JPH02217499A - Method for controlling concentration of electroplating bath of alloy - Google Patents

Method for controlling concentration of electroplating bath of alloy

Info

Publication number
JPH02217499A
JPH02217499A JP4007189A JP4007189A JPH02217499A JP H02217499 A JPH02217499 A JP H02217499A JP 4007189 A JP4007189 A JP 4007189A JP 4007189 A JP4007189 A JP 4007189A JP H02217499 A JPH02217499 A JP H02217499A
Authority
JP
Japan
Prior art keywords
plating
concentration
concn
bath
plating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4007189A
Other languages
Japanese (ja)
Inventor
Yoshio Anegawa
姉川 由男
Yutaka Ogawa
裕 小川
Akihiko Hasegawa
明彦 長谷川
Kazuya Miyagawa
和也 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4007189A priority Critical patent/JPH02217499A/en
Publication of JPH02217499A publication Critical patent/JPH02217499A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a plated alloy layer little in fluctuation of composition with excellent adhesive properties by regulating the concn. of metallic ions and the concn. of free acid in plating liquid by both electricity conductive amount for plating and the ratio of the rate of change in concn. of plating liquid due to analysis and the rate of change in target concn. during a plating stage in the case of electroplating alloy. CONSTITUTION:In the case of electroplating Fe-Zn alloy on the surface of steel, etc., for example, by plating liquid of Fe-Zn alloy consisting of a sulfuric acid bath, one part of plating liquid is extracted from a plating line 1 and introduced into a circulation tank 2 of plating liquid. The ions of Zn and Fe, sulfuric acid and water, etc., are added to the tank 2 from a zinc dissolving tank 3, a free acid tank 4, a water tank 5 and an iron dissolving tank 6 respectively and this mixture is regulated to plating liquid having proper concn. As the respective loadings, consumption of Fe<2+>, Zn<2+> and sulfuric acid is calculated by measured value of plating electricity conductive amount. Further the replenishment of the respective components is properly performed by both concn. of the respective components of plating liquid and comparison of the rate of change in the concn. and the rate of change in target concn. Thereby the composition of plating liquid is made proper and a plated Fe-Zn alloy layer free from fluctuation of alloy composition is formed with excellent adhesive force.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は合金電気メッキの浴濃度制御方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling bath concentration in alloy electroplating.

[従来の技術と発明が解決しようとする課題]合金電気
メッキ浴の浴濃度制御方法としては、例えば、特開昭5
8−151489号公報に開示されているごとく、メッ
キ浴中へ金属イオンを溶解補給する、又、特開昭59−
28600号公報(特公昭61−36600号)のごと
く、メッキ浴の一部を取出し、電解還元し、再度浴中へ
戻し、浴濃度を制御することが知られている。
[Prior art and problems to be solved by the invention] As a method for controlling the bath concentration of an alloy electroplating bath, for example,
As disclosed in Japanese Patent Publication No. 8-151489, metal ions are dissolved and replenished into a plating bath.
As disclosed in Japanese Patent Publication No. 28600 (Japanese Patent Publication No. 61-36600), it is known that a part of the plating bath is taken out, subjected to electrolytic reduction, and returned to the bath again to control the bath concentration.

このような浴濃度制御において、単純に分析値に応じて
補給するため、測定誤差による影響、あるいはメッキ液
中の濃度ばらつきによる影響を直接受け、長期に渡り通
性な濃度に制御することが困難であり、特に合金メッキ
製造の場合には、メッキ組成不良、メッキ密着性不良な
どのような、重大欠陥に至るという欠点をもつものであ
る。
In this type of bath concentration control, since it is simply replenished according to the analysis value, it is directly affected by measurement errors or concentration variations in the plating solution, making it difficult to control the concentration to a facultative level over a long period of time. In particular, in the case of alloy plating production, this has the disadvantage of leading to serious defects such as poor plating composition and poor plating adhesion.

本発明はこのような欠点を有利に解決するために成され
たものである。
The present invention has been made to advantageously solve these drawbacks.

[発明が解決しようとする課題] 本発明の特徴とするところは、メッキ通電量を測定し、
該測定値に基き金属イオン消費量を算出しメッキ浴中の
金属イオン、フリー酸、水の1種又は2種以上を調整す
ることを特徴とする、合金電気メッキの浴濃度制御方法
[Problems to be solved by the invention] The present invention is characterized by measuring the amount of plating current applied,
A method for controlling bath concentration in alloy electroplating, which comprises calculating metal ion consumption based on the measured value and adjusting one or more of metal ions, free acid, and water in the plating bath.

及びメッキ浴濃度を測定して、実績濃度及び実績濃度変
化速度を把握し、一方、予め設定した目標濃度に調整す
るための目標濃度変化速度を算出し、実績濃度変化速度
と目標濃度変化速度に基き、メッキ洛中の金属イオン及
び/またはフリー酸を調整することを特徴とする、合金
電気メッキの浴濃度制御方法。
and the plating bath concentration to understand the actual concentration and actual concentration change rate, and on the other hand, calculate the target concentration change rate for adjusting to the preset target concentration, and calculate the actual concentration change rate and target concentration change rate. 1. A method for controlling bath concentration in alloy electroplating, the method comprising controlling metal ions and/or free acids in a plating solution.

