JPH02219272A - Manufacture of mis type semiconductor device - Google Patents

Manufacture of mis type semiconductor device

Info

Publication number
JPH02219272A
JPH02219272A JP3988889A JP3988889A JPH02219272A JP H02219272 A JPH02219272 A JP H02219272A JP 3988889 A JP3988889 A JP 3988889A JP 3988889 A JP3988889 A JP 3988889A JP H02219272 A JPH02219272 A JP H02219272A
Authority
JP
Japan
Prior art keywords
substrate
insulating film
trench
groove
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3988889A
Other languages
Japanese (ja)
Other versions
JP2568676B2 (en
Inventor
Kikuyo Ooe
大江 きく代
Shinji Odanaka
紳二 小田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1039888A priority Critical patent/JP2568676B2/en
Publication of JPH02219272A publication Critical patent/JPH02219272A/en
Application granted granted Critical
Publication of JP2568676B2 publication Critical patent/JP2568676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To suppress an excessive side-wall current by providing high- concentration diffused layers of the same conduction type as that of a substrate on side faces of the substrate facing a groove without relying on channel widths by controlling widths of side wall insulating films. CONSTITUTION:An insulating film 2 is selectively formed on one conductive type semiconductor substrate 1 and a groove section 3 which becomes a groove type insulating separation layer is formed by etching the substrate 1 by using the film 2 as a mask. Then, after forming side wall insulating films 4 on both side walls of the groove section 3 and insulating films 2, diffused layers 7 having a concentration which is different from that of the substrate 1 are formed on side faces of the substrate facing the groove type insulating separation layer by implanting impurity ions into the substrate 1 through the films 4. Therefore, an excessive side-wall current can be suppressed by providing the high- concentration diffused layers 7 (silicon oxide layers) of the same conduction type as that of the substrate on the side faces of the substrate facing the groove 3 without relying on channel widths by controlling widths of the side-wall insulating films 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超高密度LSIにおいて、溝型絶縁分離層をも
つMIS型半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an MIS type semiconductor device having a groove type insulating layer in an ultra-high density LSI.

従来の技術 従来溝型絶縁分離層をもつMIS型半導体装置において
、ゲート電極のフリンジング電界効果による過剰側壁電
流を抑制する技術にアイ・イ・イ・イ トランザクショ
ン オン エレクトロンデバイスズr (IEEE T
RANSACTION ON ELECTRON DE
VICES) 、VOL、ED−32,NO2,198
5J  P、441−445.N、ShIgyo、 e
t al、で提案された傾斜をもつ溝を形成し、その傾
斜を利用して基板と同導電型の不純物を注入する、傾斜
のある溝型絶縁分離層構造さらに、r1985シンポジ
ウム オン ブイエルニスアイテクノロジー (SYM
PO5IUM ON VLSI TECHNOLOGY
)J  P、58−59.G、Fuse、 et al
、で提案された、基板と同導電型の斜め不純物注入をも
つ溝型絶縁分離層構造がある。
Conventional Technology IEEE Transactions on Electron Devices r (IEEE T
RANSACTION ON ELECTRON DE
VICES), VOL, ED-32, NO2, 198
5J P, 441-445. N, ShIgyo, e
A sloped groove-type insulating layer structure in which a groove with a slope is formed and an impurity of the same conductivity type as the substrate is implanted using the slope proposed in the R1985 Symposium on B.I. Technology (SYM
PO5IUM ON VLSI TECHNOLOGY
) J P, 58-59. G, Fuse, et al.
There is a trench-type isolation layer structure with oblique impurity implantation of the same conductivity type as the substrate, which was proposed in .

まず、第6図に半導体基板をP型とした場合の、傾斜の
ある溝型絶縁分離層をもつMIS型半導体装置の断面図
を示す。この場合、上記のような傾斜のある溝型絶縁分
離層をもつ旧S型半導体装置では、溝型分離の特徴であ
る集積密度を向上させる垂直分離が形成されない上に、
傾斜角度のプロセス上の制御が困難である。
First, FIG. 6 shows a cross-sectional view of a MIS type semiconductor device having a sloped groove-type insulating separation layer when the semiconductor substrate is of P type. In this case, in the old S-type semiconductor device having a groove-type insulating separation layer with an inclination as described above, the vertical isolation that improves the integration density, which is a characteristic of trench-type isolation, is not formed.
Process control of the tilt angle is difficult.

また、第7図に半導体基板をP型とした場合の斜め不純
物注入をもつ溝型絶縁分離層をもつMIS型半導体装置
の断面図を示す。この場合は、斜め不純物注入をもつ溝
型絶縁分離層をもつ溝型半導体装置では、チャネル幅の
大きいものに対しては側壁電流は改善されるが、チャネ
ル幅の小さいものに対しては側壁のみに同導電型の不純
物を注入できず、側壁電流は改善できていないという問
題点を有し、このことはチャネル幅方向の電子電流密度
分布を調べることによって確認できる。この電流分布を
示したものが第8図である。同図は、ゲート下、チャネ
ル幅方向、酸化膜/シリコン界面から8nmの位置のn
チャネルMO8FETの電子電流密度分布を示すもので
ある。
Further, FIG. 7 shows a cross-sectional view of a MIS type semiconductor device having a trench type insulating layer with oblique impurity implantation when the semiconductor substrate is of P type. In this case, in a trench-type semiconductor device having a trench-type insulating layer with oblique impurity implantation, the sidewall current is improved for devices with a large channel width, but only the sidewall current is improved for devices with a small channel width. The problem is that impurities of the same conductivity type cannot be implanted into the channel, and the sidewall current cannot be improved. This can be confirmed by examining the electron current density distribution in the channel width direction. FIG. 8 shows this current distribution. The figure shows n below the gate, in the channel width direction, at a position 8 nm from the oxide film/silicon interface.
It shows the electron current density distribution of channel MO8FET.

