JPH02217615A - Magnetic bearing controller - Google Patents

Magnetic bearing controller

Info

Publication number
JPH02217615A
JPH02217615A JP3998789A JP3998789A JPH02217615A JP H02217615 A JPH02217615 A JP H02217615A JP 3998789 A JP3998789 A JP 3998789A JP 3998789 A JP3998789 A JP 3998789A JP H02217615 A JPH02217615 A JP H02217615A
Authority
JP
Japan
Prior art keywords
signal
magnetic bearing
frequency
force
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3998789A
Other languages
Japanese (ja)
Other versions
JP2575862B2 (en
Inventor
Hitoshi Yamada
仁 山田
Shigeki Morii
茂樹 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3998789A priority Critical patent/JP2575862B2/en
Publication of JPH02217615A publication Critical patent/JPH02217615A/en
Application granted granted Critical
Publication of JP2575862B2 publication Critical patent/JP2575862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To stably hold a floating object in a floating state by adding a first signal to a second signal, and feeding back the signals to an electromagnet via a position feedback gain and controller for a magnetic bearing. CONSTITUTION:Signals from a position sensor 1L constituting a magnetic bearing 6L are divided into two and separated, and one is fed as a first signal 1L to the input terminal (+) of an addition circuit 9L. Characteristic frequency components which may cause instability are extracted from the other signal by a band-pass filter 7L, and then the signal is amplified by a proportional circuit 8L having alpha-times gains, and thereafter it is inputted as a second signal bL for a magnetic bearing 6R to the input terminal (+) of an addition circuit 9R. Signals from a position sensor 1R constituting a bearing 6R are also divided into two and separated in the same way, and one is fed to an addition circuit 9 and the other is fed to the addition circuit 9L of the other bearing 6L via a band-pass filter 7R and a proportional circuit 8R. The signal cL after addition is inputted to a control circuit 3L via a position feedback gain 2L.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ターが分子ポンプや、コンプレッサ、タービ
ン、工作機械用スピンドル等の高速回転体用の磁気軸受
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic bearing for high-speed rotating bodies such as molecular pumps, compressors, turbines, and spindles for machine tools.

〔従来の技術〕[Conventional technology]

回転体や走行物を浮上保持する手段として電磁石を用い
た磁気軸受がある。この磁気軸受は従来の流体潤滑軸受
よシもロスが小さく、軸受のドライ化、雰囲気のクリー
ン化がはかれ、特に真空状態では有用な軸受である。
There are magnetic bearings that use electromagnets as a means of keeping rotating bodies and moving objects floating. This magnetic bearing has less loss than conventional fluid-lubricated bearings, allows for a dry bearing and a cleaner atmosphere, and is particularly useful in vacuum conditions.

この磁気軸受において、回転体や走行物の浮上位置を設
定する手段として、浮上物の浮上位置を計測し、その計
測信号に基いて電磁石に流す電流値を決め、電磁石から
発生する磁力の大きさを定める手段がある。
In this magnetic bearing, as a means of setting the floating position of a rotating body or a running object, the floating position of the floating object is measured, and based on the measurement signal, the current value to be passed through the electromagnet is determined, and the magnitude of the magnetic force generated from the electromagnet is determined. There is a means to determine.

第8図はその手段の制御系の構成を示すブロック線図で
ある。第8図において、位置センサ1は浮上物の位f(
変位)を測るためのセンサであシ、渦電流変位計などが
その一例である。位置フィードパツクゲイン2は、位置
上ンサ1で得られた信号の大きさを必要な大きさに比例
倍する丸めのものである。制御回路3は位置フィードバ
ックゲイン2で得られた信号を、電磁石4に適切な形に
して入力する丸めの信号処理回路からなる。この信号処
理回路としては、例えばPID(比例−積分−微分)回
路や位相補償回路、さらKはその組み合わせ回路などが
ある。電磁石4は鉄心にコイルが巻かれたものであシ、
制御回路3から供給された電流に応じて、浮上用の磁力
を発生するものである。
FIG. 8 is a block diagram showing the configuration of the control system of the means. In FIG. 8, the position sensor 1 detects the position of the floating object f(
An example of such a sensor is an eddy current displacement meter. The position feed pack gain 2 is a rounding value that proportionally multiplies the magnitude of the signal obtained by the positional sensor 1 to the required magnitude. The control circuit 3 consists of a rounded signal processing circuit that inputs a signal obtained with a position feedback gain of 2 to the electromagnet 4 in an appropriate form. Examples of this signal processing circuit include a PID (proportional-integral-differential) circuit, a phase compensation circuit, and a combination circuit thereof. The electromagnet 4 is a coil wound around an iron core.
The magnetic force for levitation is generated in accordance with the current supplied from the control circuit 3.

制御回路3が比例要素(P要X)だけで構成された最も
簡単な位置フィードバック系を考えると、電磁石40入
力Iと出力である磁力Fとの伝達関数は、コイル、鉄心
等の抵抗やインダクタンスによシ以下の1次遅れ系にな
る。
Considering the simplest position feedback system in which the control circuit 3 is composed of only proportional elements (P and X), the transfer function between the electromagnet 40 input I and the output magnetic force F is determined by the resistance and inductance of the coil, iron core, etc. It becomes a first-order lag system with less than Yoshishi.

F/I −に、/(1+Tw −8)        
       ・・・(1ンここで、KMは′電磁石4
のゲイン、TMは電磁石4の時定数、Sはラグラス演算
子である。よって、位置フィードバック系の計測変位り
から浮上物への力Fに至る伝達関数は以下の通りとなる
F/I − to /(1+Tw −8)
...(1) Here, KM is 'electromagnet 4
, TM is the time constant of the electromagnet 4, and S is the Lagras operator. Therefore, the transfer function from the measured displacement of the position feedback system to the force F to the floating object is as follows.