及びメッキ通電量の測定値に基き、メッキ浴濃度を制御
することを特徴とする請求項2に記載の合金電気メッキ
の浴濃度制御方法。
3. The method of controlling bath concentration for alloy electroplating according to claim 2, wherein the plating bath concentration is controlled based on the measured value of the plating current amount.

である。It is.

以下合金電気メッキの浴として、鉄−亜鉛合金電気メッ
キの硫酸浴を例にして説明する。まず、浴中成分として
は亜鉛の2価イオン、鉄の2価イオン、鉄の3価イオン
、硫酸の4つが存在する。亜鉛及び鉄の2価イオンの消
費は通電により鋼板にメッキされることによりなされ、
補給は亜鉛及び鉄を固体(亜鉛板、亜鉛粒、鉄板、鉄粒
)あるいは液体(硫酸亜鉛、硫酸鉄)の状態で供給する
ことによりなされる。ここで固体で供給する場合は、そ
の溶解反応は硫酸による酸化溶解反応と鉄の3価イオン
による酸化溶解反応の2 fl類により行われる。また
鉄の2価イオンの消費については、陽極表面での通電に
よる酸化反応によってもなされる。次に鉄の3価イオン
の消費は前記の固体で亜鉛および/または鉄を供給する
場合は酸化溶解反応によりなされ、補給は陽極表面での
鉄の2価イオンの酸化反応、及びメッキ液の酸素の捲き
込みによる酸化反応によりなされる。そして硫酸の消費
は亜鉛及び/または鉄を固体で供給する場合の酸化溶解
反応、通電による通光反応によりなされ、供給は硫酸没
入によりなされる。このようにメッキ洛中の各成分の濃
度変化は供給系を除外すれば全てメッキ通電により起こ
フており、メッキ通電量を測定することにより、その増
減量が計算可能である。従って、鉄の2価イオン、亜鉛
の2価イオン、硫酸の供給についてはこの計算値をもと
に投入量を算出すればよい。また鉄の3価イオンが設備
仕様上、結果的に増加する場合には、水の投入が必要と
なるが、その場合にも、鉄の3価イオンの増加はメッキ
通電量によって表現することができるので、投入量はメ
ッキ通電量より算出し、この水投入による全体希釈を考
慮して、鉄の2価イオン、亜鉛の2価イオン、硫酸の供
給量も算出するようにすればよい。本発明は、このよう
に、メッキ通電量を測定することにより、メッキ浴中成
分の増減量を算出し、浴中成分の供給量を決定していく
合金電気メッキの浴濃度制御方法である。
A sulfuric acid bath for iron-zinc alloy electroplating will be described below as an example of a bath for alloy electroplating. First, there are four components in the bath: divalent ions of zinc, divalent iron ions, trivalent iron ions, and sulfuric acid. The consumption of divalent ions of zinc and iron is achieved by plating the steel plate with electricity,
Replenishment is accomplished by supplying zinc and iron in the form of solids (zinc plates, zinc grains, iron plates, iron grains) or liquids (zinc sulfate, iron sulfate). When supplied in solid form, the dissolution reaction is carried out by two fl types: an oxidative dissolution reaction by sulfuric acid and an oxidative dissolution reaction by trivalent iron ions. In addition, divalent iron ions are consumed by an oxidation reaction caused by current flow on the surface of the anode. Next, trivalent iron ions are consumed by an oxidative dissolution reaction when zinc and/or iron are supplied in the solid form, and replenishment is achieved by an oxidation reaction of divalent iron ions on the anode surface and oxygen in the plating solution. This is done by an oxidation reaction caused by the incorporation of . The sulfuric acid is consumed by an oxidative dissolution reaction when zinc and/or iron is supplied in solid form, and by a light reaction by energization, and the supply is accomplished by immersion in sulfuric acid. In this way, all changes in the concentration of each component in the plating are caused by plating current, excluding the supply system, and by measuring the amount of plating current, the change in concentration can be calculated. Therefore, for the supply of divalent iron ions, divalent zinc ions, and sulfuric acid, the input amounts may be calculated based on these calculated values. Additionally, if the trivalent iron ions increase as a result of the equipment specifications, it will be necessary to add water, but even in that case, the increase in iron trivalent ions can be expressed by the amount of plating current applied. Therefore, the input amount can be calculated from the amount of plating current applied, and the amount of divalent iron ions, divalent zinc ions, and sulfuric acid to be supplied can also be calculated by taking into account the total dilution caused by the water input. The present invention is thus a bath concentration control method for alloy electroplating that calculates the increase or decrease in the components in the plating bath by measuring the amount of plating current applied, and determines the supply amount of the components in the bath.