同図から、斜め不純物注入によって、しきい値電圧にお
いて、チャネル幅の大きいもの(W= 1゜36μm)
は側壁電流が抑制されているが、チャネル幅の小さいも
の(Who、7μm)に対しては、側壁電流が過剰に流
れていることがわかる。
From the same figure, by diagonal impurity implantation, the channel width is large (W = 1°36 μm) at the threshold voltage.
It can be seen that although the sidewall current is suppressed in the case where the channel width is small (Who, 7 μm), the sidewall current flows excessively.

発明が解決しようとする課題 本発明は、必要な深さの溝型絶縁分離層をもち溝側壁の
側壁絶縁膜厚を制御することでチャネル幅によらず前記
溝に接する基板側面の領域に、基板と同導電型の高濃度
拡散層を形成し、容易な製造技術で過剰な側壁電流を抑
制することを目的とした半導体装置の製造方法である。
Problems to be Solved by the Invention The present invention provides a trench type insulation separation layer with a necessary depth and controls the sidewall insulation film thickness of the trench sidewalls, thereby providing a region on the side surface of the substrate in contact with the trench, regardless of the channel width. This method of manufacturing a semiconductor device aims to suppress excessive sidewall current by forming a highly doped diffusion layer of the same conductivity type as the substrate and using easy manufacturing technology.

また上記のような斜め不純物注入をもつ溝型絶縁分離層
をもつ溝型半導体装置では、溝に接する基板側壁全面に
基板と同導電型の不純物を注入しているためにバックゲ
イトバイアス効果が大きいという問題を有していた。本
発明は、必要な深さの溝型絶縁分離層をもち前記溝に接
する基板側面の上部の一部でかつ基板表面に接する基板
領域に、基板と同導電型の高濃度拡散層を形成し、容易
な製造技術で過剰な側壁電流を抑制し、バックゲイトバ
イアス効果を抑えることを目的とした半導体装置の製造
方法である。
In addition, in the trench type semiconductor device having a trench type insulating layer with oblique impurity implantation as described above, the back gate bias effect is large because impurities of the same conductivity type as the substrate are implanted into the entire side wall of the substrate in contact with the trench. There was a problem. The present invention has a groove-type insulating separation layer with a necessary depth, and forms a highly concentrated diffusion layer of the same conductivity type as the substrate in a part of the upper part of the side surface of the substrate that is in contact with the groove and in a region of the substrate that is in contact with the surface of the substrate. , is a method of manufacturing a semiconductor device that aims to suppress excessive sidewall current and back gate bias effect using a simple manufacturing technique.

さらに上記のような斜め不純物注入をもつ溝型絶縁分離
層をもつ溝型半導体装置では、溝型絶縁分離層低部のチ
ャネルストップと溝に接する基板側面の不純物注入が同
時に行われるという問題を有していた。本発明は、必要
な深さの溝型絶縁分離層をもち、前記溝に接する基板側
面の上部の一部でかつ基板表面に接する基板領域に、基
板と同導電型の高濃度拡散層を形成し、容易な製造技術
で過剰な側壁電流を抑制し、バックゲイトバイアス効果
を抑え溝型絶縁分離層低部のチャネルストップと溝に接
する基板側面の不純物注入を別工程に分離するとともに
、容易に制御よく、行うことを目的とした半導体装置の
製造方法である。
Furthermore, in a trench semiconductor device having a trench isolation layer with oblique impurity implantation as described above, there is a problem in that the channel stop at the bottom of the trench isolation layer and the impurity implantation on the side surface of the substrate in contact with the trench are performed at the same time. Was. The present invention has a trench-type insulating separation layer with a necessary depth, and forms a highly concentrated diffusion layer of the same conductivity type as the substrate in a part of the upper part of the side surface of the substrate that is in contact with the trench and in a region of the substrate that is in contact with the surface of the substrate. By using simple manufacturing technology, excessive sidewall current can be suppressed, the back gate bias effect can be suppressed, and the channel stop at the bottom of the trench-type isolation layer and the impurity implantation at the side surface of the substrate in contact with the trench can be separated into separate processes. This is a method for manufacturing semiconductor devices that is intended to be performed with good control.

また上記のような溝を絶縁膜を堆積して埋める方法では
、 溝に堆積された絶縁膜を平坦化することが困難であ
るため、側壁電流が流れやすいという問題を有していた
。本発明は、必要な深さの溝の溝側壁に側壁絶縁膜を形
成した後に、絶縁膜を堆積して埋めることによって容易
に平坦化できることを目的とした半導体装置の製造方法
である。
Furthermore, the method of filling the trenches by depositing an insulating film as described above has the problem that sidewall currents tend to flow because it is difficult to flatten the insulating film deposited in the trenches. The present invention is a method for manufacturing a semiconductor device, which aims to facilitate planarization by forming a sidewall insulating film on the sidewalls of a trench of a required depth and then depositing and filling the trench with an insulating film.

