JPS583998A - Electric alloy plating method - Google Patents
Electric alloy plating methodInfo
- Publication number
- JPS583998A JPS583998A JP10264881A JP10264881A JPS583998A JP S583998 A JPS583998 A JP S583998A JP 10264881 A JP10264881 A JP 10264881A JP 10264881 A JP10264881 A JP 10264881A JP S583998 A JPS583998 A JP S583998A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- ratio
- plating solution
- electrolytic current
- fluorescent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は不溶性陽極を用いる電気合金メッキ方法にお
けるメッキ液濃度の管理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the concentration of a plating solution in an electroalloy plating method using an insoluble anode.
最近メッキ製品の分野においては、通常のん、0等の単
一金属のメッキでは応じられない高性能のメッキの要求
が高まり、これに対処するものとして、例えばNi−Z
nメッキのような電気合金メッキが工業的規模で行われ
るようになった。Recently, in the field of plated products, there has been an increasing demand for high-performance plating that cannot be met with normal single metal plating such as Ni-Z.
Electroalloy plating, such as n-plating, has come to be carried out on an industrial scale.
上記電気合金メッキにおいては、製品の品質を向上させ
る上で、メッキ液を構成する各金属イオン濃度の比率(
以下メッキ液の濃度バランスという)を一定に維持する
ことが極めて重要であり、メッキ液の濃度バランスの管
理の行い易い、不溶性陽極を用いて系外から消費金属イ
オンを補充する方法が一般に行われている。In the electroalloy plating mentioned above, in order to improve the quality of the product, the ratio of the concentration of each metal ion constituting the plating solution (
It is extremely important to maintain a constant concentration balance of the plating solution (hereinafter referred to as the concentration balance of the plating solution), and a method of replenishing consumed metal ions from outside the system using an insoluble anode is generally used, which makes it easy to manage the concentration balance of the plating solution. ing.
この場合、メッキ液の消費金属量を測定する方法に次の
2通りがある。即ち、メッキに費いやす電解電流値を利
用して消費金属量を求める方法とメッキ液組成を直接測
定して消費金属量を求める方法とである。前者の電解電
流値による方法は、電気メッキにおいては与えられた電
流量に相当する金属量がメッキされるので電解電流値を
求めれば消費金属量が正確に算出されるという理論に基
くものである。しかし合金メッキにおいては、電解電流
は合金メッキ被膜中の構成比に応じて消費されるため、
被膜構成が変化するとメッキ液の濃度バランスがくずれ
てくる。またメッキ液のpHが変動すると電流効率が変
動し電解電流値による消費金属量の算出に誤差が生じる
。In this case, there are two methods for measuring the amount of metal consumed in the plating solution. That is, there are two methods: one is to determine the amount of metal consumed by using the electrolytic current value used for plating, and the other is to determine the amount of metal consumed by directly measuring the composition of the plating solution. The former method using the electrolytic current value is based on the theory that in electroplating, the amount of metal that is equivalent to the amount of current applied is plated, so if the electrolytic current value is determined, the amount of metal consumed can be accurately calculated. . However, in alloy plating, the electrolytic current is consumed depending on the composition ratio in the alloy plating film.
If the coating composition changes, the concentration balance of the plating solution will be disrupted. Further, when the pH of the plating solution changes, the current efficiency changes, causing an error in calculating the amount of metal consumed based on the electrolytic current value.
またメッキ液組成の直接測定による方法は、従来原子吸
光法等のバッチ法による液分析で測定が行われているが
、この方法では測定結果が得られるまでに長時間を要し
、液組成の変動に対しての補充のタイミングが遅れる等
の欠点があった。なお上記欠点を解消するため螢光X線
分析による液測定の方法も試みられているが、螢光X線
分析の測定精度に問題が残っている(±12/e程度の
測定誤差が生じる)ため、高品質の合金メッキを得るた
めには難点がある。In addition, methods for directly measuring the plating solution composition have conventionally been carried out by liquid analysis using batch methods such as atomic absorption spectrometry, but this method requires a long time to obtain measurement results, and There were drawbacks such as a delay in the timing of replenishment in response to fluctuations. In order to overcome the above-mentioned drawbacks, liquid measurement methods using fluorescent X-ray analysis have been attempted, but problems remain with the measurement accuracy of fluorescent X-ray analysis (a measurement error of about ±12/e occurs). Therefore, there are difficulties in obtaining high quality alloy plating.