又、メッキ浴濃度を測定して、実績濃度と実績濃度変化
速度を把握しく実績濃度変化速度については過去数点よ
り最小2乗法により算出)、一方、予め設定した目標濃
度に調整するための目標濃度変化速度を算出する。しか
して、実績濃度変化速度を目標濃度変化速度に修正する
ために必要な、鉄の2価イオン、亜鉛の2価イオン、硫
酸の供給量の補正量を算出し、次回供給量設定に補正を
加える合金電気メッキの浴濃度制御方法である。但し、
今、例としている鉄−亜鉛合金電気メッキ浴の場合は、
鉄の2価イオンと鉄の3個イオンが存在するので、浴中
成分の濃度推移状況により鉄の2価イオンと鉄の3価イ
オンのどちらを中心に制御するかを決定するものである
In addition, the plating bath concentration is measured to understand the actual concentration and actual concentration change rate (the actual concentration change rate is calculated using the least squares method from several past points), while the target concentration is adjusted to a preset target concentration. Calculate the concentration change rate. Then, in order to correct the actual concentration change rate to the target concentration change rate, the correction amounts for the supply amounts of divalent iron ions, zinc ions, and sulfuric acid are calculated, and the corrections are made to the next supply amount settings. This is a method for controlling the bath concentration of alloy electroplating. however,
In the case of the iron-zinc alloy electroplating bath used as an example,
Since there are divalent iron ions and trivalent iron ions, it is determined whether the divalent iron ions or the trivalent iron ions are to be controlled mainly depending on the concentration transition of the components in the bath.

更に、前記のごとく、メッキ通電量を測定することによ
り、メッキ浴中成分の増減量を算出し、浴中成分の供給
量を計算し、又、メッキ浴濃度を測定して、浴中成分の
実績濃度と実績濃度変化速度を把握しく実績濃度変化速
度については過去数点より最小2乗法により算出)、鉄
の2価イオンと鉄の3価イオンのどちらを中心に制御す
るかを決定し、一方、予め設定した目標濃度に調整する
ための目標濃度変化速度を算出する。しかして、実績濃
度変化速度を目標濃度変化速度に修正するために必要な
、鉄の2価イオン、亜鉛の2価イオン、硫酸の供給量の
補正量を算出し、上記のメッキ通電量から算出した供給
量に補正を加える合金電気メッキの浴濃度制御方法であ
る。
Furthermore, as mentioned above, by measuring the amount of plating current applied, the increase or decrease in the components in the plating bath can be calculated, the supply amount of the components in the bath can be calculated, and the concentration of the plating bath can be measured to determine the amount of components in the bath. In order to understand the actual concentration and the actual concentration change rate (calculate the actual concentration change rate using the least squares method from the past few points), decide whether to control mainly divalent iron ions or trivalent iron ions, On the other hand, a target density change rate for adjusting to a preset target density is calculated. Therefore, in order to correct the actual concentration change rate to the target concentration change rate, the correction amounts for the supply amount of divalent iron ions, divalent zinc ions, and sulfuric acid are calculated from the above plating energization amount. This is a bath concentration control method for alloy electroplating that corrects the supplied amount.

このような本発明のメッキ浴制御方法は、上記の鉄−亜
鉛系の他、クロム−亜鉛合金メッキにおいては、浴中に
クロムの3価とクロムの6価が共存しており、上記のご
とく浴濃度を制御することにより、確実に制御すること
できる。
Such a plating bath control method of the present invention is applicable to plating baths in which trivalent chromium and hexavalent chromium coexist in the bath in addition to the above-mentioned iron-zinc type plating and chromium-zinc alloy plating. Reliable control can be achieved by controlling the bath concentration.

また、ニッケルー亜鉛のようなそれぞれ車−のイオンし
か持たない合金電気メッキ浴においては同様に制御する
ことにより、浴濃度を確実に制御することができる。
In addition, in an alloy electroplating bath such as nickel-zinc, which has only the ion of each metal, the bath concentration can be reliably controlled by controlling in the same manner.

一般の連続操業電気メッキラインでは、製品として両面
メッキ材、片面メッキ材があり、両者を溶接した前後に
おいては、メッキに必要な通電量が著しく異なる。した
がって本制御のように、メッキ通電量にもとづく制御を
根本思想とする場合、計算のタイミングと、かかるメッ
キ通電量の著しい変化のタイミングがずれることは、浴
濃度管理の安定を乱す原因となるため、両面メッキ材と
片面メッキ材の溶接点についてはトラッキングを行い、
通電設備を通過するタイミングにて、強制的に計算を行
わせ、制御設定値を設定しなおすようにすることが好ま
しい。
In a general continuous electroplating line, there are double-sided plated materials and single-sided plated materials, and the amount of current required for plating differs significantly before and after welding the two. Therefore, when the basic concept is control based on the amount of plating current, as in this control, a lag between the timing of calculation and the timing of a significant change in the amount of plating current may cause instability in bath concentration control. , the welding points of double-sided plated material and single-sided plated material are tracked,
It is preferable to forcibly perform calculations and reset the control set values at the timing when passing through energized equipment.

[実 施 例] 次に本発明の実施例を挙げる。[Example] Next, examples of the present invention will be given.

実施例−1 第1図において、メッキライン1からメッキ液の1部を
取出し、メッキ液循環タンク2へ導き、Zn溶解槽3、
フリー酸槽4、水槽5、Fa溶解槽6からそれぞれタン
ク2へ添加し、メッキ濃度(組成)を制御し、メッキタ
ンク1へ戻す、このように連続して濃度を制御する。
Example-1 In FIG. 1, a part of the plating solution is taken out from the plating line 1, guided to the plating solution circulation tank 2, and then transferred to the Zn dissolution tank 3,
It is added to tank 2 from free acid tank 4, water tank 5, and Fa dissolving tank 6 to control the plating concentration (composition), and then returned to plating tank 1. In this way, the concentration is continuously controlled.

次にメッキ液の濃度制御について述べる。Next, we will discuss concentration control of the plating solution.

メッキ通電量を測定し、その結果を制御器7で次記の如
く、制御するように8槽3,4゜5.6へ指示する。
The amount of plating current is measured, and the controller 7 instructs the eight tanks 3, 4° 5.6 to control the results as described below.

ある時間Δtにおけるメッキ浴中Fe3°の濃度変化^
Fe”は、 V・ΔFe3+、(at I−a2fra−asfzn
−a4W) ・Δt   m  (イ)と表すことがで
きる。ここで V:総メッキ液量   an:係数 W:水投入速度    1;メッキ通電電流fre、f
zn : Fe+Znそれぞれの熔解速度である。Zn
”“とFe”+はメッキにより消費されるので、fFs
+f2nはメッキ通電電流にほぼ比例した制御を行えば
よい。よって書きなおせば、V−ΔFe”−(alI−
82grj−asgznI−adt) ’Δtこのよう
にして、残る水投入の項についても電流に比例した制御
として設定すればよい。
Concentration change of Fe3° in the plating bath over a certain time Δt ^
Fe” is V・ΔFe3+, (at I−a2fra−asfzn
-a4W) ・Δt m (a). Here, V: Total plating liquid volume an: Coefficient W: Water injection speed 1; Plating current fre, f
zn: Each melting rate of Fe+Zn. Zn
"" and Fe"+ are consumed by plating, so fFs
+f2n may be controlled to be approximately proportional to the plating current. Therefore, if rewritten, V-ΔFe"-(alI-
82grj-asgznI-adt) 'Δt In this way, the remaining water input term can also be set as control proportional to the current.

V−ΔFe”s (al−a2gra−a3gzn−a
4q)I”Δを実際の制御への使用は(イ)式でΔFe
”・Oとするため、 at I−azfra−asfzn−aJ−0とならね
ばならない、そしてそれぞれ、alI−82fra=o
  (Feの溶解のみでAFe””Oとする場合)・・
・(0) alI−a3fzn−0(Znの溶解のみでAFe”−
0とする場合)・・・(Δ) a、r−a、W−0(水の没入のみでAFe”−0とす
る場合)・・・(:) の解としてfra”b+T、fzn−b2I、W−bs
lを求め、(at−(cxb++βb2+7b、))I
−Oct十β十γ−1とし、操業上のコスト削減、メッ
キ効率、組成の安定などの品質を考慮したy、β、γ(
0++β+アリ)の分配を行うものである。
V-ΔFe”s (al-a2gra-a3gzn-a
4q) To use I”Δ for actual control, use equation (a) as ΔFe
”・O, it must be at I-azfra-asfzn-aJ-0, and respectively alI-82fra=o
(When AFe""O is obtained only by dissolving Fe)...
・(0) alI-a3fzn-0 (AFe''- only by dissolving Zn
0)...(Δ) a, r-a, W-0 (When AFe"-0 is set only by immersion in water)...(:) As a solution, fra"b+T, fzn-b2I , W-bs
Find l, (at-(cxb++βb2+7b,))I
-Oct1β10γ-1, and y, β, γ(
0++β+ant).

実施例−2 第2図において、前記実施例−1と同様のメッキライン
で、メッキ液循環タンク2からメッキライン1へ濃度制
御後のメッキ液をオンライン分析計8で分析し、その結
果を制御器7へ導入し、次記のごとく制御する。
Example 2 In FIG. 2, in the same plating line as in Example 1, the plating solution after concentration control is transferred from the plating solution circulation tank 2 to the plating line 1, and then analyzed using an online analyzer 8, and the results are controlled. 7 and controlled as follows.

鉄−亜鉛合金メッキの浴では ・Zn、Feの溶解によるFe”の還元反応効率の変動 ・メッキ液循環フロー内でのエアレーションによるFe
’“の生成 ・制御計算タイミングと操業内容のずれなどが原因とな
り、ΔFg”≠Oの状況が生まれる。そこで次に示す濃
度推移の変化速度修正制御を行う。
In iron-zinc alloy plating baths: ・Changes in Fe reduction reaction efficiency due to dissolution of Zn and Fe ・Fe changes due to aeration in the plating solution circulation flow
A situation where ΔFg"≠O occurs due to a discrepancy between the generation/control calculation timing of "" and the operation details. Therefore, the following control for modifying the rate of change in density transition is performed.

■ Fe”中心制御とZn”、Fe”中心制御選択切替 Fe”の濃度管理が基本的には最も重要であるが、 F
e”が低いレベルに推移する場合はZn”、Fe”の調
整を行う余裕が生まれ、この調整を行うことにより、水
の投入を極力回避することが困難となる。本制御では、 Fa”の濃度レベルとFe”の濃度変化速度の場合分け により、Fe”中心制御と、Zn”、Fe”中心制御の
選択切替を行う。
■ Concentration management of Fe "center control and Zn" and Fe "center control selection switching Fe" is basically the most important, but F
When e" moves to a low level, there is a margin for adjusting Zn" and Fe", and by making this adjustment, it becomes difficult to avoid water input as much as possible. In this control, Depending on the concentration level and the rate of change in the concentration of Fe'', the selection is switched between Fe'' center control and Zn'' and Fe'' center control.