F/D−1ら・K、 −KM/(1+TM−8)   
    ・・・(2)ここで、K、は位置フィードバッ
クゲイン2の比例ゲイン、K、は制御回路3の比例グイ
/をそれぞれ示す。位置フィードパ、り系の(力F)/
(変位D)の周波数特性を見るため、ラグラス演算子S
−12にfとおき、(2)式に代入する。ここでfは周
波数(Hz )でj−fl−である。(力F)/(変位
D)は複素数となシ次のようにおく。
F/D-1 et al. K, -KM/(1+TM-8)
(2) Here, K represents the proportional gain of the position feedback gain 2, and K represents the proportional gain of the control circuit 3. Position feed force (force F)/
In order to see the frequency characteristics of (displacement D), the Lagras operator S
-12 is set as f and substituted into equation (2). Here, f is the frequency (Hz) and is j-fl-. Let (force F)/(displacement D) be a complex number as follows.

F/D”Km(f)+j −Kt(f)      ・
・・(3)(3)式における(力F)/(変位D)の実
部は周波数fに依存した剛性を意味し、虚部は周波数f
に依存した減衰を意味する。(2)式のような1次遅れ
は虚部が常に負となル、浮上物に対し減衰とは反対の不
安定化力になる。
F/D”Km(f)+j −Kt(f) ・
...(3) In equation (3), the real part of (force F)/(displacement D) means the stiffness that depends on the frequency f, and the imaginary part is the frequency f
means attenuation dependent on . The imaginary part of the first-order lag as shown in equation (2) is always negative, which causes a destabilizing force on the floating object that is opposite to damping.

I@9図は(力F)/(変位D)、すなわち(3)式の
虚部の値と周波数fとの関係を示す図である。
Figure I@9 is a diagram showing the relationship between (force F)/(displacement D), that is, the value of the imaginary part of equation (3), and frequency f.

第9図に示す点線人が(2)式に対応するものであり、
上述の状態を示している。浮上物と位置フィードバック
系からなる固有振動数fcがもつ減衰、特に浮上物の減
衰より、第9図に示す周波数f−feの所の値が大きい
と、その固有振動数は発散的に撮動し、運転できなくな
る。
The dotted line person shown in FIG. 9 corresponds to equation (2),
The above state is shown. If the value of the frequency f-fe shown in Figure 9 is larger than the damping of the natural frequency fc of the floating object and the position feedback system, especially the damping of the floating object, the natural frequency will be photographed in a divergent manner. and become unable to drive.

そこで、位置フィードパ、り系の(力F)/(変位D)
に減衰効果をもたすために、制御回路3に比例要素(P
要素)と並列に微分要素(D要素)または位相補償要素
を設ける。ここでは代表して微分要素(D要素)に例を
とる。微分要素(D要素)を制御回路3に回路として実
現すると、以下の1次遅れ系が付加され丸形となる。
Therefore, the position feed system (force F)/(displacement D)
In order to provide a damping effect to the control circuit 3, a proportional element (P
A differential element (D element) or a phase compensation element is provided in parallel with the D element. Here, a differential element (D element) will be taken as a representative example. When the differential element (D element) is implemented as a circuit in the control circuit 3, the following first-order lag system is added, resulting in a round shape.

(微分要素) ””Ko−8/(1+TD−8)   
   ・・・(4)ここで、K、は微分要素のゲイン、
TDは時定数である。微分要素だけの位[74−ドパツ
ク系の(力F)/(変位D)は以下の式となる。
(Differential element) ””Ko-8/(1+TD-8)
...(4) Here, K is the gain of the differential element,
TD is a time constant. The (force F)/(displacement D) of the differential element [74-Dopak system] is expressed as follows.

F/D −K、・KD−KM−8/((1+TD−8)
 (1+TM−3) )・・・(5)(5)式の分子は
Sの1次で分母はSの2次になるため、(5)式の虚部
は第9図に示す一点鎖線BのようKなる。すなわち、周
波数の低い領域では浮上物に対し減衰効果をもち、高い
領域では不安定化作用をもつ、浮上物の位置を保持する
丸めには、制御回路3には比例要素と微分要素との併存
が必要となる。このような制御回路3の位置フィードパ
、り系の(力F)/(変位D)は Fゆ−に、・(KP+KD−V(1+TD−8))・K
、/(1+TM−8)        ・・・(6)と
なり、第9図に示した実線Cのようになシ、上述した一
点鎖線Bとほぼ同じ特性をもつ。浮上物と位置フィード
パ、り系からなる固有振動数fcを、減衰効果を有する
周波数の低い領域に置くと、安定性が確保でき、振動を
発生することなく運転できる。
F/D-K, ・KD-KM-8/((1+TD-8)
(1+TM-3) )...(5) Since the numerator of equation (5) is the first order of S and the denominator is the second order of S, the imaginary part of equation (5) is the dashed line B shown in Figure 9. It's like K. In other words, in order to maintain the position of a floating object, which has a damping effect on the floating object in a low frequency region and a destabilizing effect in a high frequency region, the control circuit 3 requires the coexistence of a proportional element and a differential element. Is required. The (force F)/(displacement D) of the position feed system of the control circuit 3 is as follows: (KP+KD-V(1+TD-8))・K
, /(1+TM-8) (6), and has almost the same characteristics as the solid line C shown in FIG. 9 and the dashed-dotted line B described above. If the natural frequency fc consisting of the floating object and the position feeder system is placed in a low frequency range that has a damping effect, stability can be ensured and operation can be performed without generating vibrations.

このような特性を有する磁気軸受を、第10図(a)に
示す回転体5の軸受6として使用し、回転体5を浮上さ
せる場合を考えると、次のような現象を呈する。回転体
5は、第10図(b) (C)(d) (・)(f)〜
に示すように無限側の固有振動数を有する。回転体s自
体の材料等による減衰は、回転数以下の固有撮動数に対
しては不安定化に働き、回転数以上の固有振動数に対し
ては減衰作用として動く。
When a magnetic bearing having such characteristics is used as the bearing 6 of the rotating body 5 shown in FIG. 10(a) and the rotating body 5 is levitated, the following phenomenon occurs. The rotating body 5 is shown in FIG. 10 (b) (C) (d) (・) (f) ~
It has a natural frequency on the infinite side as shown in . The damping caused by the material of the rotating body s itself acts as a destabilizing effect for the natural vibration frequency below the rotation speed, and acts as a damping effect for the natural vibration frequency above the rotation speed.