課題を解決するための手段 本発明は、一方の導電型半導体基板上に、選択的に絶縁
膜を形成する第一の工程と、前記絶縁膜をマスクとして
、前記半導体基板をエツチングして溝型絶縁分離層とな
る溝部を形成する第二のエツチング工程と、前記溝部、
及び前記絶縁膜の両側壁に側壁絶縁膜を形成する第三の
工程と、前記側壁絶縁膜を通して不純物をイオン注入し
、前記溝型絶縁分離層に接する基板側面に、前記基板と
濃度の異なる拡散層を形成する第四のイオン注入工程を
備えたことを特徴とするMIS型半導体装置の製造方法
である。
Means for Solving the Problems The present invention includes a first step of selectively forming an insulating film on one conductive type semiconductor substrate, and etching the semiconductor substrate using the insulating film as a mask to form a groove shape. a second etching step for forming a groove that will become an insulating separation layer;
and a third step of forming a sidewall insulating film on both side walls of the insulating film, and implanting impurity ions through the sidewall insulating film, and diffusing impurities at a concentration different from that of the substrate into the side surface of the substrate in contact with the groove-type insulating separation layer. This is a method for manufacturing an MIS semiconductor device characterized by comprising a fourth ion implantation step for forming a layer.

作用 本発明は前記した構成により側壁絶縁膜の幅を制御する
ことによりチャネル幅によらず溝に接した基板側面に基
板と同導電型の高濃度拡散層を有することによって、過
剰な側壁電流を抑制することができる。
Effect of the present invention By controlling the width of the sidewall insulating film with the above-described configuration, the excessive sidewall current can be suppressed by having a highly concentrated diffusion layer of the same conductivity type as the substrate on the side surface of the substrate in contact with the groove, regardless of the channel width. Can be suppressed.

また本発明は前記した構成によりチャネル幅によらず溝
に接した基板側面の上部の一部でかつ基板表面に接する
基板領域に基板と同導電型の高濃度拡散層を有すること
によって、過剰な側壁電流を抑制し、バックゲイトバイ
アス効果を改善することができる。
In addition, the present invention has the above-described structure and has a highly concentrated diffusion layer of the same conductivity type as the substrate in a part of the upper part of the side surface of the substrate in contact with the groove and in contact with the surface of the substrate, regardless of the channel width. It is possible to suppress sidewall current and improve the back gate bias effect.

さらに本発明は前記した構成により溝型絶縁分離層低部
のチャネルストップと溝に接する基板側面の不純物注入
を別工程で行うことができる。
Furthermore, according to the present invention, with the above-described structure, the channel stop at the bottom of the groove-type insulating isolation layer and the impurity implantation at the side surface of the substrate in contact with the groove can be performed in separate steps.

さらに本発明は前記した構成により必要な深さの溝の溝
側壁に側壁絶縁膜を形成した後に、絶縁膜を堆積して埋
めることによって容易に平坦化できる。
Further, according to the present invention, after a sidewall insulating film is formed on the sidewall of a trench of a required depth using the above-described structure, the trench can be easily flattened by depositing and filling the trench with an insulating film.

実施例 (実施例1) 第1図は本発明の第1の実施例における半導体装置の製
造方法の一実施例を工程順に示す。例としてnチャンネ
ルMO8)ランジスタについて説明する。第1図(a)
〜(C)はチャネル方向の断面図である。
Embodiment (Embodiment 1) FIG. 1 shows an embodiment of a method for manufacturing a semiconductor device according to a first embodiment of the present invention in the order of steps. As an example, an n-channel MO8) transistor will be explained. Figure 1(a)
-(C) are cross-sectional views in the channel direction.

まず、P型の(100)面を有するシリコン基板1に絶
縁膜2を1.3μm形成した後、エツチングにより基板
1に約0. 5μm深さの溝3を形成する(同図(a)
)。このとき絶縁膜2を例えばポリシリコンとCVD酸
化膜と多層構造にしてもよい。
First, an insulating film 2 with a thickness of 1.3 μm is formed on a P-type silicon substrate 1 having a (100) plane, and then the substrate 1 is etched with a thickness of about 0.0 μm. A groove 3 with a depth of 5 μm is formed (Figure (a)
). At this time, the insulating film 2 may have a multilayer structure of, for example, polysilicon and a CVD oxide film.

次に、溝3の両側壁に所望の膜厚になるように絶縁膜を
堆積した後異方性エツチングにより除去し、側壁絶縁膜
4を形成する。側壁絶縁膜4の幅をLsとし、いまLs
を0.02μmとする絶縁膜2と側壁絶縁膜4をマスク
としてドーズ量2.0×1013cm″2のボロン5を
注入角度8“、エネルギー80kevで、4回回転注入
(半導体ウェハ4回回転させて不純物を注入する)シ、
高濃度P1領域6を形成する(同図(b))。
Next, an insulating film is deposited on both side walls of the trench 3 to a desired thickness, and then removed by anisotropic etching to form a sidewall insulating film 4. Let the width of the sidewall insulating film 4 be Ls, and now Ls
Using the insulating film 2 and sidewall insulating film 4 with a diameter of 0.02 μm as masks, boron 5 was implanted at a dose of 2.0×10 cm 2 at an implantation angle of 8 cm and an energy of 80 kev four times (the semiconductor wafer was rotated four times). (injecting impurities)
A high concentration P1 region 6 is formed (FIG. 2(b)).

さらに、絶縁膜2を除去した後、溝3に溝の深さとほぼ
同程度の厚さにシリコン酸化膜7をCVD法で堆積し、
ドーズ量4.  OX 10”crrr2のボロン8を
注入角度O°、エネルギー40keyで注入し、■τ制
御領域9を形成した後、このV。
Furthermore, after removing the insulating film 2, a silicon oxide film 7 is deposited in the trench 3 to a thickness approximately the same as the depth of the trench, using the CVD method.
Dose amount 4. Boron 8 of OX 10"crrr2 was implanted at an implantation angle of 0° and an energy of 40 keys to form a ■τ control region 9, and then this V.

制御領域9に周知の方法でMOS)ランジスタを形成す
る。
A MOS transistor is formed in the control region 9 by a well-known method.

以上のように本実施例によれば、側壁ボロン高濃度領域
は、側壁絶縁膜4の膜厚Lsと注入エネルギーによって
制御でき、チャネル幅の小さいものに対しても側壁電流
を抑制することができる。
As described above, according to this embodiment, the sidewall boron high concentration region can be controlled by the film thickness Ls of the sidewall insulating film 4 and the implantation energy, and the sidewall current can be suppressed even in the case where the channel width is small. .

(実施例2) また、第2図は本発明の第2の実施例における半導体装
置の製造方法の一実施例を例としてnチャンネルMO3
)ランジスタについて説明するチャネル方向の断面図で
ある。主な工程は、第1の実施例と同様であり、第1の
実施例の第1図(b)、(C)の工程の代わりに第2図
(b’)+(c’)の工程を行なうものである。
(Embodiment 2) Furthermore, FIG. 2 shows an example of the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
) is a cross-sectional view in the channel direction for explaining a transistor; The main steps are the same as in the first embodiment, and the steps in FIG. 2 (b') + (c') are replaced by the steps in FIG. 1 (b) and (C) in the first embodiment. This is what we do.

同図(b′)において、溝3の両側壁に所望の膜厚にな
るように絶縁膜を堆積した後異方性エッチングにより除
去し、シリコン基板1の肩口の側壁絶縁膜厚が、薄くな
るように側壁絶縁膜4を形成する。いま、側壁絶縁膜4
の幅をLSとし、いまLSを0.02μ、mとし、絶縁
膜2とこの側壁絶縁膜4をマスクとしてドーズ量2.0
X10”cm−2のボロン5を注入角度8°、エネルギ
ー80keVで、4回回転注入し、高濃度P◆領領域を
形成する。肩口の側壁絶縁膜が薄いことにより、シリコ
ン基板1の肩口に効果的に高濃度P4領域6を形成する
ことができる。この点が第1の実施例と大きく異なる特
徴の1つである。
In the same figure (b'), an insulating film is deposited on both side walls of the trench 3 to a desired thickness, and then removed by anisotropic etching, so that the side wall insulating film thickness at the shoulder of the silicon substrate 1 becomes thinner. The sidewall insulating film 4 is formed in this manner. Now, the side wall insulating film 4
Let the width of LS be LS, now LS is 0.02μ, m, and the dose amount is 2.0 using the insulating film 2 and this sidewall insulating film 4 as a mask.
Boron 5 of X10"cm-2 is implanted four times at an implantation angle of 8° and an energy of 80 keV to form a high concentration P◆ region. Since the sidewall insulating film at the shoulder edge is thin, there is a large amount of boron 5 at the shoulder edge of the silicon substrate 1. It is possible to effectively form the high concentration P4 region 6. This point is one of the features that is significantly different from the first embodiment.

さらに、絶縁膜2を除いた後、溝3に側壁絶縁膜4を残
したまま、溝2に溝の深さとほぼ同程度の厚さにシリコ
ン酸化膜7をCVD法で堆積し平坦化を行ない、ついで
ドーズ量4.0XIO”cm−2のボロン8をO°エネ
ルギー40kevで注入し、VT制御領域9を形成した
後、第1の実施例と同様の工程によって、周知の方法で
MOS)ランジスタを形成する。
Furthermore, after removing the insulating film 2, a silicon oxide film 7 is deposited in the trench 2 to a thickness approximately equal to the depth of the trench 2 using the CVD method and planarized while leaving the sidewall insulating film 4 in the trench 3. Then, boron 8 with a dose of 4.0XIO"cm-2 is implanted at an energy of 40keV to form a VT control region 9, and then a MOS (MOS) transistor is formed by a well-known method using the same steps as in the first embodiment. form.

以上のように本実施例によれば、側壁ボロン高濃度領域
は、側壁絶縁膜厚Lsと注入エネルギーによって制御で
きるうえ、側壁絶縁膜の異方性エツチング量の制御によ
り、シリコン基板の肩口により効果的にボロン高濃度領
域を形成でき、チャネル幅の小さいものに対しても側壁
電流を抑制することができる。また、肩口が薄い側壁絶
縁膜形成後にシリコン酸化膜を堆積することで平坦化が
容易に行える。
As described above, according to this embodiment, the sidewall boron high concentration region can be controlled by the sidewall insulating film thickness Ls and the implantation energy, and by controlling the amount of anisotropic etching of the sidewall insulating film, the sidewall boron high concentration region can be more effectively etched at the edge of the silicon substrate. Therefore, it is possible to form a region with a high boron concentration, thereby suppressing sidewall current even in a case where the channel width is small. In addition, planarization can be easily achieved by depositing a silicon oxide film after forming a sidewall insulating film with a thin shoulder edge.

(実施例3) 第3図は本発明の第3の実施例における半導体装置の製
造方法の一実施例を工程順に示す。例としてnチャンネ
ルMO8)ランジスタについて説明する。第3図(a)
〜(d)はチャネル方向の断面図である。
(Embodiment 3) FIG. 3 shows an example of a method for manufacturing a semiconductor device according to a third embodiment of the present invention in the order of steps. As an example, an n-channel MO8) transistor will be explained. Figure 3(a)
-(d) are cross-sectional views in the channel direction.

まず、P型の(100)面を宵するシリコン基板1に絶
縁膜10を1.3μm形成した後、トランジスタ部とな
る領域を形成するためにフォトレジスト11を絶縁膜1
0上に形成する(同図(a))。
First, after forming an insulating film 10 with a thickness of 1.3 μm on a silicon substrate 1 having a P-type (100) plane, a photoresist 11 is applied to the insulating film 10 to form a region that will become a transistor section.
0 (see figure (a)).

次に、フォトレジスト11を使って、絶縁膜10をエツ
チングし、絶縁膜2を形成する。更に、この絶縁膜2を
マスクとし、ドーズ量2.0X10 ” c m−2の
ボロン5を、注入角度8°  エネルギー80kevで
4回回転注入し、高濃度P◆領領域2を形成する。
Next, the insulating film 10 is etched using the photoresist 11 to form the insulating film 2. Further, using this insulating film 2 as a mask, boron 5 at a dose of 2.0.times.10'' cm@-2 is implanted four times at an implantation angle of 8.degree.

ついで、絶縁膜2をマスクとし、エツチングを行ない前
記シリコン基板1に約0.5μmの深さの溝3を形成し
、ドーズ量1.0XIO”cm−2のボロン13を、注
入角度0“  エネルギー25kevで注入し、溝3の
底部にチャネルストップ14を形成する(同図(C))
Next, using the insulating film 2 as a mask, etching is performed to form a groove 3 with a depth of about 0.5 μm in the silicon substrate 1, and boron 13 is implanted at a dose of 1.0×IO” cm −2 at an angle of 0” energy. Inject at 25 keV to form a channel stop 14 at the bottom of the groove 3 ((C) in the same figure)
.

更に、絶縁膜2を除去した後、溝3に溝の深さとほぼ同
程度の厚さにシリコン酸化膜7をCVD法で堆積し、ド
ーズ量4.oxto12cm−2のボロン8を注入角度
O°、エネルギー40kevで注入し、vT制御領域9
を形成した後、周知の方法でMOS)ランジスタを形成
する。
Furthermore, after removing the insulating film 2, a silicon oxide film 7 is deposited in the trench 3 by CVD to a thickness approximately equal to the depth of the trench, and at a dose of 4. Boron 8 of oxto12cm-2 was implanted at an implantation angle of 0° and an energy of 40keV to form a vT control region 9.
After forming, a MOS (MOS) transistor is formed by a well-known method.

以上のようにこの第3の実施例によれば、ボロン高濃度
領域がすべて別工程であるため、条件設定が行ないやす
い。さらに溝に接する側面の上部の一部にボロン高濃度
層が形成されるため、バックゲートバイアス効果を抑制
することができ、かつ効果的に側壁電流を抑制すること
ができる。
As described above, according to the third embodiment, since the boron high concentration region is all formed in a separate process, it is easy to set the conditions. Furthermore, since a high boron concentration layer is formed in a part of the upper part of the side surface in contact with the groove, the back gate bias effect can be suppressed and the sidewall current can be effectively suppressed.

(実施例4) 第4図は本発明の第4の実施例における半導体装置の製
造方法の一実施例を工程順に示す。例としてnチャンネ
ルMO8)ランジスタについて説明する。第4図(a)
〜(d)はチャネル方向の断面図である。
(Embodiment 4) FIG. 4 shows an example of a method for manufacturing a semiconductor device according to a fourth embodiment of the present invention in the order of steps. As an example, an n-channel MO8) transistor will be explained. Figure 4(a)
-(d) are cross-sectional views in the channel direction.

まず、P型の(100)面を有するシリコン基板1に絶
縁膜2を0.5μm形成し、ドーズ量4゜0XIO”c
m−2のボロン13を、注入角度0゜エネルギー700
kevで注入し、チャネル領域のみ浅く、全体に高濃度
層14を形成する(同図(a))。
First, an insulating film 2 with a thickness of 0.5 μm is formed on a P-type silicon substrate 1 having a (100) plane, and the dose is 4°0XIO”c.
Boron 13 of m-2 is implanted at an angle of 0° and an energy of 700
Kev is implanted to form a highly doped layer 14 on the entire surface, leaving only the channel region shallow (FIG. 4(a)).

次に、エツチングにより基板1に約0.5μm深さの溝
3を形成し、この溝3に溝の深さより浅く約0.45μ
mシリコン酸化膜15をCVD法で堆積する(同図(b
))。
Next, a groove 3 with a depth of about 0.5 μm is formed in the substrate 1 by etching, and this groove 3 is etched with a depth of about 0.45 μm shallower than the depth of the groove.
A silicon oxide film 15 is deposited by the CVD method (see (b) in the same figure).
)).

更に、絶縁膜2をマスクとし、ドーズ量2.0XIO”
cm−2のボロン5を、注入角度8”  エネルギー8
0kevで4回回転注入し、高濃度P+領域6を形成す
る(同図(C))。
Furthermore, using the insulating film 2 as a mask, the dose is 2.0XIO"
cm-2 boron 5, implantation angle 8” energy 8
Rotary implantation is performed four times at 0 keV to form a high concentration P+ region 6 (FIG. 4(C)).

ついで、絶縁膜2を除去した後、溝3に溝の深さきほぼ
同程度の厚さにシリコン酸化膜16をCVD法で堆積し
、ドーズ量4.0XIO12crrr2のボロン8を注
入角度0°、エネルギー40keyで注入し、vT制御
領域9を形成した後、周知の方法でMOS)ランジスタ
を形成する。
Next, after removing the insulating film 2, a silicon oxide film 16 is deposited in the trench 3 to a thickness approximately equal to the depth of the trench, and boron 8 is implanted at a dose of 4.0XIO12crrr2 at an angle of 0° and energy. After forming a vT control region 9 by implanting 40 keys, a MOS transistor is formed by a well-known method.

以上のようにこの第4の実施例によれば、ボロン高濃度
領域がすべて別工程であるため、条件設定が行ないやす
い。さらに溝に接する側面の上部の一部にボロン高濃度
層が形成されるため、バックゲートバイアス効果を抑制
することができ、かつ効果的に側壁電流を抑制すること
ができる。
As described above, according to the fourth embodiment, since the boron high concentration region is all formed in a separate process, it is easy to set the conditions. Furthermore, since a high boron concentration layer is formed in a part of the upper part of the side surface in contact with the groove, the back gate bias effect can be suppressed and the sidewall current can be effectively suppressed.

(実施例5) 第5図は本発明の第5の実施例における半導体装置の製
造方法の一実施例を工程順に示す。例としてnチャンネ
ルMO8)ランジスタについて説B− 断面図である。
(Embodiment 5) FIG. 5 shows an example of a method for manufacturing a semiconductor device according to a fifth embodiment of the present invention in the order of steps. As an example, it is a cross-sectional view of the n-channel MO8) transistor.

まず、P型の(100)面を有するシリコン基板1に絶
縁膜2を0.5μm形成し、エツチングにより基板1に
約0. 5μm深さの溝3を形成する。更に、ドーズ量
1.0X10”cm−”のボロン13を、注入角度0°
  エネルギー25kevで注入し、チャネルストプ1
4を溝低部に形成する(同図(a))。
First, an insulating film 2 with a thickness of 0.5 μm is formed on a P-type silicon substrate 1 having a (100) plane, and the substrate 1 is etched with a thickness of about 0.5 μm. A groove 3 with a depth of 5 μm is formed. Furthermore, boron 13 with a dose of 1.0×10"cm-" was implanted at an implantation angle of 0°.
Injected with energy 25keV, channel stop 1
4 is formed at the bottom of the groove (FIG. 4(a)).

次に、溝3に溝の深さより浅く約0.45μmシリコン
酸化膜15をCVD法で堆積し、絶縁膜2をマスクとし
、ドーズ量2.OXIO13cm−2のボロン5を、注
入角度8゛ エネルギー80kevで4回回転注入し、
高濃度P+領域6を形成する(同図(b))。
Next, a silicon oxide film 15 of approximately 0.45 μm is deposited in the trench 3 to a depth shallower than the depth of the trench by the CVD method, using the insulating film 2 as a mask at a dose of 2. Boron 5 of OXIO 13cm-2 was injected 4 times at an injection angle of 8° and an energy of 80keV.
A high concentration P+ region 6 is formed (FIG. 2(b)).

更に、絶縁膜2を除去した後、溝3に溝の深さとほぼ同
程度の厚さにシリコン酸化膜16をCVD法で堆積し、
ドーズ量4.OX 1012cm−2のボロン8を注入
角度O°、エネルギー40kevで注入し、vT制御領
域9を形成した後、周知の方法でMOS)ランジスタを
形成する。
Furthermore, after removing the insulating film 2, a silicon oxide film 16 is deposited in the trench 3 to a thickness approximately the same as the depth of the trench, using the CVD method.
Dose amount 4. Boron 8 of OX 1012 cm-2 is implanted at an implantation angle of 0° and an energy of 40 kev to form a vT control region 9, and then a MOS transistor is formed by a well-known method.

この第5の実施例によれば、ボロン高濃度領域がすべて
別工程であるため、条件設定が行ないやすい。さらに溝
に接する側面の上部の一部にボロン高濃度層が形成され
るため、バックゲートバイアス効果を抑制することがで
き、かつ効果的に側壁電流を抑制することができる。
According to the fifth embodiment, since the high boron concentration region is all processed in a separate process, it is easy to set the conditions. Furthermore, since a high boron concentration layer is formed in a part of the upper part of the side surface in contact with the groove, the back gate bias effect can be suppressed and the sidewall current can be effectively suppressed.

発明の詳細 な説明したように、本発明によれば、前記した構成によ
り側壁絶縁膜の幅を制御することによりチャネル幅によ
らず溝に接した基板側面に基板と同導電型の高濃度拡散
層を有することによって、過剰な側壁電流を抑制するこ
とができる。
As described in detail, according to the present invention, by controlling the width of the sidewall insulating film with the above-described configuration, high concentration diffusion of the same conductivity type as the substrate is formed on the side surface of the substrate in contact with the groove regardless of the channel width. By having the layer, excessive sidewall current can be suppressed.

また、本発明はチャネル幅によらず溝に接した基板側面
の上部の一部でかつ基板表面に接する基板領域に基板と
同導電型の高濃度拡散層を有することによって、過剰な
側壁電流を抑制し、バックゲイトバイアス効果を改善す
ることができる。
Furthermore, the present invention eliminates excessive sidewall current by providing a highly concentrated diffusion layer of the same conductivity type as the substrate in a part of the upper part of the side surface of the substrate in contact with the groove and in contact with the surface of the substrate. can be suppressed and the backgate bias effect can be improved.

さらに本発明は溝型絶縁分離層低部のチャネルストップ
と溝に接する基板側面の不純物注入を別工程で行うこと
ができる。
Further, according to the present invention, the channel stop at the bottom of the trench-type isolation layer and the impurity implantation into the side surface of the substrate in contact with the trench can be performed in separate steps.

さらに、本発明の構成により必要な深さの溝を溝側壁に
側壁絶縁膜を形成した後に、絶縁膜を堆積して埋めるこ
とによって容易に平坦化でき、その実用的効果は大きい
Further, according to the structure of the present invention, a trench of a required depth can be easily flattened by forming a sidewall insulating film on the trench sidewall and then depositing and filling the trench with an insulating film, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における第1の実施例のnチャンネル
MO8)ランジスタの製造工程断面図、第2図は、本発
明における第2の実施例のnチャンネルMO3)ランジ
スタの製造工程部分断面図、第3図は、本発明における
第3の実施例のnチャンネルMO8)ランジスタの製造
工程断面図、第4図は、本発明における第4の実施例の
nチャンネルMO8)ランジスタの製造工程断面図、第
5図は、本発明における第5の実施例のnチャンネルM
O8)ランジスタの製造工程断面図、第8図および第7
図は従来製造工程の部分断面図、第8図は、従来の溝型
分離層を持ち規格化されたチャンネル幅を有するnチャ
ネルMO8FETの電子電流密度分布特性図である。 1・・・P型シリコン基板、2・・・絶縁膜、3・・・
溝、4・・・側壁絶縁膜、6・・・P”領域、7・・・
シリコン酸化膜、9・・・VT制御領域。 代理人の氏名 弁理士 粟野重孝 ほか1名a) 区 J も、 ト もJ ゝ℃
FIG. 1 is a sectional view of the manufacturing process of an n-channel MO8) transistor according to the first embodiment of the present invention, and FIG. 2 is a partial cross-sectional view of the manufacturing process of an n-channel MO3) transistor of the second embodiment of the present invention. , FIG. 3 is a cross-sectional view of the manufacturing process of an n-channel MO8) transistor according to the third embodiment of the present invention, and FIG. 4 is a cross-sectional view of the manufacturing process of an n-channel MO8) transistor according to the fourth embodiment of the present invention. , FIG. 5 shows the n-channel M of the fifth embodiment of the present invention.
O8) Cross-sectional diagram of transistor manufacturing process, Figures 8 and 7
The figure is a partial sectional view of a conventional manufacturing process, and FIG. 8 is an electron current density distribution characteristic diagram of an n-channel MO8FET having a conventional trench-type separation layer and a standardized channel width. 1... P-type silicon substrate, 2... Insulating film, 3...
Groove, 4... side wall insulating film, 6... P'' region, 7...
Silicon oxide film, 9...VT control region. Name of agent: Patent attorney Shigetaka Awano and 1 other persona)

Claims (5)

