary can be placed on the substrate, as reported in 66.
The method used to form the train electrode was to form an amorphous silicon layer on the substrate, followed by a gate insulating film layer, and after forming the gate electrode, divide it into each thin film transistor by photolithography and etching. .

この製作法によると各薄膜トランシス夕べの分割の際、
ゲート電極と同じ幅に非晶貿シリコンをエッチングする
には、上層のゲート絶縁膜もエッチングする必要がある
。そのため完成した素子においては、ゲート絶縁膜側壁
を経て流れるリーク電流を無視できない。これに対し、
表面全体を保護絶縁膜で覆っても側壁部は絶縁耐圧不良
になり易いので、長期の素子動作にわたって、このよう
なリーク電流を防止することは困難である。
According to this fabrication method, when dividing each thin film transistor,
In order to etch the amorphous silicon to the same width as the gate electrode, it is necessary to also etch the upper gate insulating film. Therefore, in the completed device, leakage current flowing through the sidewalls of the gate insulating film cannot be ignored. In contrast,
Even if the entire surface is covered with a protective insulating film, the sidewall portions are likely to have poor dielectric strength, so it is difficult to prevent such leakage current over long-term device operation.

本発明の目的は、このような従来技術の問題点を解決し
たゲートリーク電流か少ない薄膜トランジスタ素子アレ
イを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film transistor element array with reduced gate leakage current that solves the problems of the prior art.

[課題を解決するための手段] 本発明は、ソース電極およびトレイン電極間に半導体層
が形成され、該半導体層上にゲート絶縁膜およびゲート
電極が順次形成ざれた薄膜トランジスタを同一基板上に
複数個備えた薄膜トランジスタ素子アレイにおいて、ゲ
ート絶縁膜は基板の全面に一括形成されていることを特
徴とする薄膜トランジスタ素子アレイである。
[Means for Solving the Problems] The present invention provides a plurality of thin film transistors on the same substrate, in which a semiconductor layer is formed between a source electrode and a train electrode, and a gate insulating film and a gate electrode are sequentially formed on the semiconductor layer. This thin film transistor element array is characterized in that the gate insulating film is formed all over the entire surface of the substrate.

[作用] 薄膜トランジスタにおいて、ゲート電極とゲト絶縁膜と
が同一形状,同一面積で膜厚方向に重なった構造では、
ゲート電極からゲート絶縁膜側壁を経て半導体層あるい
はドレイン,ソース電極へと至る距離がきわめて短いた
めに、この経路を流れるリーク電流が素子の電気的特性
に与える影響か大きい。しかし、ゲート絶縁膜の面積が
ゲト電極の面積に較べて十分に大きく、ゲート電極とゲ
ート絶縁膜側壁との間の距離が、ゲート絶縁膜厚に較べ
十分に大きければ、このような経路を通って流れるリー
ク電流の量はごく微量である。
[Function] In a thin film transistor, in a structure in which the gate electrode and gate insulating film have the same shape and area and overlap in the film thickness direction,
Since the distance from the gate electrode to the semiconductor layer or the drain and source electrodes via the sidewalls of the gate insulating film is extremely short, leakage current flowing through this path has a large effect on the electrical characteristics of the device. However, if the area of the gate insulating film is sufficiently large compared to the area of the gate electrode, and the distance between the gate electrode and the sidewall of the gate insulating film is sufficiently large compared to the thickness of the gate insulating film, then such a path can be used. The amount of leakage current that flows is extremely small.

本発明においては、半導体層が各薄膜トランジスタのド
レイン,ソース電極間に選択的に形成ざれ、かつゲート
絶縁膜はこれら半導体層および半導体層間の上部に全面
一括で形成された構造の薄膜トランジスタ素子アレイと
する。このため、アレイを構成するいずれの薄膜トラン
ジスタにおいても、ゲート電極とゲート絶縁膜側壁との
間はゲト膜厚に較べて十分に長い距離で離れているので
、ゲート絶縁膜側壁を流れるリーク電流は、その影響が
無視できるほど小さくなる。
In the present invention, a thin film transistor element array has a structure in which a semiconductor layer is selectively formed between the drain and source electrodes of each thin film transistor, and a gate insulating film is formed all over the top of these semiconductor layers and between the semiconductor layers. . Therefore, in any thin film transistor that makes up the array, the distance between the gate electrode and the side wall of the gate insulating film is sufficiently long compared to the gate film thickness, so the leakage current flowing through the side wall of the gate insulating film is The effect becomes so small that it can be ignored.

[実施例] 以下に本発明の実施例について図面を参照して詳細に説
明する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による薄膜トランジスタ素子アレイの一
例の部分断面図でおる。各電極材料としてはクロム、ゲ
ート絶縁膜材料としてはSiN1半導体層としては非品
質水素化シリコンを用いた。
FIG. 1 is a partial cross-sectional view of an example of a thin film transistor element array according to the present invention. Chromium was used as the material for each electrode, SiN was used as the gate insulating film material, and non-quality hydrogenated silicon was used as the semiconductor layer.

第2図は本発明の薄膜トランジスタ素子アレイの製造に
用いられる装置の一例を示す概略構成図である。第2図
において、基板3はレーザC V Dチャンバ5内に設
置され、ArFレーザ1からの出射光をマスク2および
合成石英窓4を通して、基板3上のドレイン,ソース電
極8間にパターン転写される。基板3はレーザCVDチ
ャンバ5と共に、XYステージ6によってマスク2との
相対的位置を変えられるようになっている。またレザC
VDチャンバ5はプラズマCVDチャンパ7に連結して
おり、成膜後の基板を移動させてゲト絶縁膜の一括形成
ができるようになっている。
FIG. 2 is a schematic configuration diagram showing an example of an apparatus used for manufacturing the thin film transistor element array of the present invention. In FIG. 2, a substrate 3 is placed in a laser CVD chamber 5, and a pattern is transferred between the drain and source electrodes 8 on the substrate 3 through the light emitted from the ArF laser 1 through a mask 2 and a synthetic quartz window 4. Ru. The relative position of the substrate 3 and the mask 2 can be changed together with the laser CVD chamber 5 by an XY stage 6. Also leather C
The VD chamber 5 is connected to a plasma CVD chamber 7, and the gate insulating film can be formed all at once by moving the substrate after film formation.

以上のように構成ざれた成膜装置を用い、以下のように
して第1図に示す薄膜トランジスタ素子アレイを製造し
た。
Using the film forming apparatus configured as described above, the thin film transistor element array shown in FIG. 1 was manufactured in the following manner.

まず第1図に示すガラス基板3上にクロム膜をスパッタ
リング法により成膜し、パターニングを行うことにより
、ソース電極10およびドレイン電4リ1を形成する。
First, a chromium film is formed by sputtering on a glass substrate 3 shown in FIG. 1, and patterned to form a source electrode 10 and a drain electrode 41.

次にこのカラス基板3を第2図のレーザCVDチャンハ
5内に固定し、ArFレザ1からの出射光をマスク2,
合成石英窓4を通してソース電極10とドレイン電極1
1の間にパターン転写する。ジシラン(S!2H6)カ
スをArFレーザ1で光化学分解することにより、半導
体層9としてa−Si:HvAのパターン薄膜を形成し
た。次にガラス基板3をレーザCVDチャンバ5と共に
XYステージ6によって光照射を行った領域の幅だけ移
動させて同じ成膜工程を繰り返し、ガラス基板3の全面
に半導体層9のパターンを形成した。
Next, this glass substrate 3 is fixed in a laser CVD chamber 5 shown in FIG.
Source electrode 10 and drain electrode 1 through synthetic quartz window 4
The pattern is transferred during 1. By photochemically decomposing disilane (S!2H6) scum using an ArF laser 1, a patterned thin film of a-Si:HvA was formed as a semiconductor layer 9. Next, the glass substrate 3 was moved along with the laser CVD chamber 5 by the width of the area irradiated with light by the XY stage 6, and the same film forming process was repeated to form a pattern of the semiconductor layer 9 on the entire surface of the glass substrate 3.

続いてガラス基板3をプラズマCVDチャンバ7に移動
させ、原料ガスとしてシランあよびアンモニアを用いて
SiN膜のプラズマCVDを行うことによりゲート絶縁
膜12を形成した。続いてスパッタリングしてカラス基
板3上にクロム膜を成膜し、パターニングを行うことに
よりゲート電極13を形成した。
Subsequently, the glass substrate 3 was moved to the plasma CVD chamber 7, and the gate insulating film 12 was formed by plasma CVD of the SiN film using silane and ammonia as source gases. Subsequently, a chromium film was formed on the glass substrate 3 by sputtering and patterned to form the gate electrode 13.

以上の工程を経て作製した薄膜トランジスタ素子アレイ
においては、ゲート電極からゲート絶縁膜側壁を通って
流れるリーク電流は観測ざれなかった。
In the thin film transistor element array manufactured through the above steps, no leakage current flowing from the gate electrode through the side walls of the gate insulating film was observed.

なおゲート絶縁膜には必ずしもSiNを用いる必要はな
く、SiO2でも構わない。また、各電極は必ずしもク
ロムである必要はなく、タンタル,アルミニウムでも構
わない。また、半導体層には必ずしもa−3i:l−1
を用いる必要はなく、ポリシリコンでも構わない。
Note that it is not necessarily necessary to use SiN for the gate insulating film, and SiO2 may also be used. Furthermore, each electrode does not necessarily have to be made of chromium, but may also be made of tantalum or aluminum. In addition, the semiconductor layer does not necessarily have a-3i:l-1
It is not necessary to use polysilicon, and polysilicon may be used.

また、半導体層の形成には必ずしもレーザCVDを用い
る必要はなく、工程数は増えるかプラズマCVD等で基
板全面に一括形成した半導体薄膜を、フォトリソグラフ
イとエッチングによりパタニングしても構わない。
Further, it is not always necessary to use laser CVD to form the semiconductor layer, and although the number of steps is increased, a semiconductor thin film that has been formed all over the substrate by plasma CVD or the like may be patterned by photolithography and etching.