したがって、磁気軸受6の位置フィードバック系の(力
F)/(変位D)の減衰効果を有する周波数領域に、回
転数以下の固有振動数をもってくる必要がある。しかし
、回転体5の固有振動数は第10図(bJ (e) (
d) (・)(f)〜に示すように無限にあるため、必
ず(力F)/(変位D)の不安定化作用を有する周波数
領域に固有振動数がある。したがって、回転体5自体に
よる固有振動数が有する減衰よシも、磁気軸受6の位置
フィードバック系の不安定化作用が大きくなると不安定
になシ、振動が発散的に大きくなり、回転させることが
できなくなる。
Therefore, it is necessary to bring the natural frequency of the magnetic bearing 6's position feedback system below the rotational speed to a frequency range that has a damping effect of (force F)/(displacement D). However, the natural frequency of the rotating body 5 is as shown in Fig. 10 (bJ (e) (
d) (・) (f) Since there are infinite numbers as shown in ~, there is always a natural frequency in the frequency range that has the destabilizing effect of (force F)/(displacement D). Therefore, even with the damping of the natural frequency of the rotating body 5 itself, if the destabilizing effect of the position feedback system of the magnetic bearing 6 increases, it becomes unstable, and the vibration increases divergently, making it difficult to rotate. become unable.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のように、従来のものでは浮上物の位置を保持する
ために、浮上物の位置を位置センサJで計測し、その信
号をフィードバックし、電磁石4から力を発生させるよ
うにしているが、この力は浮上物を振動させる不安定化
力となる。そして制御回路3においてPrD 、位相補
償等の処理を行なっても、低周波数帯域は安定化(減衰
)力になるが、中高周波数帯域では依然として大きな不
安定化力を有している。しかるに回転体のような無限側
の固有振動数を有する浮上物では、不安定化力となる周
波a帯域に固有振動数が必ず存在しているため、磁気軸
受6により発散的な振動を発生することKなる。
As mentioned above, in the conventional system, in order to maintain the position of the floating object, the position of the floating object is measured by the position sensor J, the signal is fed back, and force is generated from the electromagnet 4. This force becomes a destabilizing force that causes the floating object to vibrate. Even if processing such as PrD and phase compensation is performed in the control circuit 3, it becomes a stabilizing (damping) force in the low frequency band, but it still has a large destabilizing force in the middle and high frequency bands. However, in a floating object such as a rotating body that has a natural frequency on the infinite side, the natural frequency always exists in the frequency a band that causes a destabilizing force, so the magnetic bearing 6 generates divergent vibrations. This is K.

特に回転体5の最高回転数よりも通常高い第3次固有振
動数が有する減衰能は小さく、磁気軸受の位置フィード
バック系の不安定化作用によシ発敗的に振動され易い。
In particular, the third-order natural frequency, which is usually higher than the maximum rotational speed of the rotating body 5, has a small damping ability and is easily vibrated in a destructive manner due to the destabilizing effect of the position feedback system of the magnetic bearing.

その対策として、第3次固有振動数まで磁気軸受によシ
減衰作用領域を伸ばしても、それ以上の周波数領域では
よシ大きい不安定化作用をもたらし、第4次固有振動数
がつぎに発散的な振動を起こすこととなる。
As a countermeasure, even if the damping area is extended to the 3rd natural frequency using a magnetic bearing, it will cause a greater destabilizing effect in the higher frequency range, and the 4th natural frequency will diverge. This will cause vibrations.

そこで本発明は、指定された周波数帯域において、磁気
軸受が発生する不安定化力を安定化力に変更し得、発散
的な振動発生を防止でき、浮上物を安定に浮上保持し得
る磁気軸受制御装置を提供することを目的とする。
Therefore, the present invention provides a magnetic bearing that can change the destabilizing force generated by the magnetic bearing into a stabilizing force in a specified frequency band, prevent the generation of divergent vibrations, and stably hold a floating object. The purpose is to provide a control device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る磁気軸受制御装置は浮上物に対する位置セ
ンサからの信号を磁気軸受へフィードバックし、磁気軸
受を能動的に用いるようにした磁気軸受制御装置におい
て、位置センサと位置フィードバックゲインと制御回路
と電磁石と帯域通過フィルタと比例回路と加算器からな
る磁気軸受を2組具備し、1方の磁気軸受を構成する位
置センサからの信号をその−2ま第1の信号とし、前記
磁気軸受位置に対し固有振動数の振動モードのノード点
を奇数個はさんだ他方の磁気軸受の位置センサからの信
号をその固有振動数近辺に中心周波数をもつ帯域通過フ
ィルタ及び比例回路を直列に通過させて、第2の信号と
し、前記第1の信号と第2の信号を加算した信号を前記
磁気軸受の位Rフィードバックゲインと制御回路を経由
して電磁石へフィードバックするようにしたことを特徴
とする。
A magnetic bearing control device according to the present invention feeds back a signal from a position sensor for a floating object to a magnetic bearing, and actively uses a magnetic bearing. It is equipped with two sets of magnetic bearings each consisting of an electromagnet, a bandpass filter, a proportional circuit, and an adder, and the signal from the position sensor constituting one of the magnetic bearings is used as the first signal, and the signal is set at the magnetic bearing position. On the other hand, the signal from the position sensor of the other magnetic bearing sandwiching an odd number of node points of the vibration mode of the natural frequency is passed in series through a bandpass filter and a proportional circuit having a center frequency near the natural frequency. 2 signals, and a signal obtained by adding the first signal and the second signal is fed back to the electromagnet via the feedback gain of the magnetic bearing and the control circuit.