■ 目標濃度と理想濃度変化速度の決定pe2+483
+402+、フリー酸それぞれに目標濃度を持たせ、分
析値をもとにその時の理想濃度変化速度IOoを計算す
る。
■ Determination of target concentration and ideal concentration change rate pe2+483
+402+ and free acid each have a target concentration, and the ideal concentration change rate IOo at that time is calculated based on the analysis value.

ここで、A;濃度上限値  B:目標濃度C:濃度下限
値  D:分析値 h;Aにおける理想濃度変化速度 llIC:Cにおける理想濃度変化速度m A + m
 Cは整流器容器、イオン供給能力及び循環液量等の設
備仕様上のMAX、、MIN、を求めて設定すればよい
。目標濃度と分析値の差が大きい場合には大きい理想濃
度変化速度となり、目標濃度と分析値の差が小さい場合
には、小さい理想濃度変化速度となる。
Here, A: upper limit of concentration B: target concentration C: lower limit of concentration D: analysis value h: ideal concentration change rate at A l IC: ideal concentration change rate at C m A + m
C can be set by determining the MAX, MIN based on equipment specifications such as the rectifier container, ion supply capacity, and circulating fluid volume. When the difference between the target concentration and the analysis value is large, the ideal concentration change rate is high, and when the difference between the target concentration and the analysis value is small, the ideal concentration change rate is low.

・Fe’°中心制御 Fe”の濃度をFe3+の理想濃度変化速度で目標濃度
に近付けるためZn 、 Feの溶解量に補正を加える
・In order to bring the concentration of Fe'° center control Fe' closer to the target concentration at the ideal concentration change rate of Fe3+, the amount of dissolved Zn and Fe is corrected.

ここで、m : Fa”の実績濃度変化速度ハ: Fe
’+の理想濃度変化速度 V:総メッキ液量 a、b :定数 α、βはFe”の還元へのZn、Feの寄与率分配を決
定する係数であり、濃度上限値までの余裕が大きい方に
重みを置くようにする。
Here, m: Actual concentration change rate of "Fa": Fe
Ideal concentration change rate V: Total plating liquid volume a, b: Constants α and β are coefficients that determine the contribution rate distribution of Zn and Fe to the reduction of Fe, and there is a large margin up to the upper limit of the concentration. Try to put more weight on that side.

J、には設備上の仕様等でZn、Faの溶解によるFe
3+の還元反応効率が異なるため、規格化するための係
数であり、実際にFe”Igを還元するのにZn、Fe
それぞれ何gを溶解せねばならないかを考慮して決定す
る。なおここで、制御ゲインα、βは上記のように分数
式関数により求めてもよいが、 Zn’ゝ、Fe”の濃
度を前件部とし、■、βを後件部とするファジー論理に
より伽、βを決定することが可能である。
In J, due to equipment specifications etc., Fe is added by dissolving Zn and Fa.
This is a standardization coefficient because the reduction reaction efficiency of 3+ is different, and it is necessary to use Zn, Fe
Determine by considering how many grams of each must be dissolved. Here, the control gains α and β may be obtained using fractional functions as described above, but they can also be obtained using fuzzy logic with the concentrations of Zn'ゝ, Fe'' as the antecedent part and ■ and β as the consequent part. It is possible to determine β.

−Zn”、Fe’+中心制御 Fe’+中心制御と同様の制御を7n”、Fe2″″そ
れぞれ独自に行う。
−Zn'', Fe'+center control The same control as Fe'+center control is performed independently for 7n'' and Fe2''''.

Zn溶解量補正量= a (m−mo) Vここで、m
:Zn’+の実績濃度変化速度mo : Zn”の理想
濃度変化速度 V:総メッキ液量 a:定数 Fe溶解量補正量= b (m−mo) Vここで、m
:Fe2″″の実績濃度変化速度ff1o : Fe”
の理想濃度変化速度V:総メッキ液量 b=定数 である。またFe”中心制御、Zn”、Fe2“中心制
御についてFa3°、Zn”、Fe2+の濃度を前件部
、Zn、Feの溶解量補正量を後件部とするファジー論
理により、直接Zn 、 Feの溶解量補正量を求める
ことも可能である。
Zn dissolution amount correction amount = a (m-mo) V where, m
: Actual concentration change rate mo of Zn'+ : Ideal concentration change rate of Zn'' V : Total plating liquid volume a : Constant Fe dissolution amount correction amount = b (m-mo) V where, m
: Actual concentration change rate of Fe2″″ff1o : Fe”
Ideal concentration change rate V: total plating liquid volume b=constant. In addition, regarding Fe" center control, Zn", and Fe2 "center control, we can directly calculate Zn, Fe using fuzzy logic with the concentration of Fa3°, Zn", and Fe2+ as the antecedent part, and the correction amount of dissolved amount of Zn and Fe as the consequent part. It is also possible to determine the amount of dissolution amount correction.

このようにして、制御選択した後、各種3゜4.5.8
に指示するものである。
In this way, after selecting the control, various 3゜4.5.8
This is to give instructions.

実施例−3 第3図において、前記実施例−2と同様のメッキライン
で、メッキライン1から制御器7ヘメッキ通電量を導き
、二方、オンライン分析計8からメッキ液循環タンク2
からライン1へ戻すメッキ液の分析結果を導き、次記の
ごとく制御する。
Example 3 In FIG. 3, in the same plating line as in Example 2, the amount of plating current is led from the plating line 1 to the controller 7, and on the other hand, from the online analyzer 8 to the plating solution circulation tank 2.
The results of analysis of the plating solution returned to line 1 are derived and controlled as follows.

ある時間Δtにおけるメッキ浴中Fe’+の濃度変化Δ
Fe’+は、 V・AFe”g (at I−a2frs−asfzn
−aJ) ・Δ1−(イ)と表すことができる。ここで V:総メッキ液量   an:係数 W:水投入速度    ■:メッキ通電電流frs、f
zn : Fe、Znそれぞれの溶解速度である。Zn
”とFe”“はメッキにより消費されるので、fl’l
l+f2nはメッキ通電電流にほぼ比例した制御を行え
ばよい。よって書きなおせば、V・AFe”−(at 
I−a2grsI−aagznl−a4W) ・+1こ
のようにして、残る水投入の項についても電流に比例し
た制御として設定すればよい。
Concentration change Δ of Fe'+ in the plating bath over a certain time Δt
Fe'+ is V・AFe"g (at I-a2frs-asfzn
-aJ) ・Δ1-(a) Here, V: Total plating liquid volume an: Coefficient W: Water injection speed ■: Plating current frs, f
zn: Dissolution rate of each of Fe and Zn. Zn
” and Fe”” are consumed by plating, so fl'l
l+f2n may be controlled to be approximately proportional to the plating current. Therefore, if we rewrite it, V・AFe”−(at
I-a2grsI-aagznl-a4W) ・+1 In this way, the remaining water input term can also be set as control proportional to the current.

V−AFe”−(al−82gFll−83gZn−a
4Q) I”j実際の制御への使用は(イ)式でAFe
”=0とするため、 al 1−a2fy*−a3fzn−aJ−0とならね
ばならない。そしてそれぞれ、all−a2fp、−0
(Feの溶解のみでAFe”−0とする場合)・・・(
ロ) a、I−a3f、、−0(Znの溶解のみでAFe”−
0とする場合)・・・(八) alI−aJ−0(水の投入のみでAFe”−0とする
場合)・・・(:) の解として fra−btI、fzn”b21.W−b
slを求め、(a 1− (ci:b I*βb2+γ
bs)) I−06t+β+γ−1とし、操業上のコス
ト削減、メッキ効率、組成の安定などの品質を考慮した
叱β、γ(at十β÷γ−1)の分配を行う。
V-AFe''-(al-82gFll-83gZn-a
4Q) I”j For actual control use, AFe is used in formula (A).
”=0, it must be al 1-a2fy*-a3fzn-aJ-0, and all-a2fp, -0, respectively.
(When AFe”-0 is obtained only by dissolving Fe)...(
b) a, I-a3f, -0 (AFe”- only by dissolving Zn
0) ... (8) alI-aJ-0 (When AFe"-0 is obtained only by adding water) ... (:) As a solution, fra-btI, fzn"b21. W-b
Find sl, (a 1- (ci:b I*βb2+γ
bs)) I-06t + β + γ-1, and distribute β and γ (at 1 β ÷ γ-1) in consideration of quality such as operational cost reduction, plating efficiency, and stability of composition.

次に、メッキ洛中のFe’+の濃度を測定し、過去数点
より、最小2乗近似により、Fe”の濃度変化速度を算
出し、Fe”の濃度レベルとFe”の濃度変化速度の場
合分けにより、Fe’!中心制御とZn”、Fe’+中
心制御のどちらかを行うか決定する。
Next, the concentration of Fe'+ in the plating is measured, and the rate of change in concentration of Fe'' is calculated from the past several points by least square approximation. Depending on the division, it is determined whether to perform Fe'!center control, Zn'', or Fe'+center control.

モしてFe”中心制御とZn”、Fe”中心制御の内容
であるが、Fe”、Fe”、Zn”、フリー酸それぞれ
に目標濃度を持たせ、分析値をもとにその時の理想濃度
変化速度mDを計算する。
Regarding the contents of Fe"center control and Zn", Fe"center control, each of Fe", Fe", Zn", and free acid has a target concentration, and the ideal concentration at that time is determined based on the analysis value. Calculate the rate of change mD.

ここで、^:濃度上限値  B:目標濃度C:濃度下限
値  D=分析値 I^:、Aにおける理想濃度変化速度 l!Ic:Cにおける理想濃度変化速度10A+InC
は整流器容器、イオン供給能力及び循環液量等の設備仕
様上のMAX、、MIN、を求めて設定すればよい。目
標濃度と分析値の差が大きい場合には大きい理想濃度変
化速度となり、目標濃度と分析値の差が小さい場合には
、小さい理想濃度変化速度となる。
Here, ^: Concentration upper limit value B: Target concentration C: Concentration lower limit value D = Analysis value I^:, Ideal concentration change rate l at A! Ic: Ideal concentration change rate at C 10A+InC
can be set by determining the MAX, MIN based on equipment specifications such as the rectifier container, ion supply capacity, and circulating fluid volume. When the difference between the target concentration and the analysis value is large, the ideal concentration change rate is high, and when the difference between the target concentration and the analysis value is small, the ideal concentration change rate is low.

・Fe’+中心制御 Fe””の濃度をFe”の理想濃度変化速度で目標濃度
に近付けるためZn、Feの溶解量に補正を加える。
・In order to bring the concentration of Fe'+central control Fe''' closer to the target concentration at the ideal concentration change rate of Fe', the dissolved amounts of Zn and Fe are corrected.

ここで、m:Fe”の実績濃度変化速度ff1O: F
e”の理想濃度変化速度V:総メッキ液量 a、b :定数 伽、βはFe”の還元へのZn、Feの寄与率分配を決
定する係数であり、濃度上限値までの余裕が大きい方に
重みを置くようにする。
Here, m: Fe'' actual concentration change rate ff1O: F
Ideal concentration change rate of e'' V: total plating liquid volume a, b: constant 佽, β is a coefficient that determines the contribution rate distribution of Zn and Fe to the reduction of Fe'', and there is a large margin up to the concentration upper limit. Try to put more weight on that side.

j、には設備上の仕様等で2n、Feの溶解によるFe
”の還元反応効率が異なるため、規格化するための係数
であり、実際にFe”1 gを還元するのにZn 、 
Feそれぞれ何gを溶解せねばならないかを考慮して決
定する。
j, due to equipment specifications etc. 2n, Fe due to dissolution of Fe
This is a standardization coefficient because the reduction reaction efficiency of "Fe" is different, and in reality it takes Zn,
The amount is determined by considering how many grams of Fe each must be dissolved.

= Zn”、Fe”中心制御 Fe’+中心制御と同様の制御をZn”、Fe2°それ
ぞれ独自に行う。
=Zn'', Fe'' center control The same control as Fe'+center control is performed independently for Zn'' and Fe2°.

Zn溶解量補正量= a (m−mI)) Vここで、
ts:Zn2°の実績濃度変化速度mo: Zn’+の
理想濃度変化速度 V二総メッキ液量 a:定数 Fe溶解量補正量= b (m−m、) Vここで、m
:Fe”の実績濃度変化速度lHo : Fe”の理想
濃度変化速度V:総メッキ液量 b:定数 以上の計算を行い、それぞれの溶解量、投入量をメッキ
通電量から算出した値と濃度変化速度修正から計算した
補正値の和として求め、各種3,4,5.6に指示する
魁のである。
Zn dissolution amount correction amount = a (m-mI)) V where,
ts: Actual concentration change rate of Zn2° mo: Ideal concentration change rate of Zn'+ V2 Total plating liquid volume a: Constant Fe dissolution amount correction amount = b (m-m,) V where, m
: Actual rate of change in concentration of "Fe" lHo : Ideal rate of change in concentration of "Fe" V: Total plating liquid volume b: Perform calculations above a constant, and calculate each dissolution amount and input amount from the plating current amount and concentration change It is calculated as the sum of the correction values calculated from the speed correction and is given to each type 3, 4, 5, and 6.

[発明の効果] かくすることにより、メッキ液濃度が確実に制御でき、
メッキ付着量が均一になり、品質を向上させることがで
きる。
[Effect of the invention] By doing so, the plating solution concentration can be reliably controlled,
The amount of plating deposited becomes uniform and quality can be improved.

又メッキ液への水添加による制御が少なくなり、それだ
け廃液処理負荷を軽減させることができ、コストを低下
させることができる等の優れた効果が得られる。
In addition, the control required by adding water to the plating solution is reduced, and the waste solution treatment load can be reduced accordingly, resulting in excellent effects such as cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は、本発明の実施例を示す説
明図である。 1・・・メッキライン  2・・・メッキ液循環タンク
3・・・Zn溶解槽    4・・・フリー酸槽5・・
・水槽      6・・・Fe溶解槽7・・・制御器
     8・・・オンライン分析計他4名 第 図 第 2図 1:メッキライン 3:Zn溶解槽 5:水槽 7:制御器 2:メッキ液循環タンク 4:フリー酸槽 6:Fe溶解槽 l:メッキライン 3:Zn溶解槽 5:水槽 7:制御器 2・メッキ液循環タンク 4:フリー酸槽 6:Fe溶解槽 8:オンライン分析計
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams showing embodiments of the present invention. 1... Plating line 2... Plating liquid circulation tank 3... Zn dissolution tank 4... Free acid tank 5...
・Water tank 6... Fe dissolution tank 7... Controller 8... Online analyzer and 4 others Figure 2 Figure 1: Plating line 3: Zn dissolution tank 5: Water tank 7: Controller 2: Plating solution Circulation tank 4: Free acid tank 6: Fe dissolution tank 1: Plating line 3: Zn dissolution tank 5: Water tank 7: Controller 2/Plating solution circulation tank 4: Free acid tank 6: Fe dissolution tank 8: Online analyzer

Claims (1)

【特許請求の範囲】 1 メッキ通電量を測定し、該測定値に基き、メッキ浴
中の金属イオン消費量を算出し、 メッキ浴中の金属イオン、フリー酸、水の 1種又は2種以上を調整することを特徴とする、合金電
気メッキの浴濃度制御方法。 2 メッキ浴濃度を測定して、実績濃度及び実績濃度変
化速度を把持し、一方、予め設定した目標濃度に調整す
るための目標濃度変化速度を算出し、実績濃度変化速度
と目標濃度変化速度に基き、メッキ浴中の金属イオン及 び/又はフリー酸を調整することを特徴とする合金電気
メッキの浴濃度制御方法。 3 メッキ通電量の測定値に基き、メッキ浴濃度を制御
することを特徴とする、請求項2に記載の合金電気メッ
キの浴濃度制御方法。
[Claims] 1. Measure the amount of plating current, calculate the amount of metal ions consumed in the plating bath based on the measured value, and calculate one or more of metal ions, free acid, and water in the plating bath. A method for controlling the bath concentration of alloy electroplating, the method comprising adjusting the bath concentration. 2 Measure the plating bath concentration to understand the actual concentration and actual concentration change rate, and calculate the target concentration change rate for adjusting to the preset target concentration, and compare the actual concentration change rate and target concentration change rate. 1. A method for controlling bath concentration in alloy electroplating, which comprises adjusting metal ions and/or free acids in a plating bath. 3. The bath concentration control method for alloy electroplating according to claim 2, characterized in that the plating bath concentration is controlled based on the measured value of the amount of plating current applied.
JP4007189A 1989-02-20 1989-02-20 Method for controlling concentration of electroplating bath of alloy Pending JPH02217499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4007189A JPH02217499A (en) 1989-02-20 1989-02-20 Method for controlling concentration of electroplating bath of alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4007189A JPH02217499A (en) 1989-02-20 1989-02-20 Method for controlling concentration of electroplating bath of alloy

Publications (1)

Publication Number Publication Date
JPH02217499A true JPH02217499A (en) 1990-08-30

Family

ID=12570699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4007189A Pending JPH02217499A (en) 1989-02-20 1989-02-20 Method for controlling concentration of electroplating bath of alloy

Country Status (1)

Country Link
JP (1) JPH02217499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787835A1 (en) * 1996-01-31 1997-08-06 Kawasaki Steel Corporation Method of controlling component concentration of plating solution in continuous elektroplating
JP2009249707A (en) * 2008-04-09 2009-10-29 Shigeo Hoshino Trivalent chromium-plating liquid management device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787835A1 (en) * 1996-01-31 1997-08-06 Kawasaki Steel Corporation Method of controlling component concentration of plating solution in continuous elektroplating
US5858196A (en) * 1996-01-31 1999-01-12 Kawasaki Steel Corporation Method of controlling component concentration of plating solution in continuous electroplating
JP2009249707A (en) * 2008-04-09 2009-10-29 Shigeo Hoshino Trivalent chromium-plating liquid management device

Similar Documents

Publication Publication Date Title
US5858196A (en) Method of controlling component concentration of plating solution in continuous electroplating
JPS61199069A (en) Method for automatically controlling plating solution
GB2076855A (en) Process for the electrodeposition of copper coatings
JPH02217499A (en) Method for controlling concentration of electroplating bath of alloy
San Martı́n et al. Optimization of influent factors on nucleation process of copper in solutions containing thiourea using an experimental design
JPS6338436B2 (en)
JPH0331800B2 (en)
JPH01119700A (en) Method for administrating concentration of bright plating agent in plating bath for continuous electroplating line
JPS6141799A (en) Method for supplying tin ion to electrolytic tinning bath
KR100527332B1 (en) Method and device for coating a metal strip
JP3551627B2 (en) Plating solution component concentration control method
JP3978129B2 (en) Apparatus and method for controlling concentration of processing solution for forming phosphate film
KR20000000227U (en) Sulfuric acid concentration automatic control device of electrolytic chromium solution
Kruglikov et al. The relationship between inhibition of electrodeposition and incorporation of the inhibitor into the deposit
JP2888035B2 (en) Control method of metal ion concentration in zinc-based alloy electroplating solution
JPS59116400A (en) Automatic controlling method of concentration in plating bath
KR100423435B1 (en) Continuous Plating Method of Zn-Cr-Fe Alloy on Steel Strip
JPS58144495A (en) Electroplating method
JPH0598466A (en) Nickel-chromium plating method and apparatus
JPS583999A (en) Electric alloy plating method
JP3239828B2 (en) Method for electrolytic coloring of aluminum or aluminum alloy
JPH08100297A (en) Method for controlling plating brightness in continuous copper electroplating
JPH0456796A (en) Fe-based electroplating device and its ph controller
JPS583998A (en) Electric alloy plating method
JPH02310397A (en) Apparatus for reducing loss of lead and lead alloy electrode in chromium electroplating bath