なお、液晶ディスプレイ応用上、仝而に本発明のように
薄く絶縁膜が形成されていても、画素駆動や、ガラス基
板の透光性に支障を与えないことは明らかである。
Note that in terms of liquid crystal display applications, it is clear that even if the insulating film is formed as thinly as in the present invention, it will not impede pixel drive or the translucency of the glass substrate.

[発明の効果] 以上説明したように、本発明の薄膜トランジスタ素子ア
レイは、ゲート電極からのリーク電流がほとんどなく、
長期にわたって良好な素子動作が可能である。
[Effects of the Invention] As explained above, the thin film transistor element array of the present invention has almost no leakage current from the gate electrode.
Good device operation is possible over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の部分断面図、第2図は本発
明の薄膜トランジスタ素子アレイの製造に用いられる装
置の一例の概略構成図である。 1・・・ArFレーザ    2・・・マスク3・・・
(カラス)基板   4・・・合成石英窓5・・・レー
ザCVDチャンバ 6・・・XYステージ 7・・・プラズマCVDチャンバ 8・・・電極
FIG. 1 is a partial sectional view of an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an example of an apparatus used for manufacturing a thin film transistor element array of the present invention. 1...ArF laser 2...mask 3...
(Crow) Substrate 4... Synthetic quartz window 5... Laser CVD chamber 6... XY stage 7... Plasma CVD chamber 8... Electrode

Claims (1)

【特許請求の範囲】[Claims] (1)ソース電極およびドレイン電極間に半導体層が形
成され、該半導体層上にゲート絶縁膜およびゲート電極
が順次形成された薄膜トランジスタを同一基板上に複数
個備えた薄膜トランジスタ素子アレイにおいて、ゲート
絶縁膜は基板の全面に一括形成されていることを特徴と
する薄膜トランジスタ素子アレイ。
(1) In a thin film transistor element array including a plurality of thin film transistors on the same substrate, in which a semiconductor layer is formed between a source electrode and a drain electrode, and a gate insulating film and a gate electrode are sequentially formed on the semiconductor layer, the gate insulating film is a thin film transistor element array characterized by being formed all over the entire surface of a substrate.
JP4992589A 1989-03-03 1989-03-03 Thin film transistor element array Pending JPH02230773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4992589A JPH02230773A (en) 1989-03-03 1989-03-03 Thin film transistor element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4992589A JPH02230773A (en) 1989-03-03 1989-03-03 Thin film transistor element array

Publications (1)

Publication Number Publication Date
JPH02230773A true JPH02230773A (en) 1990-09-13

Family

ID=12844592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4992589A Pending JPH02230773A (en) 1989-03-03 1989-03-03 Thin film transistor element array

Country Status (1)

Country Link
JP (1) JPH02230773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767531A (en) * 1994-08-29 1998-06-16 Sharp Kabushiki Kaisha Thin-film transistor, method of fabricating the same, and liquid-crystal display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5767531A (en) * 1994-08-29 1998-06-16 Sharp Kabushiki Kaisha Thin-film transistor, method of fabricating the same, and liquid-crystal display apparatus

Similar Documents

Publication Publication Date Title
US6235559B1 (en) Thin film transistor with carbonaceous gate dielectric
KR100231936B1 (en) Thin film transistor and manufacturing thereof
JPS59208783A (en) Thin film transistor
KR20070122158A (en) Tft lcd array substrate and manufacturing method thereof
JPH09181303A (en) Mos pattern gate electrode manufacturing method
KR100420547B1 (en) Method of forming fully self-aligned tft with improved process window
US9711602B2 (en) Method of making thin film transistor array and source/drain contact via-interconnect structures formed thereby
JP2004200651A (en) Method of forming top-gate thin-film transistor
JPS60103677A (en) Manufacture of thin film transistor
JP2003302647A (en) Liquid crystal display element and method for manufacturing the same
US5953583A (en) Manufacturing method of a thin-film transistor
KR100459219B1 (en) Method For Forming Insulating Layer And Method For Forming The Polysilicon Thin Film Transistor
JPH03283539A (en) Manufacture of thin film semiconductor device
JP2008042218A (en) Manufacturing method of thin film transistor panel
CN101013670A (en) Method for producing film transistor and lower substrate for LCD
JP3005918B2 (en) Active matrix panel
JP2007183623A (en) Method for manufacturing bottom substrate of liquid crystal display device
JPH02230773A (en) Thin film transistor element array
KR100707024B1 (en) Method for fabricating array substrate of TFT-LCD
KR970028753A (en) Manufacturing method of liquid crystal display element
JPS61188967A (en) Thin film transistor
KR101588448B1 (en) Array substrate including thin film transistor of polycrystalline silicon and method of fabricating the same
JP3216173B2 (en) Method of manufacturing thin film transistor circuit
KR20020091695A (en) Method for maunufacturing thin film transistor
JPH0519831B2 (en)