〔作用〕[Effect]

前述のような手段を講じたことにより、次のような作用
を呈する。すなわち磁気軸受の位置フィードバック系が
有する高周波数帯域の不安定化力に対し、不安定化力と
なる固有振動数成分のみが位相反転された状態で帯域通
過フィルタによシ抽出され、これが比例回路によシ増幅
された後、磁気軸受の構成要素の位置センサの信号に加
算されるので、フィードバックされる信号は不安定化力
となる固有振動数成分のみが、極性が反転(位相が18
0°異なる)されたものとなる。その結果、磁気軸受が
発生する力はすべて安定化力に変更される。
By taking the above-mentioned measures, the following effects are achieved. In other words, with respect to the destabilizing force in the high frequency band that the position feedback system of the magnetic bearing has, only the natural frequency component that becomes the destabilizing force is extracted by a band-pass filter with its phase inverted, and this is extracted by the proportional circuit. After being amplified by
0° difference). As a result, all forces generated by the magnetic bearing are converted into stabilizing forces.

なお、先行技術との比較を表1に示す。Note that Table 1 shows a comparison with the prior art.

(その1) (その3) 表 (その2) 〔実施例〕 本発明の実施例を第1図〜第7図に示す。(Part 1) (Part 3) table (Part 2) 〔Example〕 Examples of the present invention are shown in FIGS. 1 to 7.

第1図は本発明の第1実施例すなわち曲げ2次固有振動
数による不安定化力の安定化に関する制御系の構成を示
すブロック線図である。
FIG. 1 is a block diagram showing a first embodiment of the present invention, that is, the configuration of a control system related to stabilization of the destabilizing force by the secondary natural frequency of bending.

第1図において、7は不安定化力となる固有振動数成分
を通過させる帯域通過フィルタであシ、8は信号増幅を
行なう比例回路であシ、9は加算回路である。6L及び
6Rは2組の磁気軸受(第1及び第2の磁気軸受)を示
す。
In FIG. 1, 7 is a band-pass filter that passes the natural frequency component that becomes a destabilizing force, 8 is a proportional circuit that amplifies the signal, and 9 is an adder circuit. 6L and 6R indicate two sets of magnetic bearings (first and second magnetic bearings).

磁気軸受6Lを構成する位置センサ7Lからの信号は2
つに分離され、その一方の信号はそのまま第1の信号a
Lとして加算回路9Lの(+)入力端へ供給され、他方
の信号は帯域通過フィルタ7Lによシネ安定化力となる
固有振動数成分が抽出され、かつα倍のゲインを有する
比例回路8Lによシ増幅された後、もう一方の磁気軸受
6Rに対する第2の信号bLとして刀!]算回路9Rの
(+〕入力端へ供給される。磁気軸受6Rを構成する位
置センサJRからの信号も同様に2つに分離され、一方
は加算回路9Rへ、もう一方は帯域通過フィルタ7R及
び比例回路8Rを経て、もう一方の磁気軸受の加算回路
9Lへ供給される。加算が行われたのちの信号Cは位置
フィードバックゲイン2を経由して制御回路3に入力す
る。
The signal from the position sensor 7L that constitutes the magnetic bearing 6L is 2.
and one of the signals remains as the first signal a.
The other signal is supplied to the (+) input terminal of the adder circuit 9L as L, and the other signal is passed through a bandpass filter 7L to extract the natural frequency component that serves as a cine stabilizing force, and then to a proportional circuit 8L having a gain multiplied by α. After being amplified, the second signal bL is sent to the other magnetic bearing 6R. ] is supplied to the (+] input terminal of the arithmetic circuit 9R. The signal from the position sensor JR that constitutes the magnetic bearing 6R is similarly separated into two, one being sent to the adding circuit 9R and the other being sent to the band pass filter 7R. The signal C is supplied to the addition circuit 9L of the other magnetic bearing via the proportional circuit 8R.The signal C after the addition is input to the control circuit 3 via the position feedback gain 2.

簡単の々め2つの磁気軸受の伝達関数が同じ場合につい
て作用を以下に説明する。
The operation will be explained below in a simple case where the transfer functions of two magnetic bearings are the same.

第2図は第1実施例の帯域通過フィルタ7の代表的なゲ
イン特性を示す図である。第2図に示すように、帯域通
過フィルタ7は、安定化すべき固有振動数近辺に中心周
波数f。をもち周波数fがfoのとき通過特性(ゲイン
J)を有している。
FIG. 2 is a diagram showing typical gain characteristics of the bandpass filter 7 of the first embodiment. As shown in FIG. 2, the bandpass filter 7 has a center frequency f near the natural frequency to be stabilized. It has a pass characteristic (gain J) when the frequency f is fo.

第3図は回転体と、軸受配置及び振動モードの関係を示
す囚である。第3図(a)は、回転体5と軸受(6L及
び6R)の配置関係を示し、ti43図(b)は回転体
5の曲げ2次振動モードを示す。位置センサIL及びJ
Rはノード点をそのセンサ間に奇数個(図示の例ではQ
L、 QM及びQ8の3個)含むように配置されている
ため、これら位置センサからの信号は互いに位相反転し
ている。
FIG. 3 shows the relationship between the rotating body, bearing arrangement, and vibration mode. FIG. 3(a) shows the arrangement relationship between the rotating body 5 and the bearings (6L and 6R), and FIG. 3(b) shows the bending secondary vibration mode of the rotating body 5. Position sensors IL and J
R has an odd number of node points between its sensors (in the example shown, Q
(L, QM, and Q8), the signals from these position sensors have phases inverted from each other.

M4図(a) (b) (eJは、各45号経路におけ
る(力F)/(変位D)、すなわち(3)式の虚部の値
と周波数fとの関係を示す図である。
M4 diagram (a) (b) (eJ is a diagram showing the relationship between (force F)/(displacement D) in each No. 45 path, that is, the value of the imaginary part of equation (3) and frequency f.

第4図(a)は一方の磁気軸受6Lの45号aLの経路
における(力F)/(変位D)と周波数fとの関係を示
す図で第9図の実線Cのように低周波領域で減衰を呈す
る如く位相補償を与えうるものを用いるものとする。か
くして回転体5の第1次第2次、第3次固有振動数は減
衰を与えうる周波数領域に置かれ、第4次固有振動数は
不安定化力を与える周波数領域に置かれる。
FIG. 4(a) is a diagram showing the relationship between (force F)/(displacement D) and frequency f in the path of No. 45 aL of one magnetic bearing 6L, and the low frequency region as shown by the solid line C in FIG. It is assumed that a device capable of providing phase compensation such as exhibiting attenuation is used. Thus, the first, second, and third natural frequencies of the rotating body 5 are located in a frequency range that can provide damping, and the fourth natural frequency is located in a frequency range that provides a destabilizing force.

磁気軸受θLの(力F)/(f位置)が(3)式で表さ
れるものとすると、WJlの信号aLの経路では周波数
fの全帯域で F/D−KR(f ) + j・Kx(f)     
 ・・・(7)となる。
Assuming that (force F)/(f position) of magnetic bearing θL is expressed by equation (3), in the path of signal aL of WJl, F/D-KR(f) + j・Kx(f)
...(7).

第4図(b) i−t 、信号bRの経路における磁気
軸受6Lに対する(力F)/(変位D)と周波数fとの
関係を示す図である。
FIG. 4(b) i-t is a diagram showing the relationship between (force F)/(displacement D) and frequency f on the magnetic bearing 6L in the path of signal bR.

第2の信号bRf′i磁気軸受6Lに対して不安定化力
となる固有去動数成分子4の信号が位相反転しており、
f4近辺に中心周波数f0がセットされた帯域通過フィ
ルタ7と比例回路8を通過する九めf±f4近傍で の=−α・KR(f) jα・K、(f)     ・
・・(8−1)とな9、その他の周波数帯域では F/D −0・・・(8−2) となる。
The second signal bRf′i The signal of the natural displacement component element 4, which acts as a destabilizing force on the magnetic bearing 6L, has a phase inversion.
=-α・KR(f) jα・K,(f)・
...(8-1)9, and in other frequency bands, F/D -0...(8-2).

かくして第2の信号bRの経路において回転体6の第4
次固有振動数について減衰を与えその他の周波a帯域に
ついては減衰及び不安定化力のいずれの作用も生じない
Thus, in the path of the second signal bR, the fourth
It provides damping for the next natural frequency, and neither damping nor destabilizing force occurs for the other frequencies in the a-band.

第4図(C)は第1の信号aLと第2の信号bRを加算
した信号eLの経路における(力F)/(変位D)と周
波afとの関係を示す図である。
FIG. 4(C) is a diagram showing the relationship between (force F)/(displacement D) and frequency af in the path of the signal eL, which is the sum of the first signal aL and the second signal bR.

最終的には第1の信号ILに第2の信号bRが加算され
るので、信号eLの経路では、f−f4近傍のみF/D
−(1−α)・Kl(fン+j(1−α)・Kx(0・
・・(9−1) となシ、その他の周波数帯域においては、F/D−KB
(f)+j−に1(f)        ・・・(9−
2)となる。上記(9−1)式の値は、比例回路8Rの
ゲインαが「1」以上であれは、符号の極性が反転する
ことになる。
Finally, the second signal bR is added to the first signal IL, so in the path of the signal eL, only the F/D in the vicinity of f-f4
-(1-α)・Kl(f+j(1-α)・Kx(0・
...(9-1) In other frequency bands, F/D-KB
(f) + j- to 1(f) ... (9-
2). The polarity of the sign of the value of the above equation (9-1) is reversed if the gain α of the proportional circuit 8R is "1" or more.

本実施例では、2つの位置センサを曲げ2次固有振動数
の振動モードの損幅値が互いに同じになる位置に設置し
た例で示したが、異なる場合もαを適宜調整することに
よシ極性を反転させることができる。
In this example, the two position sensors are installed at positions where the loss amplitude values of the vibration modes of the secondary natural frequency of bending are the same. The polarity can be reversed.

かくして磁気軸受6Lの減衰特性は第4図(C)の実線
で示すようになυ、曲げ2次固有振動数f4も波及を与
える領域に置かれる。
Thus, the damping characteristic of the magnetic bearing 6L is as shown by the solid line in FIG. 4(C), and the second-order bending natural frequency f4 is also placed in the region where it has a ripple effect.

もう一方の磁気軸受6Rについても同様に曲げ2次固有
振動数f4か減衰を与える領域におかれる。
Similarly, the other magnetic bearing 6R is placed in a region where the bending secondary natural frequency f4 provides damping.

したがって曲げ2次固有振動数による不安定化力は安定
化力に変更される。
Therefore, the destabilizing force due to the secondary bending natural frequency is changed to a stabilizing force.

かくしで本実施例によれば、第1次、第2次。According to this embodiment, first and second.

第3次固有振動数にのみ、減衰を与える制御回路を用い
るものであシながら、第4次固有振動数における不安定
化力を減衰力(安定化力)に変更できる。従って、回転
体5の中高周波ハンティング問題が減少し、かつ曲げ2
次危険速度(第4次固有振動数に対応〕まで運転可能と
なる。なお第5次以上の固有振動数については、不安定
化力が小さい周波数領域になるので、はとんど問題がな
い。
Although a control circuit that applies damping only to the third natural frequency is used, the destabilizing force at the fourth natural frequency can be changed to a damping force (stabilizing force). Therefore, the medium and high frequency hunting problem of the rotating body 5 is reduced, and the bending 2
It is possible to operate up to the next critical speed (corresponding to the 4th natural frequency).For the 5th and higher natural frequencies, there is almost no problem as the destabilizing force is in the frequency range where it is small. .

第5図は本発明の第2実施例すなわち曲げ1次固有振動
数による不安定化力の安定化に関する制御系の構成を示
すブロック−図である。
FIG. 5 is a block diagram showing a second embodiment of the present invention, that is, the configuration of a control system related to stabilization of the destabilizing force due to the first bending natural frequency.

第5図において位置センサIMは2組の磁気軸受の位置
センサ7LIJRとは独立して設けられ、帯域通過フィ
ルタ7Mで不安定化力となる周波数成分のみイぎ号が取
シ出され、2つに分離された後比例回路8L及び8Rに
よシ信号増幅され、信号bL及びbRとして、2組の磁
気軸受6L及び6Rの加算回路9L及び9Rの(+)入
力端へ供給される。帯域通過フィルタ7Mのゲイン特性
は第2図に示すとおシであるが、本実施例の中心周波数
f0は曲げ1次固有振動数f3近傍に設定されている。
In FIG. 5, the position sensor IM is provided independently from the two sets of magnetic bearing position sensors 7LIJR, and the band-pass filter 7M extracts the signal of only the frequency component that becomes a destabilizing force. The signals are then amplified by proportional circuits 8L and 8R and supplied as signals bL and bR to the (+) input terminals of adder circuits 9L and 9R of the two sets of magnetic bearings 6L and 6R. The gain characteristics of the bandpass filter 7M are shown in FIG. 2, and the center frequency f0 in this embodiment is set near the first bending natural frequency f3.

かくして、磁気軸受6Lを構成する位置センサ7Lから
の信号は第1の信号hLとして加算回路9Lの(+)入
力端へ供給され、第2の信号bLと第1の信号aLが加
算される。加算が行われたのちの信号aLは位置フィー
ドバックゲイン2Lを経由して制御回路3Lに入力する
Thus, the signal from the position sensor 7L forming the magnetic bearing 6L is supplied as the first signal hL to the (+) input terminal of the adding circuit 9L, and the second signal bL and the first signal aL are added. The signal aL after the addition is input to the control circuit 3L via the position feedback gain 2L.

磁気軸受6Rでも同様の作用が行われる。A similar effect is performed on the magnetic bearing 6R.

簡単のため2つの磁気軸受の伝達関数が同じ場合につい
て作用を以下に説明する。
For the sake of simplicity, the operation will be described below in the case where the two magnetic bearings have the same transfer function.

第6図は、回転体と、軸受及び振動モードの関係を示す
図である。第6図(a)は回転体5と軸受6L及び6R
の配fjk関係を示し、第6図(b)は回転体5の曲げ
1次振動モードを示す図である。位置センサIL及びI
Mは、ノード点をそのセンサ間に奇数個(図示の例では
PLllllり含むように配置されているため、これら
の位置センサからの信号は互いに位相反転している。
FIG. 6 is a diagram showing the relationship between a rotating body, a bearing, and a vibration mode. Figure 6(a) shows the rotating body 5 and bearings 6L and 6R.
FIG. 6(b) is a diagram showing the bending primary vibration mode of the rotating body 5. FIG. Position sensors IL and I
Since M is arranged such that an odd number (in the illustrated example, PLllll) of node points are arranged between its sensors, the signals from these position sensors are inverted in phase with each other.

磁気軸受6Lの(力F)/(変位D)の伝達関数は曲げ
1次面有振動数f5近傍において(9−1)式その他の
帯域において(9−2)式で表される。
The transfer function of (force F)/(displacement D) of the magnetic bearing 6L is expressed by equation (9-1) near the bending primary surface frequency f5 and equation (9-2) in other bands.

(9−1)式の値は比例回路80ゲインαが「1」以上
であれば、符号の極性が反転することになる。
As for the value of equation (9-1), if the gain α of the proportional circuit 80 is “1” or more, the polarity of the sign is reversed.

rインαを適宜調整することKよシ磁気軸受6Lの減衰
特性は第7図の実線に示すようになシ、曲げ1次面有振
動数f3が減衰を与える領域Kitかれる。
By appropriately adjusting r in α, the damping characteristics of the magnetic bearing 6L are set in a region where the bending primary surface frequency f3 provides damping, as shown by the solid line in FIG.

磁気軸受6Rについても同様に曲げ1次面有振動数f3
が減衰を与える領域に置かれる。したがって上記周波数
帯域にある曲げ1次固有蚕動数による不安定化力は安定
化力に変更される。
Similarly, for the magnetic bearing 6R, the bending primary surface frequency f3
is placed in the region that provides damping. Therefore, the destabilizing force due to the first-order bending specific silk frequency in the above frequency band is changed to a stabilizing force.

なお両制御回路sL、sRとしては、第9図実@Cのよ
うに低周波数領域で減衰を呈する如く位相補償を与え得
るものを用いるものとする。また、回転体5の内部減衰
を強化して曲げ2次固有振動数は安定であるものとする
。かくして回転体6の第1次、第2次固有振動数は減衰
を与える周波数領域に置かれ、第3次固有振動数に対し
ても、上記作用によシ減衰を持つものとなる。
It is assumed that both control circuits sL and sR are capable of providing phase compensation so as to exhibit attenuation in the low frequency region, as shown in Figure 9 @C. Further, it is assumed that the internal damping of the rotating body 5 is strengthened so that the secondary bending natural frequency is stable. Thus, the first and second natural frequencies of the rotating body 6 are placed in a frequency range that provides damping, and the third natural frequency also has damping due to the above-mentioned effect.

かくして本実施例によれは、第1次、帛2次固有振動数
にのみ減衰を与える制御回路を用いるものであシながら
、第3次固有振動数における不安定化力として働く領域
を減衰力(安定化力)に変更できる。従って、回転体5
の中高周波ハンティング問題が減少し、かつ曲げ1次危
険速度(第3次固有振動数に対応)まで運転可能となる
。なお第4次以上の固有振動数については、回転体6の
内部減衰第で不安定化力を安定化しておシ、はとんど問
題がない。
Thus, although this embodiment uses a control circuit that damps only the first and second-order natural frequencies, the damping force is applied to the region that acts as a destabilizing force at the third-order natural frequency. (Stabilizing power). Therefore, the rotating body 5
The medium and high frequency hunting problem is reduced, and it is possible to operate up to the first critical bending speed (corresponding to the third natural frequency). Note that for natural frequencies of the fourth order or higher, there is almost no problem if the destabilizing force is stabilized by internal damping of the rotating body 6.

なお本発明は前記各実施例に限定されるものではない0
例えば前記実施例では、帯域通過フィルタ7、比例回路
8.減算器9からなる回路を、位置センサJと位置フィ
ードパ、フグイン2との間に設けた場合を例示したが、
磁気軸受制御系内の他の部分に設けるようにしてもよい
。また従来の第8図の経路の中間に、不安定化力を低下
させるため、不安定化力の振動数近傍を中心周波数とす
るノツチフィルタを追加することが一般的に行われてい
るが、その従来法と本発明の組み合わせを用いるように
してもよい。その場合は、本発明の実施例は第1図又は
第5図の信号aの経路の中間に不安定化力の固有振動数
近傍を中心周波数とするノツチフィルタを追加すること
になる。
Note that the present invention is not limited to the above embodiments.
For example, in the embodiment described above, the bandpass filter 7, the proportional circuit 8. Although the case where the circuit consisting of the subtracter 9 is provided between the position sensor J, the position feeder, and the feeder 2 is illustrated,
It may also be provided in other parts of the magnetic bearing control system. Furthermore, in order to reduce the destabilizing force, a notch filter whose center frequency is near the frequency of the destabilizing force is generally added in the middle of the conventional path shown in Fig. 8. A combination of the conventional method and the present invention may be used. In that case, the embodiment of the present invention adds a notch filter whose center frequency is near the natural frequency of the destabilizing force in the middle of the path of the signal a in FIG. 1 or 5.

また第1実施例と第2実施例を組み合わせて2つの固有
振動数の不安定化力を安定化してもよい。
Further, the destabilizing force of two natural frequencies may be stabilized by combining the first embodiment and the second embodiment.

また第1実施例はその作用から曲げ2次のみならず曲げ
4次、6次、・・・の偶数次固有振動数の不安定化力を
安定化しうるのは自明であるから、帯域通過フィルタの
中心周波数を複数個選べばそのすべてを安定化できる。
Furthermore, it is obvious that the first embodiment can stabilize the destabilizing force of not only the second-order bending, but also the even-order natural frequencies of the fourth, sixth, etc. bending, so the band-pass filter By selecting multiple center frequencies, all of them can be stabilized.

同様に第2実施例も曲げ1次のみならず曲げ3次、5次
、・・・の奇数次固有振動数の不安定化力を安定化しう
る。これら複数個の帯域通過フィルタを採用すれば曲げ
3次以上の固有振動数に対して、回転体5の内部波状が
少なく、不安定化力が問題になる場合に有効である。
Similarly, the second embodiment can also stabilize the destabilizing force of not only the first-order bending, but also the odd-numbered natural frequencies of the third, fifth, and so on bending. If a plurality of these band-pass filters are employed, the internal waveform of the rotating body 5 is small for natural frequencies of bending third order or higher, and it is effective when destabilizing force becomes a problem.

また回転体5の形状は第3図及び第10図に示されるも
のに限定されるものではない。このほか、本発明の要旨
を逸脱しない範囲で禎々変形実施も可能である。
Further, the shape of the rotating body 5 is not limited to that shown in FIGS. 3 and 10. In addition, various modifications may be made without departing from the gist of the present invention.

なお先行技術の実施例との比較を表1に示す。Table 1 shows a comparison with examples of prior art.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように構成されているので、本発明によ
れば、磁気軸受を構成する位置センサからの信号を第1
の信号とし、前記磁気軸受位置に対し固有振動数の振動
モードのノード点を奇数個はさんだ他の磁気軸受の位置
センサ、あるいは新たに設けた位置センサからの信号を
その固有振動数近辺に中心周波数を持つ帯域通過フィル
タ及び比例回路を直列に通過させて第2の信号とし、前
記第1の信号と第2の信号を加算した信号を前記磁気軸
受ヘフィードパ、りするようにしたので、指定された周
波数成分について、不安定化力を安定化力(減衰力)に
変更し得、発散的な振動発生を防止でき、浮上物を安定
に浮上保持させ得る磁気軸受制御装置を提供できる。
Since the present invention is configured as described above, according to the present invention, the signal from the position sensor constituting the magnetic bearing is
The signal from another magnetic bearing position sensor or a newly installed position sensor that has an odd number of node points in the vibration mode of the natural frequency with respect to the magnetic bearing position is centered around its natural frequency. A bandpass filter with a frequency and a proportional circuit are passed in series to obtain a second signal, and the signal obtained by adding the first signal and the second signal is fed to the magnetic bearing, so that the specified It is possible to provide a magnetic bearing control device that can change the destabilizing force into a stabilizing force (damping force) for the frequency components that occur, can prevent the occurrence of divergent vibrations, and can stably hold a floating object floating.

なお先行技術の効果との比較を表1に示す。Table 1 shows a comparison with the effects of the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の第1実施例を示す図で、第1
図は制御系の構成を示すブロック線図、第2図は帯域通
過フィルタのゲイン−周波数特性を示す図、第3図は回
転体と磁気軸受配置及び曲げ2次振動モードの関係を示
す概略説明図、第4図は各信号の経路における減衰特性
を示す図である。第5図〜第7図は本発明の第2夾施例
を示す図で、第5図は制御系の構成を示すブロック線図
、第6図は回転体と磁気軸受配置及び曲げ1次振動モー
ドの関係を示す概略説明図、第7図は磁気軸受の減衰特
性を示す図である。第8図〜第10図は従来例を示す図
で、第8図は制御系の構成を示すブロック線図、第9図
は磁気軸受の減衰特性を示す図、第10図は回転体とそ
の固有振動数とを示す図である。 l・・・位置センサ、2・・・位置フィードバックゲイ
ン、3・・・制御回路、4・・・ta石、5・・・回転
体、6・・・磁気軸受、7・・・帯域通過フィルタ、8
・・・比例回路、9・・・加算回路、P、Q・・・撮動
モードのノード点。 出願人ftflf1人 弁理士  鈴 江 武 彦第1
図 (b) ]一一下]■ 〔第1固有振動数〕
1 to 4 are diagrams showing a first embodiment of the present invention.
The figure is a block diagram showing the configuration of the control system, Figure 2 is a diagram showing the gain-frequency characteristics of the bandpass filter, and Figure 3 is a schematic explanation showing the relationship between the rotating body, magnetic bearing arrangement, and secondary bending vibration mode. 4 are diagrams showing attenuation characteristics in each signal path. 5 to 7 are diagrams showing a second embodiment of the present invention, FIG. 5 is a block diagram showing the configuration of the control system, and FIG. 6 is a rotating body, magnetic bearing arrangement, and bending primary vibration. FIG. 7 is a schematic diagram showing the relationship between modes, and FIG. 7 is a diagram showing the damping characteristics of the magnetic bearing. Figures 8 to 10 are diagrams showing conventional examples. Figure 8 is a block diagram showing the configuration of the control system, Figure 9 is a diagram showing the damping characteristics of the magnetic bearing, and Figure 10 is the rotating body and its It is a figure showing a natural frequency. l...Position sensor, 2...Position feedback gain, 3...Control circuit, 4...Ta stone, 5...Rotating body, 6...Magnetic bearing, 7...Band pass filter , 8
... Proportional circuit, 9... Addition circuit, P, Q... Node point of photographing mode. Applicant ftflf 1 person Patent attorney Suzue Takehiko 1st
Figure (b)] 11 lower] ■ [1st natural frequency]

Claims (1)

【特許請求の範囲】 浮上物に対する位置センサからの信号を磁気軸受へフィ
ードバックし、磁気軸受を能動的に用いるようにした磁
気軸受制御装置において、 位置センサと位置フィードバックゲインと制御回路と電
磁石と帯域通過フィルタと比例回路と加算器からなる磁
気軸受を2組具備し、一方の磁気軸受を構成する位置セ
ンサからの信号をそのまま第1の信号とし、前記磁気軸
受位置に対し固有振動数の振動モードのノード点を奇数
個はさんだ他方の磁気軸受の位置センサからの信号をそ
の固有振動数近辺に中心周波数をもつ帯域通過フィルタ
ー及び比例回路を直列に通過させて第2の信号とし、前
記第1の信号と第2の信号を加算した信号を前記磁気軸
受の位置フィードバックゲインと制御回路を経由して電
磁石へフィードバックするようにしたことを特徴とする
磁気軸受制御装置。
[Claims] A magnetic bearing control device that actively uses the magnetic bearing by feeding back a signal from a position sensor for a floating object to the magnetic bearing, comprising: a position sensor, a position feedback gain, a control circuit, an electromagnet, and a band. It is equipped with two sets of magnetic bearings consisting of a pass filter, a proportional circuit, and an adder, and uses the signal from the position sensor that constitutes one of the magnetic bearings as the first signal, and generates a vibration mode of a natural frequency with respect to the position of the magnetic bearing. The signal from the position sensor of the other magnetic bearing sandwiching an odd number of node points is passed in series through a bandpass filter and a proportional circuit having a center frequency near its natural frequency to obtain a second signal. A magnetic bearing control device characterized in that a signal obtained by adding the signal and the second signal is fed back to the electromagnet via a position feedback gain and control circuit of the magnetic bearing.
JP3998789A 1989-02-20 1989-02-20 Magnetic bearing control device Expired - Fee Related JP2575862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3998789A JP2575862B2 (en) 1989-02-20 1989-02-20 Magnetic bearing control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3998789A JP2575862B2 (en) 1989-02-20 1989-02-20 Magnetic bearing control device

Publications (2)

Publication Number Publication Date
JPH02217615A true JPH02217615A (en) 1990-08-30
JP2575862B2 JP2575862B2 (en) 1997-01-29

Family

ID=12568294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3998789A Expired - Fee Related JP2575862B2 (en) 1989-02-20 1989-02-20 Magnetic bearing control device

Country Status (1)

Country Link
JP (1) JP2575862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498625A3 (en) * 2003-06-25 2009-11-11 Ebara Corporation Magnetic bearing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498625A3 (en) * 2003-06-25 2009-11-11 Ebara Corporation Magnetic bearing apparatus

Also Published As

Publication number Publication date
JP2575862B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US4686404A (en) Controlled radial magnetic bearing device
Liu et al. Research on automatic balance control of active magnetic bearing‐rigid rotor system
JPS6166540A (en) Controlling device for magnetic bearing
JPH02217615A (en) Magnetic bearing controller
JPS6166541A (en) Controlled radial magnetic bearing device
KR100323328B1 (en) Rotor vibration suppression device
Nakamura et al. An interpretation of unbalance vibration compensator for five-axes active magnetic bearing systems based on internal model principle
CN114114919B (en) Same-frequency vibration force inhibition method and system based on active magnetic bearing control system
JPS62258221A (en) Magnetic bearing control system
JPS62258220A (en) Magnetic beraing control system
Ye et al. Vibration Suppression for Active Magnetic Bearings Using Adaptive Filter with Iterative Search Algorithm
Lahteenmaki et al. Optimization of the conical angle of cone-shaped active magnetic bearings
JPH0570729B2 (en)
JP3110204B2 (en) Magnetic bearing control device
JPS62297533A (en) Magnetic bearing controller
JPS63190929A (en) Magnetic bearing control device
JPH0914265A (en) Magnetic bearing compensating circuit
JPH07259854A (en) Magnetic bearing device
JPH0534336Y2 (en)
CN115372654A (en) Permanent magnet negative stiffness active absolute speed sensor and control method thereof
JPS62258219A (en) Magnetic bearing control system
JPH01150015A (en) Magnetic bearing controller
JPS61286609A (en) Control device of control type radial magnetic bearing
JI et al. Mechanism of Low Frequency Vibration Caused by Actuator Saturation for AMB based Motor and Its Compensation Strategy
JPS62258222A (en) Magnet bearing control system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees