JPS6224520B2 - - Google Patents

Info

Publication number
JPS6224520B2
JPS6224520B2 JP58127387A JP12738783A JPS6224520B2 JP S6224520 B2 JPS6224520 B2 JP S6224520B2 JP 58127387 A JP58127387 A JP 58127387A JP 12738783 A JP12738783 A JP 12738783A JP S6224520 B2 JPS6224520 B2 JP S6224520B2
Authority
JP
Japan
Prior art keywords
alloy plating
tank
alloy
metal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58127387A
Other languages
Japanese (ja)
Other versions
JPS6021398A (en
Inventor
Rihei Tomono
Takayuki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATOOSEN KK
Original Assignee
SATOOSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATOOSEN KK filed Critical SATOOSEN KK
Priority to JP12738783A priority Critical patent/JPS6021398A/en
Publication of JPS6021398A publication Critical patent/JPS6021398A/en
Publication of JPS6224520B2 publication Critical patent/JPS6224520B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、合金めつき方法及び該方法を実施す
る為の装置に関する。 2種以上の金属成分をイオンとして含有するめ
つき浴にめつき被膜を形成すべき物体を浸漬し、
電解めつき法により合金めつき層を形成させる方
法は、すでに広く実用化されている。例えばx及
びyなる2種の金属成分からなる合金めつきの場
合には、xイオン及びyイオンを含む電解質を主
剤とし、更に光沢剤、促進剤、抑制剤、錯化剤、
緩衝剤等の公知の添加剤を加えた合金めつき浴中
で、被めつき物体を陰極として電解を行ない、被
めつき物体上にx及びyからなる合金めつき層を
形成させている。この様な合金めつき層において
は、被めつき物体への密着性、めつき厚の均一性
等の一般的要件に加えて、xとyとからなる合金
組成の均質性が要求される。万一、異なる個所に
おいて合金組成が異なつたり、同一個所において
もめつきの深さによつて合金組成が異なる場合に
は、合金めつきに要求される機能若しくは性能が
充分に発揮されなくなる。周知の如く、所望のめ
つき層を形成する為には、めつき条件(PH、液
温、電流密度、撹拌の程度)、めつき液の物性
(表面張力、粘性)等を一定範囲に保持する必要
があるが、これ等の管理手法は、すでに確立され
ており、特に問題とすべき点は無い。従つて、合
金めつき浴において最も重要な事項は、めつき液
中の各金属のイオン濃度及びその比率をどの様に
して許容範囲に保持し、もつて均質な合金組成を
得るかという点に存する。しかるに、この各金属
のイオン濃度及び各イオンの比率を一定範囲に保
持することは、甚だ困難である。 例えば、合金めつき浴の分析を短い時間間隔で
行ない、金属イオンの減少に見合う量の金属を塩
の形態で補給する方法がある。しかしながら、こ
の方法には、分析に要する労力が多大である、め
つき操作中時々刻々減少する金属イオンを適切に
補給することは出来ない、金属塩に由来する陰イ
オンの蓄積(例えば、Ni源としてNiCl2・6H2Oを
使用する場合にはCl-,NiSO4を使用する場合に
は、SO−− )により液のPH、導電性等が大きく変
動し、めつき液の寿命を短くする等の欠点があ
る。 或いは、金属イオンの供給液として当該金属か
らなる陽極を使用する方法も知られている。例え
ば、Ni−Fe合金めつき層を形成させる場合、Ni
及びFeの表面積を一定の割合とした合せ材を陽
極として使用し、電解の進行に応じてNiイオン
及びFeイオンをめつき液中に溶出補給させる方
法も実用化されている。しかしながら、この方法
においても、NiイオンとFeイオンとの溶出割合
は、両金属の表面積の割合とは異なるのが通例で
あり、めつき液中の両金属イオンの濃度及び両金
属イオンの割合を随時分析測定し、不足する金属
イオンを金属塩の形態で補給している。従つて、
前記方法に比べれば軽減されたとはいえ、分析に
労力を要し、陰イオンが蓄積するという欠点は解
消されない。 更に、2種以上の金属を夫々独立の陽電極と
し、生成する金属イオンの量をコントロールしつ
つ、補給する試みもなされている。例えば、Ni
−Fe合金めつき層を形成させる場合、Ni及びFe
材料を別個の電源に接続する陽電極とし、溶出す
るNiイオン及びFeイオンから陰極たる被めつき
体上に特定組成のNi−Fe合金めつき層を形成さ
せんとするものである。しかしながら、この場合
にも、Ni及びFeの電解溶出量及び両者の電解溶
出割合を所定範囲内に維持するとともに、被めつ
き体上に形成されるNi−Fe合金めつき層を所定
組成とする為に、各極の表面積、各極間の距離、
電圧、電流密度等の諸条件を全て適切にコントロ
ールすることは、事実上不可能である。 本発明者は、合金めつき槽内で金属イオンの補
給を行なう従来技術の問題点に鑑みて種々研究を
重ねるうちに、合金を形成すべき各金属のイオン
を合金めつき槽とは別個の槽において夫々独立し
て補給することを着想した。そして、この着想に
基いて更に研究を進めた結果、遂に本発明を完成
するにいたつたものである。即ち、本発明は、
不溶性電極を陽極とする合金めつき方法であつ
て、合金めつき操作時に2種以上の金属成分を含
有する合金めつき液の一部を合金めつき槽外に設
けられた2個以上の金属成分補給槽に夫々導き、
合金めつき層形成による減少量に相当する金属成
分を夫々別個に補給した後、合金めつき槽に還流
させることを特徴とする合金めつき方法、及び
不溶性電極を陽極とする合金めつき槽、合金めつ
き液中の金属成分の夫々につき少なくとも1つず
つ設けられた金属成分補給槽、合金めつき槽から
各金属成分補給槽にいたる合金めつき液流出路及
び各合金成分補給槽から合金めつき槽にいたる合
金めつき液還流路を備えたことを特徴とする合金
めつき装置に係る。 以下、図面に示す実施態様を参照しつつ、本発
明を更に詳細に説明する。 第1図において、合金めつき層1には、xイオ
ン及びyイオンなる2種の金属成分を含むめつき
液が収容されており、該めつき液には、陰極とし
ての被めつき物体3及び白金被覆チタン、フエラ
イト等の不溶性陽極5が浸漬配置されている。め
つき操作の進行に伴なつて、被めつき物体3上に
は、x−y合金からなるめつき層が形成されると
ともに、めつき液中のxイオン及びyイオンの濃
度は次第に低下する。従つて、合金めつき層1か
らライン7及びライン9を経めてめつき液の一部
を抜き出し、金属成分補給槽11及び13に送給
して、合金めつき槽1内で検出されるめつき形成
による消費量に見合うxイオン及びyイオンの補
給を行なう。即ち、金属成分補給槽11において
は、グラフアイト等からなる不溶性陰極15とx
金属からなる消耗陽電極17との間で電解を行な
わせ、必要量のxイオンを溶出させる。不溶性陰
極15表面にx金属が析出しない様に、電流は通
すがxイオンは通さない素焼等の中空円柱体19
により、陰極15を囲つておく。中空円柱体19
内には硫酸アンモニウム溶液の如きカソード液が
収容されている。yイオンの補給を行なう第二の
金属成分補給槽13においても、中空円柱体23
により囲われた不溶性陰極21とy金属からなる
消耗陽電極25との間で電解を行なわせ、必要量
のyイオンをめつき液中に溶出させる。補給槽1
1でxイオンを補給されためつき液及び補給槽1
3でyイオンを補給されためつき液は、夫々ライ
ン27及び29を経て、合金めつき槽1に還流さ
れる。尚、ライン27及び29にはポンプ(図示
せず)を設けるとともに、必要に応じ、更に濾過
機(図示せず)を設けることができる。 本発明は、8元系以上の多元系合金めつきに対
しても適用可能である。この場合には、各金属成
分に対し、少なくとも1つの金属成分補給槽を設
ける。又、1つの金属成分につき2個以上の補給
槽を設けても良い。 本発明の対象となる合金めつき組成を例示すれ
ば、以下の通りである。 二元系…Cu−Zn,Cu−Sn,Cu−Pb,Cu−
Ni,Cu−Cd,Cu−Sb,Cu−Bi,Cu−Au,
Cu−In;Pb−Sn,Pb−In,Pb−Ta;Sn−
Zn,Sn−Ni,Sn−Co,Sn−Sb,Sn−Bi,Sn
−Cd;Zn−Cd,Zn−Ni,Zn−Co,Zn−In,
Zn−Fe;Ni−Co,Ni−Fe,Ni−Ti,Ni−
Cd,Ni−W,Ni−Re,Ni−Cr,Ni−Pd;Ti−
Fe,Ti−Co;Co−Pd,Co−Re;Fe−Cr,Fe
−Re;Cr−Mo;Zn−Mn等。 三元系…Fe−Ni−Cr,Cd−Ni−Co,Zn−Co
−Mo,Zr−Co−Cr,Sn−Ni−Cu,Zr−Ni−
Co,Cu−Zn−Sn,Pb−Sn−Zn,Pb−Sn−
Cu,Pb−Sn−Sb等。 本発明は、単一の合金めつき槽内で全てのパラ
メータを制御するという従来の考え方に代えて、
制御の最も困難な2以上の金属成分の濃度とその
相互の割合を独立した金属成分補給槽内でコント
ロールするという考え方に基いて完成されたもの
であり、均質な合金めつきの形成を容易に行ない
得る極めて有用な発明である。 尚、本発明の応用例として、金属成分の濃度以
外のパラメータ、例えばめつき液のPH、めつき液
の温度、各種添加剤の濃度等を合金めつき槽から
独立した槽において行なうことも可能である。 以下実施例を示し、本発明の特徴とするところ
を明らかにする。本発明が、全ての合金めつきに
適用され得ることは言うまでもないところであ
り、従つて、本発明は、以下の実施例により何ら
限定されるものではない。 実施例 1 第1図に示す形式の合金めつき装置を使用し
て、本発明を実施した。 硫酸ニツケル(ニツケルとして)21.7g/、硫
酸銅(銅として)2.3g/及びグリシン20g/
を含む合金めつき液2を収容する合金めつき
槽1に表面積1dm2の銅板を陰極3として浸漬
し、黒鉛(アノードバツグ使用)を陽極5として
ゆるやかな撹拌下に以下の条件で1時間にわたり
めつき操作を行なつた。 めつき液のPH 4.5±0.2 陰極電流密度 3A/dm2 液温 40±2℃ 陰極電流効率 72% めつき操作中に合金めつき液3/時間をライ
ン7からニツケルイオン補給槽11に導き、素焼
の中空円柱体19内に収容された硫酸アンモニウ
ム溶液(濃度150g/)2中に浸漬された陰
極15としての黒鉛板とニツケル製陽極17との
間にめつき操作中連続的に0.68Aの電流を流して
消耗量に見合う量のニツケルイオンを溶出させた
後、合金めつき槽1に還流させた。 同様にして、合金めつき液7/時間をライン
9から銅イオン補給槽13に導き、素焼の中空円
柱体23内に収容された硫酸アンモニウム溶液
(濃度150g/)2中に浸漬された陰極21と
しての黒鉛板と銅製陽極25との間にめつき操作
中連続的に1.47Aの電流を流して、銅イオンを溶
出させた。 かくして、陰極銅板3の表面には、Ni約60%
及びCu約40%からなる合金めつき層が形成され
た。銅板3上の異なる個所においても合金組成の
変動はなく、又合金めつき層の同一個所の深さ方
向においても組成の変動は認められなかつた。 合金めつき槽1においては、グリシンを補給す
るとともに、PH調整の為に稀硫酸を添加するだけ
で良く、Ni及びCuの濃度は所定値に保持されて
いた。 実施例 2〜4 合金めつき槽1における陰極電流密度、Niイ
オン補給槽11における電流値及びCuイオン補
給槽13における電流値を第1表に示す様に変更
した以外は実施例1と同様にして、合金めつき層
を形成させた。
The present invention relates to an alloy plating method and an apparatus for carrying out the method. Immersing an object on which a plating film is to be formed in a plating bath containing two or more metal components as ions,
The method of forming an alloy plating layer by electrolytic plating has already been widely put into practical use. For example, in the case of alloy plating consisting of two metal components x and y, the main ingredient is an electrolyte containing x ions and y ions, and further includes brighteners, accelerators, inhibitors, complexing agents, etc.
Electrolysis is carried out using the object to be plated as a cathode in an alloy plating bath containing known additives such as a buffer, thereby forming an alloy plating layer consisting of x and y on the object to be plated. In addition to general requirements such as adhesion to the plated object and uniformity of plating thickness, such an alloy plating layer requires homogeneity of the alloy composition consisting of x and y. In the unlikely event that the alloy composition differs in different locations, or if the alloy composition differs depending on the depth of plating in the same location, the function or performance required for alloy plating will not be fully exhibited. As is well known, in order to form the desired plating layer, the plating conditions (PH, liquid temperature, current density, degree of stirring), physical properties of the plating liquid (surface tension, viscosity), etc. must be maintained within a certain range. However, these management methods have already been established and there are no particular problems. Therefore, the most important issue in alloy plating baths is how to maintain the ion concentration and ratio of each metal in the plating solution within an acceptable range and obtain a homogeneous alloy composition. Exists. However, it is extremely difficult to maintain the ion concentration of each metal and the ratio of each ion within a certain range. For example, there is a method in which an alloy plating bath is analyzed at short time intervals and an amount of metal in the form of a salt is replenished to compensate for the reduction in metal ions. However, this method requires a lot of labor for analysis, cannot adequately replenish the metal ions that decrease from moment to moment during the plating operation, and accumulates anions derived from metal salts (for example, from the Ni source). When NiCl 2 6H 2 O is used as Cl - and when NiSO 4 is used as SO - - 4 ), the PH and conductivity of the solution change greatly, shortening the life of the plating solution. There are drawbacks such as: Alternatively, a method is also known in which an anode made of the metal is used as a supply liquid for metal ions. For example, when forming a Ni-Fe alloy plating layer, Ni
A method has also been put into practical use in which a composite material with a fixed surface area of Fe and Fe is used as an anode, and Ni ions and Fe ions are eluted and replenished into the plating solution as electrolysis progresses. However, even in this method, the elution ratio of Ni ions and Fe ions is usually different from the surface area ratio of both metals, and the concentration of both metal ions and the ratio of both metal ions in the plating solution are Analyzes and measurements are carried out as needed, and missing metal ions are replenished in the form of metal salts. Therefore,
Although this method has been reduced compared to the above-mentioned methods, the drawbacks of labor-intensive analysis and accumulation of anions remain. Furthermore, attempts have been made to use two or more metals as independent positive electrodes to control and replenish the amount of metal ions generated. For example, Ni
- When forming a Fe alloy plating layer, Ni and Fe
The material is used as a positive electrode connected to a separate power source, and the eluted Ni and Fe ions are used to form a Ni-Fe alloy plated layer of a specific composition on the cathode plated body. However, even in this case, the electrolytic elution amount of Ni and Fe and the electrolytic elution ratio of both should be maintained within a predetermined range, and the Ni-Fe alloy plating layer formed on the plated body should have a predetermined composition. Therefore, the surface area of each pole, the distance between each pole,
It is virtually impossible to appropriately control all conditions such as voltage and current density. The inventor of the present invention, while conducting various researches in view of the problems of the conventional technology of replenishing metal ions in an alloy plating tank, discovered that the ions of each metal to be formed into an alloy are supplied separately from the alloy plating tank. The idea was to replenish each tank independently. As a result of further research based on this idea, we have finally completed the present invention. That is, the present invention
An alloy plating method using an insoluble electrode as an anode, in which a part of the alloy plating solution containing two or more metal components is applied to two or more metals provided outside the alloy plating tank during the alloy plating operation. Guide each component to the component supply tank,