【特許請求の範囲】[Claims] (1)一方の導電型の半導体基板上に、選択的に絶縁膜
を形成する第一の工程と、前記絶縁膜をマスクとして、
前記半導体基板をエッチングして溝型絶縁分離層となる
溝部を形成する第二のエッチング工程と、前記溝部、及
び前記絶縁膜の両側壁に側壁絶縁膜を形成する第三の工
程と、前記側壁絶縁膜を通して不純物をイオン注入し、
前記溝型絶縁分離層に接する基板側面に、前記基板と濃
度の異なる拡散層を形成する第四のイオン注入工程を備
えたことを特徴とするMIS型半導体装置の製造方法。
(1) A first step of selectively forming an insulating film on a semiconductor substrate of one conductivity type, and using the insulating film as a mask,
a second etching step of etching the semiconductor substrate to form a trench that will become a groove-type insulation separation layer; a third step of forming a sidewall insulating film on the trench and both side walls of the insulating film; Implanting impurity ions through the insulating film,
A method for manufacturing an MIS type semiconductor device, comprising a fourth ion implantation step of forming a diffusion layer having a concentration different from that of the substrate on a side surface of the substrate in contact with the groove-type insulating separation layer.
(2)一方の導電型の半導体基板上に、選択的に絶縁膜
を形成する第一の工程と、前記絶縁膜をマスクとして、
前記半導体基板をエッチングして溝型絶縁分離層となる
溝部を形成する第二のエッチング工程と、前記溝部側壁
にのみ上部の膜厚が薄い側壁絶縁膜を形成する第三の工
程と、前記側壁絶縁膜を通して不純物をイオン注入し、
前記溝型絶縁分離層に接する基板側面に、前記基板と濃
度の異なる拡散層を形成し、かつ上部の膜厚が薄いこと
により前記拡散層の上部の濃度が濃くなる第四のイオン
注入工程と、前記側壁絶縁膜を形成したまま前記溝に絶
縁膜を堆積し溝型絶縁分離層を形成する第五の工程を有
することを特徴とする特許請求の範囲第1項記載のMI
S型半導体装置の製造方法。
(2) A first step of selectively forming an insulating film on a semiconductor substrate of one conductivity type, and using the insulating film as a mask,
a second etching step of etching the semiconductor substrate to form a groove that will become a groove-type insulating separation layer; a third step of forming a sidewall insulating film with a thin upper thickness only on the sidewalls of the groove; Implanting impurity ions through the insulating film,
a fourth ion implantation step in which a diffusion layer having a concentration different from that of the substrate is formed on a side surface of the substrate in contact with the trench-type insulating separation layer, and the concentration in the upper part of the diffusion layer is higher due to the thinner film thickness in the upper part; , a fifth step of depositing an insulating film in the trench while forming the sidewall insulating film to form a trench-type insulating isolation layer.
A method for manufacturing an S-type semiconductor device.
(3)一方の半導体基板上に、絶縁膜を形成する第一の
工程と、前記絶縁膜をマスクとして7°以上の角度を持
ったイオン注入法によって前記基板と濃度の異なる拡散
層を形成する第二の工程と、前記絶縁膜をマスクとして
前記基板をエッチングして溝型絶縁分離層となる溝部を
形成する第三の工程と前記溝低部に前記基板と濃度の異
なる拡散層を形成する第四の注入工程を備えたことを特
徴とするMIS型半導体装置の製造方法。
(3) A first step of forming an insulating film on one semiconductor substrate, and a diffusion layer having a concentration different from that of the substrate by ion implantation at an angle of 7° or more using the insulating film as a mask. a second step, and a third step of etching the substrate using the insulating film as a mask to form a trench that will become a trench-type insulation separation layer; and forming a diffusion layer having a concentration different from that of the substrate at the bottom of the trench. A method for manufacturing an MIS type semiconductor device, comprising a fourth injection step.
(4)一方の導電型の半導体基板上に、選択的に絶縁膜
を形成する第一の工程と、不純物をイオン注入して前記
基板と同導電型の高濃度層を形成する第二の工程と、前
記絶縁膜をマスクとして前記半導体基板をエッチングし
て溝部を形成する第三の工程と、前記溝部に溝の深さよ
りも浅く絶縁膜を堆積する第四の工程と、前記絶縁膜を
マスクとして7°以上の角度を持ったイオン注入法によ
って前記基板と濃度の異なる拡散層を基板側壁の上部の
一部に形成する第五の工程を有することを特徴とするM
IS型半導体装置の製造方法。
(4) A first step of selectively forming an insulating film on a semiconductor substrate of one conductivity type, and a second step of ion-implanting impurities to form a highly concentrated layer of the same conductivity type as the substrate. a third step of etching the semiconductor substrate using the insulating film as a mask to form a trench; a fourth step of depositing an insulating film in the trench to a depth shallower than the depth of the trench; and a fourth step of depositing the insulating film as a mask. A fifth step of forming a diffusion layer having a concentration different from that of the substrate on a part of the upper part of the side wall of the substrate by ion implantation at an angle of 7° or more.
A method for manufacturing an IS type semiconductor device.
(5)一方の導電型の半導体基板上に、選択的に絶縁膜
を形成する第一の工程と、前記絶縁膜をマスクとして、
前記半導体基板をエッチングして溝型絶縁分離層となる
溝部を形成する第二のエッチング工程と、前記の溝低部
に前記基板と濃度の異なる拡散層を形成する第三の注入
工程と、前記溝部に溝の深さよりも浅く絶縁膜を堆積す
る第四の工程と、前記絶縁膜をマスクとして7°以上の
角度を持ったイオン注入法によって前記基板と濃度の異
なる拡散層を基板側壁の上部の一部に形成する第五の工
程を有することを特徴とするMIS型半導体装置の製造
方法。
(5) A first step of selectively forming an insulating film on a semiconductor substrate of one conductivity type, and using the insulating film as a mask,
a second etching step of etching the semiconductor substrate to form a groove that will become a groove-type insulating separation layer; a third implantation step of forming a diffusion layer having a concentration different from that of the substrate at the bottom of the groove; A fourth step is to deposit an insulating film in the trench to a depth shallower than the depth of the trench, and by using the insulating film as a mask and ion implantation at an angle of 7° or more, a diffusion layer having a concentration different from that of the substrate is deposited on the upper side wall of the substrate. A method for manufacturing an MIS type semiconductor device, comprising a fifth step of forming a part of the MIS type semiconductor device.
JP1039888A 1989-02-20 1989-02-20 Method of manufacturing MIS type semiconductor device Expired - Fee Related JP2568676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039888A JP2568676B2 (en) 1989-02-20 1989-02-20 Method of manufacturing MIS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039888A JP2568676B2 (en) 1989-02-20 1989-02-20 Method of manufacturing MIS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH02219272A true JPH02219272A (en) 1990-08-31
JP2568676B2 JP2568676B2 (en) 1997-01-08

Family

ID=12565515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039888A Expired - Fee Related JP2568676B2 (en) 1989-02-20 1989-02-20 Method of manufacturing MIS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2568676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482270A (en) * 1990-07-24 1992-03-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482270A (en) * 1990-07-24 1992-03-16 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JP2568676B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
US5571738A (en) Method of making poly LDD self-aligned channel transistors
US6372559B1 (en) Method for self-aligned vertical double-gate MOSFET
JPH0294477A (en) Semiconductor device and manufacture thereof
JP2000340791A (en) Manufacturing method of semiconductor device
JPS62155552A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JPS59208851A (en) Semiconductor device and manufacture thereof
JPH0595115A (en) Manufacture of mos transistor
JPH0770713B2 (en) MOS semiconductor device and manufacturing method thereof
JPH0637309A (en) Semiconductor device and manufacture thereof
JPH0851203A (en) Semiconductor device, and its manufacture
JPH02219272A (en) Manufacture of mis type semiconductor device
JP2673384B2 (en) Semiconductor device and manufacturing method thereof
JPH0738095A (en) Semiconductor device and its manufacturing method
JP3060948B2 (en) Method for manufacturing semiconductor device
JP2910836B2 (en) Method for manufacturing semiconductor device
JP2770484B2 (en) Method for manufacturing semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof
JPH0472770A (en) Manufacture of semiconductor device
JPH079974B2 (en) Manufacturing method of complementary semiconductor device
JPH0428236A (en) Manufacture of semiconductor device
JPH01107555A (en) Mis semiconductor device and manufacture thereof
JPS59124142A (en) Manufacture of semiconductor device
JPH0221648A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees