KR20020091695A - Method for maunufacturing thin film transistor - Google Patents

Method for maunufacturing thin film transistor Download PDF

Info

Publication number
KR20020091695A
KR20020091695A KR1020010030564A KR20010030564A KR20020091695A KR 20020091695 A KR20020091695 A KR 20020091695A KR 1020010030564 A KR1020010030564 A KR 1020010030564A KR 20010030564 A KR20010030564 A KR 20010030564A KR 20020091695 A KR20020091695 A KR 20020091695A
Authority
KR
South Korea
Prior art keywords
mask
film
gate
amorphous silicon
metal film
Prior art date
Application number
KR1020010030564A
Other languages
Korean (ko)
Other versions
KR100764273B1 (en
Inventor
박광현
이경하
Original Assignee
주식회사 현대 디스플레이 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 현대 디스플레이 테크놀로지 filed Critical 주식회사 현대 디스플레이 테크놀로지
Priority to KR1020010030564A priority Critical patent/KR100764273B1/en
Publication of KR20020091695A publication Critical patent/KR20020091695A/en
Application granted granted Critical
Publication of KR100764273B1 publication Critical patent/KR100764273B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • G02F1/136236Active matrix addressed cells for reducing the number of lithographic steps using a grey or half tone lithographic process

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: A fabrication method of a TFT(Thin Film Transistor) is provided to improve electron mobility by using a concave-convex shaped channel layer. CONSTITUTION: After depositing a gate metal film on a transparent insulating substrate(20), a half-tone photoresist pattern is formed on the gate metal film. A concave-convex shaped gate electrode(21b) is formed by selectively etching the gate metal film using the half-tone photoresist pattern. A gate insulating layer, an amorphous silicon layer and a doped amorphous silicon layer are sequentially deposited and selectively etched, thereby defining an active region. A source and drain electrodes(26a,26b) are formed on the resultant structure. After forming a passivation layer(27) having a contact hole on the resultant structure, a pixel electrode(29) is formed on the passivation layer.

Description

박막트랜지스터 제조방법{METHOD FOR MAUNUFACTURING THIN FILM TRANSISTOR}Thin film transistor manufacturing method {METHOD FOR MAUNUFACTURING THIN FILM TRANSISTOR}

본 발명은 박막 트랜지스터 액정표시장치 제조방법에 관한 것으로, 보다 구체적으로는 요철형 채널층을 형성하여 전자 이동도가 큰 박막 트랜지스터 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thin film transistor liquid crystal display device, and more particularly, to a method for manufacturing a thin film transistor having a high electron mobility by forming an uneven channel layer.

일반적으로, 박막 트랜지스터 액정표시장치의 어레이 기판은 다수개의 게이트 버스 라인과 데이터 버스 라인이 수직으로 교차 배열되어 매트릭스 형태의 단위 화소 영역들을 한정하고, 상기 단위 화소 영역 상에는 스위칭 역할을 하는 박막 트랜지스터가 각각 형성되어 있다.In general, an array substrate of a thin film transistor liquid crystal display device includes a plurality of gate bus lines and data bus lines vertically arranged to define unit pixel regions in a matrix form, and thin film transistors serving as a switching function are respectively formed on the unit pixel regions. Formed.

상기와 같은 구조를 갖는 어레이 기판은 투명성 절연 기판에 차례로 증착 공정과 마스크를 이용한 식각 공정으로 제조된다.The array substrate having the structure as described above is manufactured by the deposition process and the etching process using a mask in order to the transparent insulating substrate.

이러한 관점에서, 종래기술에 따른 박막트랜지스터의 제조방법을 도 1a 및 도 1e를 참조하여 설명하면 다음과 같다.In this regard, the manufacturing method of the thin film transistor according to the prior art will be described with reference to FIGS. 1A and 1E.

도 1a 내지 도 1e는 종래 기술에 따른 박막 트랜지스터 액정표시장치의 제조 공정을 도시한 단면도이다.1A to 1E are cross-sectional views illustrating a manufacturing process of a thin film transistor liquid crystal display device according to the prior art.

종래기술에 따른 박막트랜지스터듸 제조방법은, 도 1a에 도시한 바와 같이, 투명성 절연 기판(10)에 게이트 금속막을 증착하고 제 1마스크(도시하지 않음)를 사용하여 노광 및 현상한후 선택적으로 식각하여 게이트 전극(1)을 형성한다.In the method of manufacturing a thin film transistor array according to the related art, as illustrated in FIG. 1A, a gate metal film is deposited on a transparent insulating substrate 10 and selectively etched after exposure and development using a first mask (not shown). Thus, the gate electrode 1 is formed.

그다음, 도 1b에 도시한 바와 같이, 상기 게이트 전극(1)이 형성된 투명성 절연 기판(10) 상에 게이트 이중 절연막과 비정질 실리콘막(3) 및 도핑된 비정질 실리콘막(4)을 차례로 증착하고, 제 2마스크를 사용하여 노광 및 현상한후 선택적으로 식각하여 엑티브층(미도시)을 정의한다.Next, as shown in FIG. 1B, a gate double insulating film, an amorphous silicon film 3, and a doped amorphous silicon film 4 are sequentially deposited on the transparent insulating substrate 10 on which the gate electrode 1 is formed. After exposure and development using a second mask, the substrate is selectively etched to define an active layer (not shown).

이어서, 도 1c에 도시한 바와 같이, 상기 엑티브층(미도시)이 정의된 투명성 절연 기판(0) 상에 소오스/드레인용 금속막을 증착하고, 제 3 마스크를 사용하여이를 노광 및 현상한후 선택적으로 식각하여 소오스/드레인 전극(6a)(6b)을 형성하고, 도핑된 비정질 실리콘막(4)을 선택적으로 식각하여 오믹 콘택층(4a)을 형성한다.Subsequently, as illustrated in FIG. 1C, a source / drain metal film is deposited on the transparent insulating substrate 0 on which the active layer (not shown) is defined, and then exposed and developed using a third mask. The source / drain electrodes 6a and 6b are etched to form an ohmic contact layer, and the doped amorphous silicon film 4 is selectively etched to form an ohmic contact layer 4a.

그다음, 도 1d에 도시한 바와 같이, 상기 소오스/드레인 전극(6a)(6b)이 형성된 기판 상에 보호막(7)을 도포하고, 제 4마스크를 사용하여 노광 및 현상한후 이를 선택적으로 식각하여 콘택홀(8)을 형성한다.Next, as shown in FIG. 1D, a protective film 7 is coated on the substrate on which the source / drain electrodes 6a and 6b are formed, and is exposed and developed using a fourth mask, and then selectively etched. The contact hole 8 is formed.

이어서, 도 1e에 도시한 바와 같이, 상기 보호막(7)이 형성된 기판(10) 상에 ITO 금속막을 증착하고, 이를 제 5마스크를 사용하여 노광 및 현상한후 식각하여 화소 전극(9)을 형성한다.Subsequently, as shown in FIG. 1E, an ITO metal film is deposited on the substrate 10 on which the passivation layer 7 is formed, and is exposed and developed using a fifth mask to be etched to form a pixel electrode 9. do.

도 2는 종래 기술에 따른 박막 트랜지스터를 도시한 평면도로서, 상기 박막 트랜지스터의 게이트 전극(1)과 채널층 및 소오스/드레인 전극(6a, 6b)이 모두 직사각형태의 구조를 가지고 있다.FIG. 2 is a plan view illustrating a thin film transistor according to the prior art, in which the gate electrode 1, the channel layer, and the source / drain electrodes 6a and 6b of the thin film transistor have a rectangular structure.

그러나, 최근 대화면 액정표시장치의 발달로 빠른 응답과 많은 전류를 흐르게 할 수 있는 박막 트랜지스터가 요구되고 있지만, 비정질 실리콘막을 채널층으로 사용하는 경우에는 이러한 기능을 하는데 한계가 있다.However, in recent years, with the development of large screen liquid crystal display devices, a thin film transistor capable of allowing a fast response and a large current flow is required. However, when an amorphous silicon film is used as a channel layer, there is a limit to such a function.

그래서, 채널층을 폴리 실리콘층으로 사용하는 방법이 대두 되었지만, 폴리 실리콘층은 큰 면적을 갖는 박막 트랜지스터에 적용하는데는 큰 어려움이 있다.Thus, although a method of using the channel layer as the polysilicon layer has emerged, the polysilicon layer has a great difficulty in applying to a thin film transistor having a large area.