An alloy plating method characterized by separately replenishing metal components corresponding to the amount reduced by forming an alloy plating layer and then refluxing them into an alloy plating tank, and an alloy plating tank using an insoluble electrode as an anode. At least one metal component replenishment tank is provided for each metal component in the alloy plating solution, an alloy plating solution outflow path from the alloy plating tank to each metal component replenishment tank, and an alloy plating solution flow path from each alloy component replenishment tank to the alloy plating tank. The present invention relates to an alloy plating apparatus characterized by being equipped with an alloy plating liquid return path leading to a plating tank. Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings. In FIG. 1, an alloy plating layer 1 contains a plating solution containing two types of metal components, x ions and y ions, and the plating solution contains an object 3 to be plated as a cathode. An insoluble anode 5 made of platinum-coated titanium, ferrite, or the like is placed in a dipping manner. As the plating operation progresses, a plating layer made of an x-y alloy is formed on the object 3 to be plated, and the concentrations of x ions and y ions in the plating solution gradually decrease. . Therefore, a part of the plating liquid is extracted from the alloy plating layer 1 via lines 7 and 9, and is sent to the metal component supply tanks 11 and 13, where it is detected in the alloy plating tank 1. x ions and y ions are replenished in proportion to the amount consumed by plating formation. That is, in the metal component supply tank 11, an insoluble cathode 15 made of graphite or the like and x
Electrolysis is performed between the consumable positive electrode 17 made of metal, and a necessary amount of x ions are eluted. In order to prevent the x metal from precipitating on the surface of the insoluble cathode 15, a hollow cylindrical body 19 such as an unglazed cylindrical body that allows current to pass through but does not allow x ions to pass through.
to surround the cathode 15. Hollow cylindrical body 19
A catholyte, such as an ammonium sulfate solution, is contained within. Also in the second metal component replenishment tank 13 that replenishes y ions, the hollow cylindrical body 23
Electrolysis is performed between the insoluble cathode 21 surrounded by the y-metal and the consumable anode 25 made of y metal, and a required amount of y ions are eluted into the plating solution. Supply tank 1
1: Replenishment liquid and replenishment tank 1 with x ions supplied
The plating solution supplemented with y ions in step 3 is returned to the alloy plating tank 1 via lines 27 and 29, respectively. Note that the lines 27 and 29 are provided with pumps (not shown) and, if necessary, can be further provided with a filter (not shown). The present invention is also applicable to multi-component alloy plating of eight or more components. In this case, at least one metal component replenishment tank is provided for each metal component. Furthermore, two or more replenishment tanks may be provided for each metal component. Examples of alloy plating compositions covered by the present invention are as follows. Binary system…Cu−Zn, Cu−Sn, Cu−Pb, Cu−
Ni, Cu−Cd, Cu−Sb, Cu−Bi, Cu−Au,
Cu−In; Pb−Sn, Pb−In, Pb−Ta; Sn−
Zn, Sn-Ni, Sn-Co, Sn-Sb, Sn-Bi, Sn
−Cd; Zn−Cd, Zn−Ni, Zn−Co, Zn−In,
Zn−Fe; Ni−Co, Ni−Fe, Ni−Ti, Ni−
Cd, Ni-W, Ni-Re, Ni-Cr, Ni-Pd; Ti-
Fe, Ti−Co; Co−Pd, Co−Re; Fe−Cr, Fe
−Re; Cr−Mo; Zn−Mn, etc. Ternary system…Fe−Ni−Cr, Cd−Ni−Co, Zn−Co
−Mo, Zr−Co−Cr, Sn−Ni−Cu, Zr−Ni−
Co, Cu−Zn−Sn, Pb−Sn−Zn, Pb−Sn−
Cu, Pb-Sn-Sb, etc. Instead of the traditional idea of controlling all parameters within a single alloy plating bath, the present invention
This system was developed based on the concept of controlling the concentrations of two or more metal components, which are the most difficult to control, and their relative proportions in separate metal component replenishment tanks, making it easy to form homogeneous alloy plating. This is an extremely useful invention. As an application example of the present invention, it is also possible to measure parameters other than the concentration of metal components, such as the pH of the plating solution, the temperature of the plating solution, and the concentration of various additives, in a tank independent from the alloy plating tank. It is. Examples will be shown below to clarify the features of the present invention. It goes without saying that the present invention can be applied to all alloy plating, and therefore the present invention is not limited in any way by the following examples. Example 1 The present invention was carried out using an alloy plating apparatus of the type shown in FIG. Nickel sulfate (as nickel) 21.7g/, copper sulfate (as copper) 2.3g/and glycine 20g/
A copper plate with a surface area of 1 dm 2 was immersed as a cathode 3 in an alloy plating tank 1 containing an alloy plating solution 2 containing . Performed plating operation. PH of plating solution 4.5±0.2 Cathode current density 3A/dm 2 Solution temperature 40±2℃ Cathode current efficiency 72% During plating operation, alloy plating solution 3/hour is led from line 7 to nickel ion supply tank 11. A current of 0.68 A was applied continuously during the plating operation between the graphite plate as the cathode 15 and the nickel anode 17 immersed in an ammonium sulfate solution (concentration 150 g/2) contained in the unglazed hollow cylindrical body 19. was allowed to elute an amount of nickel ions commensurate with the amount consumed, and then refluxed into the alloy plating tank 1. In the same way, the alloy plating solution 7/hour was led from the line 9 to the copper ion supply tank 13, and the cathode 21 was immersed in the ammonium sulfate solution (concentration 150 g/hour) 2 housed in the unglazed hollow cylinder 23. During the plating operation, a current of 1.47 A was continuously passed between the graphite plate and the copper anode 25 to elute copper ions. Thus, the surface of the cathode copper plate 3 contains approximately 60% Ni.
An alloy plating layer consisting of approximately 40% Cu was formed. There was no variation in the alloy composition at different locations on the copper plate 3, and no variation in the composition was observed in the depth direction at the same location on the alloy plating layer. In alloy plating tank 1, it was only necessary to replenish glycine and add dilute sulfuric acid for pH adjustment, and the concentrations of Ni and Cu were maintained at predetermined values. Examples 2 to 4 Same as Example 1 except that the cathode current density in the alloy plating tank 1, the current value in the Ni ion replenishment tank 11, and the current value in the Cu ion replenishment tank 13 were changed as shown in Table 1. Then, an alloy plating layer was formed.

【表】 実施例 5 第1図に示す形式の合金めつき装置を使用し
て、本発明を実施した。 下記第2表に示す組成の合金めつき液2を収
容する合金めつき槽1に表面積1dm2の銅板を陰
極3として浸漬し、黒鉛(アノードバツグ使用)
を陽極5として、めつき液のPH5.0、陰極電流密
度4A/dm2、液温50℃の条件下に1時間にわた
りめつき操作を行なつた。 第2表 硫酸第一鉄 150g/ 硫酸ニツケル 125g/ クエン酸ナトリウム 140g/ ホルムアルデヒド 12.5c.c./ サツカリン 2g/ めつき操作中に合金めつき液3/時間をライ
ン7から第一鉄イオン補給槽11に導き、素焼の
中空円柱体19内に収容された硫酸アンモニウム
溶液(濃度150g/)2中に浸漬された黒鉛
板陰極15と鉄製陽極17との間にめつき操作中
連続的に0.78の電流を流して消費量に見合う第一
鉄イオンを溶出させた後、該合金めつき液を合金
めつき槽1に還流させた。 同様にして、合金めつき液3/時間をライン
9からニツケルイオン補給槽13に導き、素焼の
中空円柱体23内に収容された硫酸アンモニウム
溶液(濃度150g/)2中に浸漬された黒鉛
陰極21とニツケル製陽極25との間にめつき操
作中連続的に0.82Aの電流を流して、ニツケルイ
オンを溶出させた後、該合金めつき液を合金めつ
き槽1に還流させた。 かくして、陰極銅板3の表面には、Fe86%及
びNi14%からなる合金めつき層が形成された。
合金組成は、銅板3上の異なる個所においても、
又合金めつき層の同一個所の深さ方向において
も、均一であつた。 合金めつき槽1においては、クエン酸ナトリウ
ム、ホルムアルデヒド、サツカリン及びPH調整用
の微量の稀硫酸を補給するだけで良く、Fe及び
Niの濃度は所定値に保持されていた。 実施例6〜8 合金めつき槽1における陰極電流密度、Feイ
オン補給槽11における電流値及びNiイオン補
給槽13における電流値を第3表に示す様に変更
する以外は実施例5と同様にして、合金めつき層
を形成させた。めつき操作中のめつき液は安定し
ており、操作は極めて良好に行なわれた。
[Table] Example 5 The present invention was carried out using an alloy plating apparatus of the type shown in FIG. A copper plate with a surface area of 1 dm 2 was immersed as a cathode 3 in an alloy plating tank 1 containing an alloy plating solution 2 having the composition shown in Table 2 below, and a graphite (anode bag was used)
Using as anode 5, plating operation was carried out for 1 hour under the conditions of plating solution pH 5.0, cathode current density 4 A/dm 2 and solution temperature 50°C. Table 2 Ferrous sulfate 150g / Nickel sulfate 125g / Sodium citrate 140g / Formaldehyde 12.5cc / Satucharin 2g / During plating operation, alloy plating solution 3 / hour is led from line 7 to ferrous ion replenishment tank 11 During the plating operation, a current of 0.78 was continuously passed between the graphite plate cathode 15 and the iron anode 17, which were immersed in ammonium sulfate solution (concentration 150 g/2) contained in the unglazed hollow cylindrical body 19. After eluting ferrous ions corresponding to the consumption amount, the alloy plating solution was refluxed to the alloy plating tank 1. In the same manner, the alloy plating solution 3/hour was led from the line 9 to the nickel ion replenishment tank 13, and the graphite cathode 21 was immersed in the ammonium sulfate solution (concentration 150 g/hour) 2 housed in the unglazed hollow cylindrical body 23. A current of 0.82 A was continuously passed between the anode 25 and the nickel anode 25 during the plating operation to elute the nickel ions, and then the alloy plating solution was returned to the alloy plating tank 1. Thus, an alloy plating layer consisting of 86% Fe and 14% Ni was formed on the surface of the cathode copper plate 3.
The alloy composition is also different at different locations on the copper plate 3.
The alloy plating layer was also uniform in the depth direction at the same location. In alloy plating tank 1, it is only necessary to replenish sodium citrate, formaldehyde, saccharin, and a trace amount of dilute sulfuric acid for pH adjustment.
The concentration of Ni was maintained at a predetermined value. Examples 6 to 8 Same as Example 5 except that the cathode current density in the alloy plating tank 1, the current value in the Fe ion replenishment tank 11, and the current value in the Ni ion replenishment tank 13 were changed as shown in Table 3. Then, an alloy plating layer was formed. The plating solution was stable during the plating operation, and the operation was performed very well.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を実施する為に使用する
合金めつき装置の一例を示す図面である。 1……合金めつき層、3……被めつき物体、5
……不溶性陽極、7,9……合金めつき液流出ラ
イン、11,13……金属成分補給槽、15,2
1……不溶性陰極、17,25……消耗陽電極、
19,23……中空円柱体、27,29……合金
めつき液還流ライン。
FIG. 1 is a drawing showing an example of an alloy plating apparatus used to carry out the method of the present invention. 1...Alloy plating layer, 3...Plated object, 5
...Insoluble anode, 7,9...Alloy plating liquid outflow line, 11,13...Metal component supply tank, 15,2
1... Insoluble cathode, 17, 25... Consumable anode,
19, 23...Hollow cylindrical body, 27, 29...Alloy plating liquid reflux line.

Claims (1)

【特許請求の範囲】 1 不溶性電極を陽極とする合金めつき方法であ
つて、合金めつき操作時に2種以上の金属成分を
含有する合金めつき液の一部を合金めつき槽外に
設けられた2個以上の金属成分補給槽に夫々導
き、合金めつき層形成による減少量に相当する金
属成分を夫々別個に補給した後、合金めつき槽に
還流させることを特徴とする合金めつき方法。 2 不溶性電極を陽極とする合金めつき槽、合金
めつき液中の金属成分の夫々につき少なくとも1
つずつ設けられた金属成分補給槽、合金めつき槽
から各金属成分補給槽にいたる合金めつき液流出
路及び各合金成分補給槽から合金めつき槽にいた
る合金めつき液還流路を備えたことを特徴とする
合金めつき装置。
[Claims] 1. An alloy plating method using an insoluble electrode as an anode, in which a part of the alloy plating solution containing two or more metal components is provided outside the alloy plating tank during the alloy plating operation. Alloy plating characterized by introducing the metal components into two or more metal component replenishment tanks, separately replenishing each metal component corresponding to the amount reduced by forming the alloy plating layer, and then allowing the metal components to flow back to the alloy plating tank. Method. 2. Alloy plating tank with an insoluble electrode as the anode, at least 1 for each metal component in the alloy plating solution.
Equipped with metal component replenishment tanks provided separately, an alloy plating liquid outflow path from the alloy plating tank to each metal component replenishment tank, and an alloy plating liquid return path from each alloy component replenishment tank to the alloy plating tank. An alloy plating device characterized by:
JP12738783A 1983-07-12 1983-07-12 Method and apparatus for alloy plating Granted JPS6021398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12738783A JPS6021398A (en) 1983-07-12 1983-07-12 Method and apparatus for alloy plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12738783A JPS6021398A (en) 1983-07-12 1983-07-12 Method and apparatus for alloy plating

Publications (2)

Publication Number Publication Date
JPS6021398A JPS6021398A (en) 1985-02-02
JPS6224520B2 true JPS6224520B2 (en) 1987-05-28

Family

ID=14958730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12738783A Granted JPS6021398A (en) 1983-07-12 1983-07-12 Method and apparatus for alloy plating

Country Status (1)

Country Link
JP (1) JPS6021398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398206A (en) * 1986-10-15 1988-04-28 Matsushita Electric Works Ltd Attenuator
JPS6453617A (en) * 1987-08-25 1989-03-01 Tokin Corp Emi filter
JPH0217811U (en) * 1988-07-21 1990-02-06

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8911566D0 (en) * 1989-05-19 1989-07-05 Sun Ind Coatings Plating system
JP2699755B2 (en) * 1992-03-10 1998-01-19 住友金属工業株式会社 Zn-Ni alloy electroplating method and plating apparatus
JP4615159B2 (en) * 2001-08-15 2011-01-19 古河電気工業株式会社 Alloy plating method
EP2548998B1 (en) * 2011-07-20 2015-07-01 Enthone Inc. Apparatus for electrochemical deposition of a metal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825617A (en) * 1971-08-04 1973-04-03
JPS55161089A (en) * 1979-06-05 1980-12-15 Kobe Steel Ltd Alloy plating method
JPS57203799A (en) * 1981-06-08 1982-12-14 Nippon Steel Corp Producing device for iron-zinc alloy electroplated steel plate
JPS583998A (en) * 1981-06-30 1983-01-10 Sumitomo Metal Ind Ltd Electric alloy plating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148068U (en) * 1982-03-31 1983-10-05 新日本製鐵株式会社 Adjustment device for iron-zinc alloy electroplating liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825617A (en) * 1971-08-04 1973-04-03
JPS55161089A (en) * 1979-06-05 1980-12-15 Kobe Steel Ltd Alloy plating method
JPS57203799A (en) * 1981-06-08 1982-12-14 Nippon Steel Corp Producing device for iron-zinc alloy electroplated steel plate
JPS583998A (en) * 1981-06-30 1983-01-10 Sumitomo Metal Ind Ltd Electric alloy plating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398206A (en) * 1986-10-15 1988-04-28 Matsushita Electric Works Ltd Attenuator
JPS6453617A (en) * 1987-08-25 1989-03-01 Tokin Corp Emi filter
JPH0217811U (en) * 1988-07-21 1990-02-06

Also Published As

Publication number Publication date
JPS6021398A (en) 1985-02-02

Similar Documents

Publication Publication Date Title
US11905613B2 (en) Electroplating bath containing trivalent chromium and process for depositing chromium
US4428802A (en) Palladium-nickel alloy electroplating and solutions therefor
JP3455709B2 (en) Plating method and plating solution precursor used for it
US10100423B2 (en) Electrodeposition of chromium from trivalent chromium using modulated electric fields
US4469569A (en) Cyanide-free copper plating process
US20040245113A1 (en) Tin alloy electroplating system
US4478691A (en) Silver plating procedure
US3264199A (en) Electroless plating of metals
US2693444A (en) Electrodeposition of chromium and alloys thereof
JPS6224520B2 (en)
US4462874A (en) Cyanide-free copper plating process
US8668817B2 (en) System and method of plating metal alloys by using galvanic technology
JPH0424440B2 (en)
US4159926A (en) Nickel plating
US4297179A (en) Palladium electroplating bath and process
US4401527A (en) Process for the electrodeposition of palladium
NL8205019A (en) METHOD FOR ELECTROLYTIC Deposition of Chromium From a Trivalent Chromium-Containing Electrolyte; METHOD FOR REJUVENING AN AQUEOUS ACID ELECTROLYTE CONTAINING THREE-VALUE CHROME
JPH0797719B2 (en) Method of forming electromagnetic wave shield layer
JPH05222568A (en) Plating solution composition
KR102117137B1 (en) Method for producing metal plate having alloy plating layer
GB2057503A (en) Palladium Electrodeposition Compositions
US2458827A (en) Electrodeposition of lead-tin-antimony alloys
JPH0565659A (en) Electroless copper-nickel alloy plating method
EP1103637A1 (en) Method of producing AuCuGa alloy coating using electrolysis, and alloys produced by such a method
JPH0369995B2 (en)