以」二述べたように、電気合匁メッキにおいてはメッキ
液中に複数の金属イオンが存在するため、これらの濃度
バランスを正確に連続して把握することは容易ではなく
、このため高品質の合波メッキを連続的に安定して得る
ことは困唯とされてきた。As mentioned above, in electroplating, multiple metal ions are present in the plating solution, so it is difficult to accurately and continuously grasp the concentration balance of these metal ions. It has been considered difficult to continuously and stably obtain composite plating.
本発明は」1記困難を一挙に解消しで、高品質の合金メ
ッキを長時間連続して得られる電気合金メッキ方法を提
供するものである。The present invention solves the above-mentioned difficulties at once and provides an electro-alloy plating method that can continuously obtain high-quality alloy plating for a long period of time.
即ち本発明方法は、不溶性陽極を用いる電気合金メッキ
において、メッキに費した電解電流値に基いてメッキ液
の消費金属量を補充するに際し、螢光X線分析にてメッ
キ皮膜またはメッキ液組成を測定することにより電流効
率及びメッキ液を構成する各金属酸分別の電解電流按分
比を求め、該求めた値とこの測定時点においてメッキに
費した電解電流値とからメッキ液の各消費金属量を算定
し消費金属をメッキ液中へ補充するようにした点を特徴
とする。That is, in electroalloy plating using an insoluble anode, the method of the present invention determines the plating film or plating solution composition using fluorescent X-ray analysis when replenishing the amount of metal consumed in the plating solution based on the electrolytic current value used for plating. By measuring the current efficiency and the electrolytic current proportion ratio for each metal acid fraction that makes up the plating solution, calculate the amount of each metal consumed in the plating solution from the obtained value and the electrolytic current value used for plating at the time of this measurement. The feature is that the consumed metal is calculated and replenished into the plating solution.
また本発明方法は、メッキ液の消費金属量を正確に、か
つ連続して算定できる電解電流による方法を、螢光X線
分析に合金メッキ液濃度を測定する手段を取入れだこと
により合金メッキに対して可能ならしめたものである。In addition, the method of the present invention incorporates a method using electrolytic current that can accurately and continuously calculate the amount of metal consumed in the plating solution, and a method for measuring the concentration of the alloy plating solution in fluorescent X-ray analysis. This made it possible.
以下図面に基いて本発明方法を詳細に説明する。The method of the present invention will be explained in detail below based on the drawings.
第1図は本発明第1項記載の方法を実施するメツキライ
ンの一例の部分模式図で、例えばAlH3種の金属から
なる電気合金メッキを施す場合を示す。FIG. 1 is a partial schematic diagram of an example of a plating line for carrying out the method described in item 1 of the present invention, and shows a case in which, for example, electroalloy plating consisting of three types of metals, AlH, is applied.
図中(11X12)は貯槽で、メッキ液を構成するAあ
るいはB金属イオンを補充するために、それぞれA金属
塩、B金属塩を種別に貯蔵する。(21822)はその
定量切り出し装置を示し、前記A1B各金属塩はそれぞ
れ貯+% (11812)から定量宛切り出されてメッ
キ槽(3)のメッキ液(4)中に投入されて、液中に溶
けてA金属イオン、B金属イオンとなる。In the figure (11×12) is a storage tank, which stores A metal salt and B metal salt, respectively, in order to replenish the A or B metal ions constituting the plating solution. (21822) indicates the quantitative cut-out device, and each metal salt of A1B is cut out in a fixed amount from the storage +% (11812) and put into the plating solution (4) of the plating tank (3). It melts and becomes A metal ion and B metal ion.
メッキ液(4)としては、常法どおりメッキしようとす
る合金を組成する金属(以下組成金属、ここではへ金属
、B金属をいう)を、合金の組成比率に応じて適当に溶
は込ませ、必要によりpH調整等を行ったものが用いら
れる。As the plating solution (4), metals that compose the alloy to be plated (hereinafter referred to as compositional metals, hereinafter referred to as metals and B metals) are melted in appropriately according to the composition ratio of the alloy. , after adjusting the pH if necessary, is used.
(5)はそれぞれ不溶性陽極で、メッキ液中に浸漬して
上下に2枚宛の一対が水平方向に略々等間隔に配置され
る。(6)はメッキ液(4)中を陰極を形成しながら前
記」−下の各陽極(5)(5)間を矢印aの方向に移動
するストリップである。(5) are insoluble anodes, which are immersed in a plating solution and arranged in pairs, one on top of the other, at approximately equal intervals in the horizontal direction. (6) is a strip that moves in the direction of arrow a between the anodes (5) and (5) below while forming a cathode in the plating solution (4).
(7)はメッキ液皮膜組成を測定する螢光X線分析装置
で、合金メッキされてメッキ槽(3)を出た直後5−
のストリップ(6)のメッキ皮膜組成を連続して測定す
る。この場合、メッキ皮膜組成のA、B金属のバランス
はメッキ液のA、B各金属イオンの濃度バランスと略同
−匝を示す。(8)は演算装置で、前記螢光X線分析に
より測定されたメッキ液組成に基いて電解電流の液構成
金属イオン別の按分比を求めるとともに、前記液組成に
基いて電流効率をも求める。(7) is a fluorescent X-ray analyzer for measuring the plating solution film composition, and it continuously measures the plating film composition of the strip (6) at 5- immediately after being alloy-plated and leaving the plating tank (3). In this case, the balance of the A and B metals in the plating film composition is approximately the same as the concentration balance of the A and B metal ions in the plating solution. (8) is a calculation device that calculates the proportional distribution ratio of the electrolytic current for each liquid constituent metal ion based on the plating liquid composition measured by the fluorescent X-ray analysis, and also calculates the current efficiency based on the liquid composition. .
(9)は電解電流値を測定する電流計である。00は計
算装置であり、演算装置(8)で求められた電解電流の
按分比及び電流効率と電流計(9)で測定された電解電
流値とからメッキ液の各消費金属量を計算すると共に、
それぞれ各貯槽(11X12)に対して各A、 B金属
塩の切り出し量の指示を与える。(9) is an ammeter that measures the electrolytic current value. 00 is a calculation device that calculates the amount of each metal consumed in the plating solution from the proportional division ratio and current efficiency of the electrolytic current determined by the calculation device (8) and the electrolytic current value measured by the ammeter (9). ,
Give instructions on the amount of each A and B metal salt to be cut out for each storage tank (11 x 12).
上記メツキラインにおけるメッキ液中のA、 B合金属
イオン濃度の管理は以下のようにして行われる。すなわ
ち、メッキ合金の組成金属A、Bの各含有率がA20%
、B2O条とする場合を例にとると、A、 B各金属イ
オンの含有率の比が」1記A:B=14となるように調
整されたメッキ液(4)を6−
用い、メッキ槽(3)中にストリップ(6)を陰極とし
て陽極(5)(5)間を移動させ、メッキの合金組成が
A:B−1:4となるよう合金メッキさせる。しかし実
際には、A、B各金属イオンが金属の種類毎に異なる析
出化のポテンシャルを有しているため、必ずしもA:B
=1:4の比率では析出されない。また、ストリップ(
6)によりメッキ槽(3)外に持ち出される金属イオン
もあるので、メッキの進行に伴ってメッキ液の濃度バラ
ンスはくずれてくる。そこで螢光X線分析にてメッキ皮
膜組成を連続的に測定し、該測定の結果液の濃度バラン
スに変化が生じたときには、直ちに演算装置(8)に指
示して前記測定結果に基いて電解電流の購成蛍属イオン
別の按分比を求めるとともに電流効率をも求めて計算装
置(10)に入力する。計算装置θOにおいては、前記
電流按分比及び電流効率と前記メッキ皮膜組成の測定時
点において電流計(9)で測定された電解電流値とから
A、B各金属イオンの消費量を計算し、貯槽(11)(
12)にそれぞれ指示して所要の補充を行わせる。The concentration of A and B alloy metal ions in the plating solution in the plating line is controlled as follows. That is, the content of each of the compositional metals A and B in the plating alloy is A20%.
, B2O strip, plating solution (4) adjusted so that the content ratio of each metal ion of A and B is 14 A:B = 14 is used for plating. The strip (6) is used as a cathode in a tank (3) and moved between anodes (5) and (5) to perform alloy plating so that the alloy composition of the plating becomes A:B-1:4. However, in reality, each metal ion, A and B, has a different precipitation potential depending on the type of metal, so it is not always the case that A:B
No precipitation occurs at a ratio of =1:4. Also, the strip (
Since some metal ions are carried out of the plating bath (3) by step 6), the concentration balance of the plating solution is disrupted as plating progresses. Therefore, the composition of the plating film is continuously measured using fluorescent X-ray analysis, and if there is a change in the concentration balance of the liquid as a result of the measurement, an instruction is immediately given to the computing device (8) to conduct electrolysis based on the measurement results. The proportional distribution ratio of the current for each fluorescent ion is determined, and the current efficiency is also determined and input into the calculation device (10). The calculation device θO calculates the consumption amount of each metal ion A and B from the current proportion ratio and current efficiency and the electrolytic current value measured by the ammeter (9) at the time of measurement of the plating film composition, and calculates the consumption amount of each metal ion A and B. (11)(
12) respectively to perform the necessary replenishment.
従ってメッキ中メッキ液のA1B各金属イオンの濃度は
略々一定に維持されるように管理されて、ストリップ(
6)は長時間に亘って連続的に高品質に合金メッキされ
る。Therefore, the concentration of each A1B metal ion in the plating solution during plating is controlled to be maintained approximately constant, and the strip (
6) is continuously plated with high quality alloy over a long period of time.
第2図は、本発明のメッキ液組成の測定による方法の実
施の一例を示した模式図である。図において(11)は
第1図と同様のメッキ槽においてメッキ液組成を測定す
る螢光X線分析装置であり、メッキ液(4)はメッキ槽
(3)から取り出されて前記装置0])で液組成及び濃
度バランスが測定された後、循環ポンプθつにより槽(
3)に戻され、メッキ槽(3)と螢光XM分析装置0]
)を循環するよう構成されている。FIG. 2 is a schematic diagram showing an example of implementing the method of measuring the composition of a plating solution according to the present invention. In the figure, (11) is a fluorescent X-ray analyzer that measures the plating solution composition in a plating bath similar to that in FIG. After measuring the liquid composition and concentration balance, the tank (
3), plating tank (3) and fluorescent XM analyzer 0]
) is configured to circulate.
上記の如くにしてメッキ液(4)を連続的に測定した結
果、液の濃度バランスに変動が生じたときには第1図で
説明したと同様の手順によって計算装置00において、
A、B各イオンの消費量を計算し、メッキ液への補充が
行われる。As a result of continuously measuring the plating solution (4) as described above, when a change occurs in the concentration balance of the solution, the calculation device 00 performs the same procedure as explained in FIG.
The consumed amounts of each of A and B ions are calculated, and the plating solution is replenished.
なお、螢光X線分析を本発明方法で用いる場合、1系統
のメツキラインに1台の螢光X線分析装置を備えれば十
分であり、設備費用が嵩むこともない。また螢光X線分
析はプロセスコンピュータを用いた自動補給装置に組み
込むことが容易であるから、メッキ液濃度管理の自動化
に適している。In addition, when fluorescent X-ray analysis is used in the method of the present invention, it is sufficient to have one fluorescent X-ray analyzer for one screening line, and the equipment cost does not increase. Further, since fluorescent X-ray analysis can be easily incorporated into an automatic replenishment device using a process computer, it is suitable for automating plating solution concentration management.
次ぎに実施例を掲げて本発明の詳細な説明する。Next, the present invention will be described in detail with reference to Examples.
第1図に示す鋼板メツキラインにおいて、巾1000m
m×厚さ0.8闘 のストリップにNi−Zn合金メッ
キを施しだ。なおメッキ中、メッキ皮膜のNi、Znn
金金属含有量を螢光X線分析装置(7)にて連続的に測
定し、メッキ液組成に変動が生じたときには演算装置(
8)において前記測定結果に基いてNis Zn各イオ
ン別の電解電流按分比及び電流効率を求め、求めた各値
と前記測定時点において電流計(9)で測定した電解電
流値とからNi1Zn各金属イオンの消費量を算定し、
貯槽(11’X12)に指示して所要のNi金属塩、ん
金属塩の補充を行わせた。In the steel plate plating line shown in Figure 1, the width is 1000 m.
Ni-Zn alloy plating is applied to a strip measuring 0.8 m x 0.8 m thick. During plating, Ni and Znn in the plating film
The gold metal content is continuously measured using a fluorescent X-ray analyzer (7), and when a change occurs in the plating solution composition, a calculation device
In 8), the electrolytic current proportional division ratio and current efficiency for each NisZn ion were determined based on the measurement results, and the electrolytic current value measured by the ammeter (9) at the time of the measurement was used to determine the electrolytic current proportion and current efficiency for each NiZn metal. Calculate the consumption of ions,
The storage tank (11' x 12) was instructed to be replenished with the required Ni metal salt and nickel metal salt.
メッキ条件は次の通りであった。The plating conditions were as follows.
■ メッキ液: ZnSO4・7FI20 90 f
/IJNiSO4・6I−I20 250 ?/l+p
H2,0
温度 60°C
■ メッキ電流密度 40 A/d m”9−
また比較例として螢光X線分析を行わないで電解電流値
のみで消費金属量を求める従来法によって上記と同様の
メッキ条件で上記同様のNi−Zn合金メッキを行った
。■ Plating solution: ZnSO4・7FI20 90 f
/IJNiSO4・6I-I20 250? /l+p
H2,0 Temperature 60°C ■ Plating current density 40 A/d m"9- Also, as a comparative example, the same plating as above was performed using the conventional method of determining the amount of metal consumed only from the electrolytic current value without performing fluorescent X-ray analysis. Ni-Zn alloy plating was performed under the same conditions as above.
第3図は上記2つの例についてメッキ液中の蛸”イオン
、Zn イオンの比率(バランス)を逐一測定した結
果を比較した図表である。図中、実線で示すPは比較例
のNi1Znバランスの特性曲線、破線で示すQは本発
明例のN1% Znバランスの特性曲線である。Fig. 3 is a chart comparing the results of measuring the ratio (balance) of octopus ions and Zn ions in the plating solution for the above two examples. In the figure, P indicated by a solid line indicates the Ni1Zn balance of the comparative example. The characteristic curve Q indicated by a broken line is the characteristic curve of the N1% Zn balance of the example of the present invention.
同図に見るように、比較例ではNi、 7nバランスが
変動の管理限界(+1、−1)をはるかに越えた組成を
示す場合が屡々あるのにひきかえ、本発明方法によるも
のはいづれもNi、 Znバランスが管理限界内の値を
示し、48時間経過後もメッキ開始時と略々同様に維持
されている。そして拳法による鋼板のメッキ皮膜は光沢
のある美麗な品質のもので、更にメッキ皮膜中のI’J
i、Znの各含有量を調査した結果メッキ液と略々同様
の比率が保たれ、何と部分も極めてバラツキの少ない均
一な組成であ10−
つた。As seen in the figure, the comparative examples often show compositions in which the Ni and 7n balances far exceed the fluctuation control limits (+1, -1); , Zn balance showed a value within the control limits, and was maintained almost the same as at the start of plating even after 48 hours. The plating film of the steel plate made by Kempo is of a beautiful and shiny quality, and the I'J in the plating film is of a beautiful quality.
As a result of investigating the respective contents of i and Zn, it was found that the ratios were approximately the same as those of the plating solution, and the composition was uniform throughout with very little variation.
また別途、メッキ液組成の螢光X線分析による本発明方
法第2項発明方法を前記と同様に実施したところ、メッ
キ液のNiz Znバランスは前記第1項の発明の実施
例の場合と同様に長時間に亘って管理限界内の略々一定
に維持された。Separately, when the method of the present invention using fluorescent X-ray analysis of the plating solution composition was carried out in the same manner as described above, the NizZn balance of the plating solution was the same as in the embodiment of the invention described in section 1 above. remained approximately constant within control limits over a long period of time.
以上説明した如く、本発明方法は電解電流呟に基いてメ
ッキ液中の消費金属量を算定する方法に、螢光X線分析
によるメッキ皮膜組成またはメッキ液組成の測定を併用
するという新規手段によって、合金メッキに対してメッ
キ液中の消費金属量を正確、かつ、連続的に算定し、補
充ができるようにしだので、メッキ液の濃度管理精度の
著るしい向上が達成され、高品質の電気合金メッキ製品
の工業的生産に大きな効果を発揮する。As explained above, the method of the present invention uses a new method of calculating the amount of metal consumed in the plating solution based on the electrolytic current in combination with the measurement of the plating film composition or plating solution composition by fluorescent X-ray analysis. For alloy plating, the amount of metal consumed in the plating solution can be accurately and continuously calculated and replenished, resulting in a significant improvement in the accuracy of concentration control of the plating solution, resulting in high quality. It has a great effect on the industrial production of electroalloy plated products.
第1図及び第2図は本発明方法を実施する鋼板の電気メ
ツキラインを示す部分模式図、第3図は本発明方法の実
施例と従来例におけるメッキ液中のN1 イオン、h
イオンの濃度バランスの変化を比較した図表である。
1112:貯槽、2+ 22:切り出し装置、3:メッ
キ槽、4:メッキ液、5:不溶性陽極、6:ストリップ
、7.11:螢光X線分析装置、8二演算装置、9:電
流計、10:計算装置、12:循還ポンプ182図
#13 図
自発手続補正書
1 事件の表示
昭和56年 特許願第102648号
2、発明の名称
電気合金メッキ方法
3、補止をする者
事件との関係 特許出願人
住所 大阪市東区北浜5丁目15番地
名 称(211)住友金属工業株式会社代表者 熊
谷 典 文
4代理人
5 補正命令の日付
6、補正の対象
明細書の発明の詳細な説明の欄
7、補正の内容
明細書の第6頁下から4行目〜第7頁9頁に、「メッキ
合金の組成金属A1Bの・・メッキ液の濃度バランスは
くずれてくる。」とあるを、下記の如くに補正する。Fig. 1 and Fig. 2 are partial schematic diagrams showing the electroplating line of a steel plate in which the method of the present invention is carried out, and Fig. 3 shows N1 ions in the plating solution in the embodiment of the method of the present invention and the conventional example.
It is a chart comparing changes in the concentration balance of ions. 1112: storage tank, 2+ 22: cutting device, 3: plating tank, 4: plating solution, 5: insoluble anode, 6: strip, 7.11: fluorescent X-ray analyzer, 82 calculation device, 9: ammeter, 10: Calculating device, 12: Circulation pump 182 diagram #13 Diagram voluntary procedure amendment 1 Indication of case 1982 Patent application No. 102648 2 Name of invention Electroalloy plating method 3 Compensation person case Related Patent Applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Industries Co., Ltd. Representative Kuma
Norifumi Tani 4 Agent 5 Date of amendment order 6, Detailed explanation of the invention column 7 of the specification subject to amendment, Line 4 from the bottom of page 6 to page 9 of page 7 of the specification of the contents of the amendment, The statement "The concentration balance of the plating solution will be disrupted for the composition metal A1B of the plating alloy" is corrected as follows.
Claims (1)
、メッキに費した電解電流値に基いてメッキ液の消費金
属量を補充するに際し、螢光X線分析にてメッキ皮膜組
成又はメッキ液組成を測定することにより、電流効率及
びメッキ液を構成する各金属酸分別の電解電流按分比を
求め、その求めた値とメッキに費した電解電流値とから
メッキ液の各消費金属量を算定し、メッキ液中へ補充す
ることを特徴とする電気合金メッキ方法。(1) In electroalloy plating using an insoluble anode, when replenishing the amount of metal consumed in the plating solution based on the electrolytic current value used for plating, the plating film composition or plating solution composition is measured by fluorescent X-ray analysis. By this, the current efficiency and the electrolytic current proportion ratio for each metal acid fraction constituting the plating solution are calculated, and the amount of each metal consumed in the plating solution is calculated from the obtained value and the electrolytic current value used for plating. An electro-alloy plating method characterized by replenishing the inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10264881A JPS583998A (en) | 1981-06-30 | 1981-06-30 | Electric alloy plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10264881A JPS583998A (en) | 1981-06-30 | 1981-06-30 | Electric alloy plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS583998A true JPS583998A (en) | 1983-01-10 |
JPS6116359B2 JPS6116359B2 (en) | 1986-04-30 |
Family
ID=14333055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10264881A Granted JPS583998A (en) | 1981-06-30 | 1981-06-30 | Electric alloy plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS583998A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021398A (en) * | 1983-07-12 | 1985-02-02 | Rihei Tomono | Method and apparatus for alloy plating |
CN1110585C (en) * | 1996-01-31 | 2003-06-04 | 川崎制铁株式会社 | Method for controlling concentration of electroplating bath components in continuous electroplating |
-
1981
- 1981-06-30 JP JP10264881A patent/JPS583998A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6021398A (en) * | 1983-07-12 | 1985-02-02 | Rihei Tomono | Method and apparatus for alloy plating |
JPS6224520B2 (en) * | 1983-07-12 | 1987-05-28 | Rihei Tomono | |
CN1110585C (en) * | 1996-01-31 | 2003-06-04 | 川崎制铁株式会社 | Method for controlling concentration of electroplating bath components in continuous electroplating |
Also Published As
Publication number | Publication date |
---|---|
JPS6116359B2 (en) | 1986-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5368715A (en) | Method and system for controlling plating bath parameters | |
Choo et al. | Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating | |
KR100290616B1 (en) | Method of controlling component concentration of plating solution in continuous electroplating | |
US4234396A (en) | Chromium plating | |
Brito et al. | The electrodeposition of Ni-Cu and Ni-Cu-P from aspartate-based baths | |
JPS583998A (en) | Electric alloy plating method | |
JPS60228693A (en) | Manufacture of steel plate plated with zn-ni alloy | |
Kublanovsky et al. | Mass transfer and mechanism of electrochemical reduction of copper (II) from aminoacetate electrolytes | |
US4443301A (en) | Controlling metal electro-deposition using electrolyte containing two polarizing agents | |
US4155817A (en) | Low free cyanide high purity silver electroplating bath and method | |
JPS583999A (en) | Electric alloy plating method | |
Luke | Nickel-phosphorus electrodeposits | |
US20180355505A1 (en) | Concentration indicator of metal component contained in plating solution, and plating method using the same | |
JPS6224520B2 (en) | ||
US5853556A (en) | Use of hydroxy carboxylic acids as ductilizers for electroplating nickel-tungsten alloys | |
CN113136615A (en) | Component control method and device for electro-deposition alloy film | |
JPH0331800B2 (en) | ||
JPS584000A (en) | Electric alloy plating method | |
Kovácsovics et al. | Reverse numerical simulation of kinetic parameters from acidic copper hull cell deposition | |
Yagi et al. | Alternating pulsed electrolysis for iron-chromium alloy coatings with continuous composition gradient | |
US2461350A (en) | Electrodeposition of leadantimony-tin alloys | |
SU922186A1 (en) | Electrolyte for depositing coatings from tin and cobalt alloy | |
Lai et al. | Electroforming of iron foil | |
JPH05320997A (en) | Method for controlling metal ion concentration in zinc based alloy electroplating solution | |
Lai et al. | Electroforming and mechanical properties of iron-nickel alloy foil |