따라서, 본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 보다 많은 전자들이 이동할 수 있는 요철형 채널층 갖는 박막 트랜지스터제조방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for manufacturing a thin film transistor having a concave-convex channel layer through which more electrons can move.

도 1a 내지 도 1e는 종래 기술에 따른 박막 트랜지스터 액정표시장치의 제조 공정을 도시한 단면도.1A to 1E are cross-sectional views illustrating a manufacturing process of a thin film transistor liquid crystal display device according to the prior art.

도 2는 종래 기술에 따른 박막 트랜지스터를 도시한 평면도.2 is a plan view showing a thin film transistor according to the prior art.

도 3a 내지 도 3f는 본 발명에 따른 박막 트랜지스터 액정표시장치의 제조 공정을 도시한 단면도.3A to 3F are sectional views showing the manufacturing process of the thin film transistor liquid crystal display device according to the present invention;

도 4는 본 발명에 따른 박막 트랜지스터를 도시한 평면도.4 is a plan view showing a thin film transistor according to the present invention;

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

20: 투명성 절연 기판 21b: 요철형 게이트 전극20: transparent insulating substrate 21b: uneven gate electrode

23,24: 엑티브층 24a:오믹 콘택층23, 24: active layer 24a: ohmic contact layer

26a,26b: 소오스/드레인 전극 27: 보호막26a and 26b: source / drain electrodes 27: protective film

29: 화소 전극29: pixel electrode

상기한 목적을 달성하기 위한, 본 발명은 게이트 금속막이 증착된 투명성 절연 기판 상에 감광막을 도포하고, 제 1마스크를 사용하여 게이트 전극이 형성될 영역 상에 하프 톤 패터닝을 형성하는 단계;상기 하프 톤 패터닝을 사용하여 노광 및 식각하여 요철형 게이트 전극을 형성하는 단계; 상기 요철형 게이트 전극이 형성된 기판 상에 게이트 이중 절연막, 비정질 실리콘막, 도핑된 비정질 실리콘막을 차례로 증착하고, 제 2마스크를 사용하여 엑티브 영역을 한정하는 단계; 상기 결과물 상에 소오스/드레인 금속막을 증착하고 제 3마스크를 사용하여 소오스/드레인 전극 및 채널층을 형성하는 단계; 상기 소오스/드레인 전극이 형성된 기판 상에 보호막을 도포하고, 제 4마스크를 사용하여 콘택홀을 형성하는 단계; 상기 보호막이 형성된 기판 상에 ITO 금속막을 증착하고, 제 5마스크를 사용하여 화소 전극을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention comprises the steps of applying a photosensitive film on a transparent insulating substrate on which a gate metal film is deposited, and forming a half tone patterning on a region where a gate electrode is to be formed using a first mask; Exposing and etching using tone patterning to form an uneven gate electrode; Depositing a gate double insulating film, an amorphous silicon film, and a doped amorphous silicon film in order on the substrate on which the uneven gate electrode is formed, and defining an active region using a second mask; Depositing a source / drain metal film on the resultant and forming a source / drain electrode and a channel layer using a third mask; Applying a protective film on the substrate on which the source / drain electrodes are formed, and forming a contact hole using a fourth mask; And depositing an ITO metal film on the substrate on which the protective film is formed, and forming a pixel electrode using a fifth mask.

여기서, 상기 제 1마스크는 노광량이 100%와 50%로 구분되는 그레이톤 마스크이고, 상기 요철형 게이트 전극 상에 적층된 상기 게이트 이중 절연막, 비정질 실리콘막, 도핑된 비정질 실리콘막, 소오스/드레인 전극, 및 보호막은 요철 형태인 것을 특징으로 한다.Here, the first mask is a gray tone mask in which exposure amounts are divided into 100% and 50%, and the gate double insulating layer, an amorphous silicon layer, a doped amorphous silicon layer, and a source / drain electrode are stacked on the uneven gate electrode. , And the protective film is characterized in that the irregular shape.

본 발명에 의하면, 박막 트랜지스터의 게이트 전극을 요철형으로 형성하여 적층되는 채널층과 소오스/드레인 전극을 요철형 구조로 형성하여, 대화면 액정표시장치에 적합한 빠른 응답이 가능한 잇점이 있다.According to the present invention, there is an advantage in that a fast response suitable for a large screen liquid crystal display device can be obtained by forming a channel layer and a source / drain electrode that are stacked by forming a gate electrode of a thin film transistor in an uneven shape, and having an uneven structure.

(실시예)(Example)

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 자세히 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3a 내지 도 3f는 본 발명에 따른 박막 트랜지스터 액정표시장치의 제조 공정을 도시한 단면도이다.3A to 3F are cross-sectional views illustrating a manufacturing process of a thin film transistor liquid crystal display device according to the present invention.

본 발명에 따른 바람직한 실시예는, 도 3a에 도시한 바와 같이, 투명성 절연 기판(20)에 게이트 금속막을 증착하고 제 1그레이톤 마스크(도시하지 않음)를 사용하여 노광 및 현상하고, 상기 게이트 전극(21a)이 형성될 영역 상에 두께가 상이한 하프톤마스크용 감광막패턴(30)을 형성한다.According to a preferred embodiment of the present invention, as shown in FIG. 3A, a gate metal film is deposited on the transparent insulating substrate 20, and exposed and developed using a first gray tone mask (not shown), and the gate electrode A halftone mask photosensitive film pattern 30 having a different thickness is formed on the region where the 21a is to be formed.

그다음, 도 3b에 도시한 바와 같이, 상기 감광막패턴(30)를 이용하여 상기 게이트전극(21a)를 선택적으로 식각하여 요철형 게이트 전극(21b)을 형성한다. 이때, 상기 감광막패턴(30)은 두께가 두꺼운 지역과 두께가 얇은 지역아래에 있는 박막 트랜지스터의 요철형 게이트 전극(21b) 형성 영역에서만, 100%와 50%의 구별된 노광이 이루어진다.3B, the gate electrode 21a is selectively etched using the photosensitive film pattern 30 to form the uneven gate electrode 21b. In this case, 100% and 50% of the exposure may be performed only in the region where the uneven gate electrode 21b of the thin film transistor is formed under a thick region and a thin region.

이어서, 도 3c에 도시한 바와 같이, 상기 요철형 게이트 전극(21b)이 형성된 투명성 절연 기판(20) 상에 게이트 이중 절연막과 비정질 실리콘막(23), 및 도핑된 비정질 실리콘막(24)을 차례로 증착하고, 이를 제 2마스크를 사용하여 노광 및 현상한후 식각하여 엑티브층(미도시)을 정의한다. 이때, 상기 엑티브층(미도시)도 하부의 요철형 게이트 전극(21b)에 적층됨에 따라, 같은 형태의 요철 형상을 갖는다.Subsequently, as shown in FIG. 3C, the gate double insulating film, the amorphous silicon film 23, and the doped amorphous silicon film 24 are sequentially formed on the transparent insulating substrate 20 on which the uneven gate electrode 21b is formed. After the deposition, it is exposed and developed using a second mask and then etched to define an active layer (not shown). At this time, the active layer (not shown) is also stacked on the lower uneven gate electrode 21b, so as to have the same uneven shape.

그다음, 도 3d에 도시한 바와 같이, 상기 엑티브층(미도시)이 형성된 투명성절연 기판(20) 상에 소오스/드레인 금속막을 증착하고, 이를 제 3 마스크를 사용하여 노광 및 현상한후 식각하여 소오스/드레인 전극(26a)(26b) 및 채널층(미도시)을 형성한다. 이때, 도핑된 비정질 실리콘막(24)도 선택적으로 식각되어 오믹 콘택층(24a)이 형성된다. 또한, 상기 소오스/드레인 전극(26a, 26b)과 오믹 콘택층(24a)도 하부의 요철형 게이트 전극(21b)과 엑티브층(23, 24a)에 의하여 요철 형상을 갖는다.Next, as shown in FIG. 3D, a source / drain metal film is deposited on the transparent insulating substrate 20 on which the active layer (not shown) is formed, exposed and developed using a third mask, and then etched. Drain electrodes 26a and 26b and channel layers (not shown) are formed. At this time, the doped amorphous silicon film 24 is also selectively etched to form the ohmic contact layer 24a. In addition, the source / drain electrodes 26a and 26b and the ohmic contact layer 24a also have a concave-convex shape by the concave-convex gate electrode 21b and the active layers 23 and 24a.

이어서, 도 3e에 도시한 바와 같이, 상기 소오스/드레인 전극(26a, 26b)이 형성된 기판(20) 상에 보호막(27)을 도포하고, 제 4마스크를 사용하여 노광 및 현상한후 식각하여 콘택홀(28)을 형성한다.Subsequently, as shown in FIG. 3E, the protective layer 27 is coated on the substrate 20 on which the source / drain electrodes 26a and 26b are formed, exposed and developed using a fourth mask, and then etched by contact. The hole 28 is formed.

그다음, 도 3f에 도시한 바와 같이, 상기 보호막(27)이 형성된 기판(20) 상에 ITO 금속막을 증착하고, 이를 제 5마스크를 사용하여 노광 및 현상한후 식각하여 화소 전극(29)을 형성한다.Next, as shown in FIG. 3F, an ITO metal film is deposited on the substrate 20 on which the passivation layer 27 is formed, and is exposed and developed using a fifth mask to be etched to form a pixel electrode 29. do.

한편, 도 4는 본 발명에 따른 박막 트랜지스터를 도시한 평면도로서, 도시한 바와 같이, 박막 트랜지스터의 채널층과 여기에 오버랩되는 소오스/드레인 전극(26a, 25b) 및 게이트 전극(21b)만이 요철 형상을 하고, 다른 부분 예를 들어 도면에는 도시되지 않았지만, 게이트 버스 라인과 데이터 버스 라인등은 종래와 동일한 형상을 갖는다.4 is a plan view showing a thin film transistor according to the present invention, and as shown, only the source / drain electrodes 26a and 25b and the gate electrode 21b overlapping the channel layer of the thin film transistor are concave-convex. Although not shown in other drawings, for example, the gate bus line, the data bus line and the like have the same shape as in the prior art.

상기와 같이 요철형의 채널층은 종래와 같은 폭에서 보다 많은 면적을 가지게 되므로 게이트의 구동 신호를 보다 많이 흐르게 할 수있로 박막 트랜지스터의 성능이 향상된다. 아울러, 기존의 게이트 전극과 연결된 게이트 버스 라인의 종래와 동일한 구조를 가지므로 신호 지연등의 문제는 발생하지 않는다.As described above, since the uneven channel layer has a larger area than the conventional width, the driving signal of the gate can flow more, thereby improving the performance of the thin film transistor. In addition, since the conventional structure of the gate bus line connected to the gate electrode has the same structure as that of the conventional signal delay does not occur.

이상에서 설명한 바와 같이, 본 발명은 게이트 전극 형성시 투과량이 상이한 그레이톤 마스크를 사용하여 요철형 게이트 전극을 형성하고, 상기 요철형 게이트 전극 상에 채널층을 증착하여 보다 넓은 면적을 갖는 채널층을 형성하는 효과가 있다.As described above, the present invention forms a concave-convex gate electrode using a gray tone mask having a different transmittance when forming the gate electrode, and deposits a channel layer on the concave-convex gate electrode to form a channel layer having a larger area. It is effective to form.

아울러, 보다 넓은 면적을 갖는 채널층은 많은 전류 흘리수 있어, 많은 전류를 필요로 하는 대화면 액정표시장치의 박막 트랜지스터로 사용할 수 있는 효과가 있다.In addition, the channel layer having a larger area can flow a lot of currents, and thus it can be used as a thin film transistor of a large-screen liquid crystal display device requiring a large amount of current.

본 발명의 원리와 정신에 위배되지 않는 범위에서 여러 실시예는 이 기술에 속하는 당업자에게 자명할 뿐만 아니라 용이하게 발명해낼 수 있다. 따라서 여기에 첨부된 청구 범위는 앞서 설명되 것에 한정하지 않고, 상기의 청구범위는 이 발명에 내제되어 있는 특허성 있는 신규한 모든 것을 포함하며, 아울러 이 발명이 속하는 기술 분야에서 통상의 지식을 가진자에 의해서 균등하게 처리되는 모든 특징을 포함한다.Various embodiments are obvious to those skilled in the art without departing from the spirit and spirit of the invention and can be easily invented. Thus, the claims appended hereto are not limited to those described above, and the claims are intended to cover all of the patented novelties inherent in this invention, and furthermore, having ordinary skill in the art to which this invention pertains. It includes all features processed evenly by the ruler.

Claims (3)

게이트 금속막이 증착된 투명성 절연 기판 상에 감광막을 도포하고, 제 1마스크를 사용하여 상기 감광막을 게이트 전극이 형성될 영역 상에 하프 톤형 감광막패턴을 형성하는 단계;Applying a photoresist film on the transparent insulating substrate on which the gate metal film is deposited, and forming a half tone photoresist pattern on the region where the gate electrode is to be formed using the first mask; 상기 하프 톤형 감광막패턴을 사용하여 상기 게이트금속막을 노광 및 현상한후 이를 선택적으로 식각하여 요철형 게이트 전극을 형성하는 단계;Exposing and developing the gate metal film using the half-tone photosensitive film pattern and selectively etching the gate metal film to form an uneven gate electrode; 상기 요철형 게이트 전극이 형성된 기판 상에 게이트 이중 절연막, 비정질 실리콘막, 도핑된 비정질 실리콘막을 차례로 증착하고, 이들을 제 2마스크를 사용하여 선택적으로 패터닝하여 엑티브 영역을 한정하는 단계;Depositing a gate double insulating film, an amorphous silicon film, and a doped amorphous silicon film in order on the substrate on which the uneven gate electrode is formed, and selectively patterning them using a second mask to define an active region; 상기 결과물 상에 소오스/드레인 금속막을 증착하고 제 3마스크를 사용하여 소오스/드레인 전극 및 채널층을 형성하는 단계;Depositing a source / drain metal film on the resultant and forming a source / drain electrode and a channel layer using a third mask; 상기 소오스/드레인 전극이 형성된 기판 상에 보호막을 도포하고, 제 4마스크를 사용하여 콘택홀을 형성하는 단계;Applying a protective film on the substrate on which the source / drain electrodes are formed, and forming a contact hole using a fourth mask; 상기 보호막이 형성된 기판 상에 ITO 금속막을 증착하고, 제 5마스크를 사용하여 화소 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 박막 트랜지스터 제조방법.Depositing an ITO metal film on the substrate on which the protective film is formed, and forming a pixel electrode using a fifth mask. 제 1항에 있어서,The method of claim 1, 상기 제 1마스크는 노광량이 100%와 50%로 구분되는 그레이톤 마스크인 것을특징으로 하는 박막 트랜지스터 제조방법.The first mask is a thin film transistor manufacturing method characterized in that the exposure amount is divided into 100% and 50% gray mask. 제 1항에 있어서,The method of claim 1, 상기 요철형 게이트 전극 상에 적층된 상기 게이트 이중 절연막, 비정질 실리콘막, 도핑된 비정질 실리콘막, 소오스/드레인 전극, 및 보호막은 요철 형태인 것을 특징으로 하는 박막 트랜지스터 액정표시자치 제조방법.And the gate double insulating film, the amorphous silicon film, the doped amorphous silicon film, the source / drain electrode, and the protective film stacked on the uneven gate electrode are uneven.
KR1020010030564A 2001-05-31 2001-05-31 Method for maunufacturing thin film transistor KR100764273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010030564A KR100764273B1 (en) 2001-05-31 2001-05-31 Method for maunufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010030564A KR100764273B1 (en) 2001-05-31 2001-05-31 Method for maunufacturing thin film transistor

Publications (2)

Publication Number Publication Date
KR20020091695A true KR20020091695A (en) 2002-12-06
KR100764273B1 KR100764273B1 (en) 2007-10-05

Family

ID=27707390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010030564A KR100764273B1 (en) 2001-05-31 2001-05-31 Method for maunufacturing thin film transistor

Country Status (1)

Country Link
KR (1) KR100764273B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090321743A1 (en) * 2008-06-27 2009-12-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device and electronic device
KR101272488B1 (en) * 2005-10-18 2013-06-07 삼성디스플레이 주식회사 Thin Transistor Substrate, Method Of Fabricating The Same, Liquid Crystal Display Having The Same And Method Of Fabricating Liquid Crystal Display Having The Same
KR20160030439A (en) * 2014-09-10 2016-03-18 이노럭스 코포레이션 Thin film transistor substrate
CN106898617A (en) * 2017-03-20 2017-06-27 合肥京东方光电科技有限公司 Substrate and preparation method thereof, display panel and display device
CN110729359A (en) * 2019-10-25 2020-01-24 深圳市华星光电半导体显示技术有限公司 Thin film transistor, display panel and manufacturing method of thin film transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104576761B (en) * 2015-02-06 2018-05-08 合肥京东方光电科技有限公司 Thin film transistor (TFT) and its manufacture method, display base plate and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599972B2 (en) * 1997-09-30 2004-12-08 三洋電機株式会社 Method for manufacturing thin film transistor
JPH11150195A (en) * 1997-11-19 1999-06-02 Nec Corp Semiconductor device and manufacture thereof
KR100296110B1 (en) * 1998-06-09 2001-08-07 구본준, 론 위라하디락사 Method of manufacturing thin film transistor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272488B1 (en) * 2005-10-18 2013-06-07 삼성디스플레이 주식회사 Thin Transistor Substrate, Method Of Fabricating The Same, Liquid Crystal Display Having The Same And Method Of Fabricating Liquid Crystal Display Having The Same
US20090321743A1 (en) * 2008-06-27 2009-12-31 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device and electronic device
KR20110023888A (en) * 2008-06-27 2011-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor, semiconductor device and electronic device
US8513664B2 (en) * 2008-06-27 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, semiconductor device and electronic device
KR20160030439A (en) * 2014-09-10 2016-03-18 이노럭스 코포레이션 Thin film transistor substrate
CN106898617A (en) * 2017-03-20 2017-06-27 合肥京东方光电科技有限公司 Substrate and preparation method thereof, display panel and display device
US11289512B2 (en) 2017-03-20 2022-03-29 Boe Technology Group Co., Ltd. Substrate and manufacturing method thereof, display panel and display device
CN110729359A (en) * 2019-10-25 2020-01-24 深圳市华星光电半导体显示技术有限公司 Thin film transistor, display panel and manufacturing method of thin film transistor
WO2021077470A1 (en) * 2019-10-25 2021-04-29 深圳市华星光电半导体显示技术有限公司 Thin film transistor, display panel, and method for manufacturing thin film transistor
US11233153B2 (en) 2019-10-25 2022-01-25 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Thin film transistor, display panel and fabricating method thereof

Also Published As

Publication number Publication date
KR100764273B1 (en) 2007-10-05

Similar Documents

Publication Publication Date Title
CN109671726B (en) Array substrate, manufacturing method thereof, display panel and display device
CN106960881B (en) Thin film transistor and preparation method thereof
KR20070122158A (en) Tft lcd array substrate and manufacturing method thereof
CN106024813B (en) A kind of production method and related device of low temperature polycrystalline silicon tft array substrate
CN109494257B (en) Thin film transistor, manufacturing method thereof, array substrate and display device
KR100653467B1 (en) Method for manufacturing tft-lcd
CN110620118B (en) Touch array substrate and preparation method thereof
US6043000A (en) Method for manufacturing a semiconductor device
US7125756B2 (en) Method for fabricating liquid crystal display device
US11894386B2 (en) Array substrate, manufacturing method thereof, and display panel
KR100764273B1 (en) Method for maunufacturing thin film transistor
JP2002250934A (en) Method for manufacturing matrix substrate for liquid crystal
US6558992B2 (en) Method to fabricate flat panel display
JP3706033B2 (en) Manufacturing method of matrix substrate for liquid crystal
KR20020037417A (en) Method for manufacturing vertical tft lcd device
KR100663294B1 (en) Method for manufacturing thin film transistor liquid crystal display
CN109037348B (en) Thin film transistor, preparation method thereof and array substrate
JP2003207804A (en) Method of manufacturing matrix substrate for liquid crystal
KR100705616B1 (en) Method for manufacturing thin film transistor liquid crystal display device
KR100867471B1 (en) Method for manufacturing of thin film transistor liquid crystal display
KR100837884B1 (en) method for fabricating Liquid Crystal Display device
KR20020002051A (en) Method of manufacturing tft-lcd
KR100507283B1 (en) A method for manufacturing of thin film transistor liquid crystal display
KR20070004276A (en) Method of manufacturing array substrate
US6842201B2 (en) Active matrix substrate for a liquid crystal display and method of forming the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120807

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140820

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150817

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160822

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180822

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 13