JPS58144495A - Electroplating method - Google Patents

Electroplating method

Info

Publication number
JPS58144495A
JPS58144495A JP2562882A JP2562882A JPS58144495A JP S58144495 A JPS58144495 A JP S58144495A JP 2562882 A JP2562882 A JP 2562882A JP 2562882 A JP2562882 A JP 2562882A JP S58144495 A JPS58144495 A JP S58144495A
Authority
JP
Japan
Prior art keywords
plating
anode
bath
passivation
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2562882A
Other languages
Japanese (ja)
Inventor
Mikio Kurimoto
栗本 樹夫
Atsuyoshi Shibuya
渋谷 敦義
Tetsuaki Tsuda
津田 哲明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2562882A priority Critical patent/JPS58144495A/en
Publication of JPS58144495A publication Critical patent/JPS58144495A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To certainly prevent the passivation of an Fe anode, in Fe or Fe-alloy plating, by imparting a flow speed satisfying a specific formula to a plating liquid on the surface of the Fe anode. CONSTITUTION:In Fe plating or the plating of an Fe containing alloy such as Fe-Zn or Fe-Ni, as an anode, a ferrous type such as pure iron or usual carbon steel is used. To a plating liquid on the surface of the Fe type anode, a flow speed satisfying relative formula V>=(I-25)X0.66 is imparted to carry out electroplating. In the formula,Iis current density (A/dm<2>) and V is the flow speed (m/mm.) of the plating liquid. By this method, the passivation of the Fe anode can be prevented and, while the increase of Fe<3+> in the bath and the generation of an O2 gas are suppressed, uniform plating quality is obtained under a stable condition.

Description

【発明の詳細な説明】 本発明は、FeまたはFeを含む合金の電気メツキ方法
に関し、さらに詳しくはFe系陽極表面においてメッキ
液に電流密度との間で特定の関係式をもって流速を与え
る電気メツキ方法に関するものである。 。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for electroplating Fe or an alloy containing Fe, and more particularly to an electroplating method in which a flow rate is applied to a plating solution on the surface of an Fe-based anode with a specific relationship between the current density and the current density. It is about the method. .

電気メッキに当って、電流密度を高めるとメッキ効率を
高めることが知らnている。しかし、FeまたはFeを
含む合金メッキにおいて、高電流密度で電気メッキを行
うと、Fe陽極の不働態が生じるとともに、Fe陽極に
おいてFe2+イオンがFe3+に酸化さnる(電気反
応Fe2+→Fe3++e)。その結果、メッキ効率の
低下やメッキ応力の増加等メッキ品質に悪影響を及ぼす
し、Fe2+の供給不足となり、また陽極が不溶性とな
り02ガスの発生によってpHの低下を招くので浴管理
上問題を生じる0そこで、かかる問題点に対処するため
に、浴組成の改善(塩化浴など)、浴pHの低下、ある
いは浴温の上昇などの手段を採ることが知ら扛ているが
、他方でメッキ効率およびメッキ品質等に悪影響を与え
るので、実際にはFe系メッキでは低電流密度で行うし
か方法がなかった。
It is known that increasing the current density during electroplating increases the plating efficiency. However, in plating Fe or an alloy containing Fe, when electroplating is performed at a high current density, the Fe anode becomes passive, and Fe2+ ions are oxidized to Fe3+ at the Fe anode (electrical reaction Fe2+→Fe3++e). As a result, the plating quality is adversely affected, such as a decrease in plating efficiency and an increase in plating stress, and there is also a shortage of Fe2+ supply, and the anode becomes insoluble, resulting in a decrease in pH due to the generation of O2 gas, which causes problems in bath management. Therefore, in order to deal with such problems, it is known to take measures such as improving the bath composition (such as a chloride bath), lowering the bath pH, or increasing the bath temperature. In practice, Fe-based plating has no choice but to be carried out at a low current density, since this adversely affects quality and the like.

ところで、本発明が対象とす′るFe系メッキではなく
して、電気亜鉛メッキにおいては、特開昭49−123
131号公報記載の通り、陽極分極を防止するために、
メッキ液を高流速で流動化させる方法が開示さ扛ている
By the way, in electrolytic galvanizing, rather than Fe-based plating, which is the object of the present invention, Japanese Patent Laid-Open No. 49-123
As described in No. 131, in order to prevent anodic polarization,
A method for fluidizing a plating solution at a high flow rate is disclosed.

かかるZnの電気メッキでは、問題が学純であり、分極
防止のみに注意を払えばよい。しかし、F’e系メッキ
では問題が複雑、多岐である。
In such electroplating of Zn, the problem is a matter of academic purity, and attention needs to be paid only to prevention of polarization. However, problems with F'e-based plating are complex and diverse.

すなわち、高電流密度で電気メッキを続けると、電圧上
昇が生じるのみならず、溶解物質の陽極表面への蓄積に
より、陽極電位が上昇し、表面に酸化膜等を生成し、F
e陽極不働態化を生じる。Znメッキの場合、酸化はな
い。そしてFe系メッキにおいて、不働態化が生じると
、不働態部での付着量低下を招き、付着量分布の偏りを
生じる。その他、前述の通り、Fe2+のFe3十より
、Fe3+が急速に増加する。Ll’cがって、従来は
特に硫酸浴では電流゛密度は高々20AAm”であった
In other words, if electroplating is continued at a high current density, not only will the voltage increase, but also the anode potential will increase due to the accumulation of dissolved substances on the anode surface, forming an oxide film on the surface, and F
eProduces anodic passivation. In the case of Zn plating, there is no oxidation. In Fe-based plating, when passivation occurs, the amount of adhesion decreases in the passive region, resulting in an uneven distribution of the amount of adhesion. In addition, as mentioned above, Fe3+ increases more rapidly than Fe30 of Fe2+. Therefore, in the past, especially in a sulfuric acid bath, the current density was at most 20 AAm.

本発明は前記従来の問題点を一挙に解決したもので、そ
の目的はFe陽極の不働態化を確実に防止でき、浴中の
Fe3+の増加および02ガス発生を抑制でき、もって
安定した浴条件で均一な所期のメッキ品質を得ることが
できる電気メツキ方法を提供することにある。
The present invention solves the above-mentioned conventional problems at once, and its purpose is to reliably prevent the passivation of the Fe anode, suppress the increase in Fe3+ in the bath and the generation of O2 gas, and thereby maintain stable bath conditions. An object of the present invention is to provide an electroplating method that can obtain uniform and desired plating quality.

この目的の達成のため、本発明は、Fe’fたはFeを
含む合金メッキにおいて、Fe系陽極表面におけるメッ
キ液に、 ■≧(1−25) Xo、66 〔ここで、I:電流密度(A/dmj)■二メッキ液流
速(m/mil+) )、なる関係式をみたすように、
流速を与えて電気メッキを行う構成としたものであるO
本発明が対象とするメッキは、Feメッキ、あるいはF
e  ZnまたはFe N’i等のFeを含む合金メッ
キである。
To achieve this objective, the present invention provides Fe'f or alloy plating containing Fe, in which the plating solution on the surface of the Fe-based anode has ■≧(1-25) Xo, 66 [where I: current density (A/dmj)■Two plating solution flow rate (m/mil+)), so as to satisfy the following relational expression:
O has a configuration in which electroplating is performed by applying a flow rate.
The plating targeted by the present invention is Fe plating or F plating.
e Zn or Fe-containing alloy plating such as Fe N'i.

かかるFe系メッキでは、前述のようにZnメッキ等で
はみら扛ない特異な高電流密度条件下でFe陽極の不働
態化が生じる。この不働態化は、電解セル構造や電流分
布によって影響を受けるが、この影響5をなくし均一に
アノード溶解を達成するには、メッキ液をFe陽極表面
で流動化させnばよいことに本発明者は着目したOこ(
3) の技術的意味を定性的に述べtば、高電流密度の条件の
下でFe陽極の不働態化を生じるのは、陽極から溶解し
たFe2+塩がその界面に蓄積し、こ扛が電流のバリヤ
ーとなって電流集中を起すことが一因と考えらn1電流
密度が高くなるほど、この時間当りの蓄積量は多くなる
。そこで、この蓄積に対して、Fe陽極表面におけるメ
ッキ液に流速を与えると、著積を防止できる。
In such Fe-based plating, as described above, the Fe anode becomes passivated under a unique high current density condition that is not found in Zn plating or the like. This passivation is influenced by the electrolytic cell structure and current distribution, but in order to eliminate this influence 5 and achieve uniform anode dissolution, the plating solution can be fluidized on the surface of the Fe anode. The person who paid attention to Oko (
To explain qualitatively the technical meaning of 3), passivation of the Fe anode occurs under conditions of high current density because Fe2+ salt dissolved from the anode accumulates at the interface and this is absorbed by the current. One reason is thought to be that n1 acts as a barrier and causes current concentration, and as the n1 current density increases, the amount accumulated per time increases. Therefore, by applying a flow rate to the plating solution on the surface of the Fe anode, significant accumulation can be prevented.

しかし、蓄積量は電流密度に応じて比例的にらによる多
くの実験によtば、不働態防止と流速との間には、第1
図に示す相関があることが判明した。関係式線f−(1
−25)XO166を境とする、領域Z1は不働態化を
生じることなくFe陽極を可溶性陽極として適用可能な
本発明が対象とする領域であり、領域Z2は不働態化を
生じる領域である。また同図は電流密度が2 s hA
m未満では、流速を与えなくとも不働態化を避は得るこ
とも示している。
However, according to many experiments by et al., the amount of accumulation is proportional to the current density.
It was found that there is a correlation shown in the figure. Relational equation line f-(1
-25) Region Z1 bordering on XO166 is a region targeted by the present invention where Fe anode can be applied as a soluble anode without passivation, and region Z2 is a region where passivation occurs. The figure also shows that the current density is 2 s hA
It has also been shown that passivation can be avoided even if the flow rate is less than m.

(4) 本発明において、基本的に流速の上限はないが、高流速
とするために大容量のポンプが必要となり、設備費、ラ
ンニングニス14−高めるので、現実的には専ら上限は
経済性のみによって決定さ扛る。
(4) In the present invention, there is basically no upper limit on the flow rate, but in order to achieve a high flow rate, a large-capacity pump is required, which increases equipment costs and running varnish. Determined only by 扛.

Fe陽極表面におけるメッキ液に流速を与える場合、F
e陽極表面近傍のみならず全体のメッキ液を流動化させ
ることにより達成することもできる。具体的に、電極間
にメッキ液を流すほか、ノズルを用いるなどとして陽極
表面にメッキ液を当てる、あるいは陽極の振動などの方
法がある。
When giving a flow rate to the plating solution on the Fe anode surface, F
eThis can also be achieved by fluidizing the entire plating solution, not just the vicinity of the anode surface. Specifically, in addition to flowing the plating solution between the electrodes, there are methods such as applying the plating solution to the anode surface using a nozzle, or vibrating the anode.

本発明において、陽極としては、純鉄、一般炭素鋼など
のFe系のものが用いら扛る〇なお、上述の不働態化は
、硫酸浴において顕著にあられn1塩化浴でそのC1−
濃度が高いと不働態は破壊さ扛る。ところが塩化浴を用
いることは、メッキ設備の腐食を生じる。しかし、この
ことを犠牲にすれば、硫酸浴以外に、塩化浴、あるいは
塩化鉄を添加した硫酸浴をも用いいことができる。
In the present invention, Fe-based materials such as pure iron and general carbon steel are used as the anode. Note that the above-mentioned passivation is noticeable in the sulfuric acid bath, and in the n1 chloride bath, the C1-
At high concentrations, the passive state is destroyed. However, using a chloride bath causes corrosion of the plating equipment. However, if this is sacrificed, a chloride bath or a sulfuric acid bath to which iron chloride is added can be used in addition to the sulfuric acid bath.

次に実施例をもって本発明をさらに詳述する。Next, the present invention will be explained in further detail with reference to Examples.

実験に当って用いた装置は、第2図に示すもので、メツ
キセル1内に平行配置さ扛た電極2および被メツキ物間
をタンク3からのメッキ液が循環ポンプ4により流速を
与えら扛ながら流量、またその流速は調節パルプ5によ
り調整さn、かつ流量計6に示さnる流量から流速が求
めら扛る構成となっている。メッキ液の総量は41、電
極のサイズは陽極および陰極とも70X100mm、そ
扛らの極間距離は20mm、極としては冷延鋼板が使用
さ扛た。
The apparatus used in the experiment is shown in Fig. 2, in which the plating solution from the tank 3 is passed between the electrodes 2 arranged in parallel in the cell 1 and the object to be plated, with a circulation pump 4 giving a flow rate. However, the flow rate and the flow rate are adjusted by a regulating pulp 5, and the flow rate is determined from the flow rate indicated by a flow meter 6. The total amount of plating solution was 41, the size of the electrodes was 70 x 100 mm for both the anode and cathode, the distance between the electrodes was 20 mm, and cold rolled steel plates were used as the electrodes.

実施例1 メッキ浴組成を、硫酸第1鉄2001//l!、硫酸7
/モ、=−ラム100g/Cpie2.5、浴温5゜℃
とした条件の下で、メッキ液の流速を種々変え、電流密
度30A/dmで、40分間連続メッキを行い、陽極の
表面変化および浴中Fe3+濃度を測定した。その結果
の一部を第3図に示す〔そして静止浴および流速57y
1/mmでは、通電後電位が上昇し浴中Fe3+が増加
し、また陽極表面は白色光沢となり、しかも02ガスの
発生も認めら扛た。こ扛に対して、10w7m以上では
浴中Fe3+の増加は全くみら扛ず、不働態化が生じて
おらず、陽極表面は黒色でガス発生が認めら扛なかった
Example 1 The plating bath composition was changed to ferrous sulfate 2001//l! , sulfuric acid 7
/Mo, =- Lamb 100g/Cpie2.5, Bath temperature 5°C
Under these conditions, continuous plating was performed for 40 minutes at a current density of 30 A/dm with various flow rates of the plating solution, and changes in the surface of the anode and Fe3+ concentration in the bath were measured. Some of the results are shown in Figure 3 [and the static bath and flow rate 57y]
At 1/mm, the potential rose after energization, Fe3+ in the bath increased, the anode surface became white and glossy, and no 02 gas was observed to be generated. In contrast, at 10w7m or higher, no increase in Fe3+ in the bath was observed, no passivation occurred, and the anode surface was black and no gas generation was observed.

実施例2 FeZnメッキとするために、メッキ浴組成を、硫酸第
1鉄200.!i’/V (Fe4(Lj9/l)、硫
酸亜鉛50g/13、硫酸ナトリウム50 jj/lと
し、pH2,0、浴温50℃となし、この条件の下で、
メッキ液の流速を種々変えながら、そ扛ぞn電流密度6
0A/ d m % 2時間の連続メッキを行った。そ
の際、浴中のFe2+濃度変化、pH変化を調べたとこ
ろ、第4図に示す結果が得ら扛た〇 同図および図示しない結果によnば、メッキ液流速を2
0 m/mrn以下では、通電後pH低下、F♂1濃度
の低下が起っており、またFe3+が増加する。
Example 2 In order to perform FeZn plating, the plating bath composition was changed to ferrous sulfate 200. ! i'/V (Fe4 (Lj9/l), zinc sulfate 50g/13, sodium sulfate 50jj/l, pH 2.0, bath temperature 50°C, under these conditions,
While changing the flow rate of the plating solution, the current density was increased to 6.
Continuous plating was performed at 0 A/dm% for 2 hours. At that time, changes in Fe2+ concentration and pH in the bath were investigated, and the results shown in Figure 4 were obtained.According to the same figure and results not shown, the flow rate of the plating solution was increased by 2.
Below 0 m/mrn, the pH decreases and the F♂1 concentration decreases after energization, and Fe3+ increases.

この場合の陽極表面は白色で、電圧は162■まで上昇
し不働態化が生じていた。
In this case, the anode surface was white, and the voltage rose to 162 cm, indicating that passivation had occurred.

(7) こnに対して、流速が307717m1nまで増加させ
たところ、pH低下、Fe2+濃度の増加は起らず、電
圧は14.OVで不働態化を生じなかった。
(7) In contrast, when the flow rate was increased to 307,717 m1n, no pH drop or increase in Fe2+ concentration occurred, and the voltage was 14. No passivation occurred with OV.

以上の通り、本発明は、Fe系メッキにあって、Fe系
陽極表面におけるメッキ液に特定の流速を与えるもので
あるから、浴組成、浴温あるいは浴pHの変更等メッキ
品質等に悪影響を及ぼすのを避けながら、確実に不働態
化を防止できる点でその利点に大なるものがある。
As described above, the present invention applies a specific flow rate to the plating solution on the Fe-based anode surface in Fe-based plating, so changes in bath composition, bath temperature, or bath pH that adversely affect plating quality, etc. It has a great advantage in that it can reliably prevent passivation while avoiding harmful effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電流密度とメッキ液流速との関係において本発
明が対象とする領域を示す説明図、第2図は実験装置の
概要図、第3図はFeメッキの場合において得ら扛た相
関図、第4図はFe−Znメッキの場合において得らn
た相関図である。 1・・メツキセル    2・・電極 4・・循環ポンプ C8) 第1図 第2図
Figure 1 is an explanatory diagram showing the area targeted by the present invention in the relationship between current density and plating solution flow rate, Figure 2 is a schematic diagram of the experimental equipment, and Figure 3 is the correlation obtained in the case of Fe plating. Figure 4 shows the n obtained in the case of Fe-Zn plating.
FIG. 1...Metsukicell 2...Electrode 4...Circulation pump C8) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)  FeまたはFeを含む合金メッキにおいて、
Fe系陽極表面におけるメッキ液に、 ■≧(1−25) Xo、66 〔ここで、■=電流密度(A/ci=)■二メッキ液流
速(m/miA ) :)、なる関係式をみたすように
、流速を与えて電気メッキを行うことを特徴とする電気
メツキ方法。
(1) In Fe or alloy plating containing Fe,
For the plating solution on the surface of the Fe-based anode, ■≧(1-25) An electroplating method characterized by performing electroplating by applying a flow rate so as to achieve the desired effect.
JP2562882A 1982-02-18 1982-02-18 Electroplating method Pending JPS58144495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2562882A JPS58144495A (en) 1982-02-18 1982-02-18 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2562882A JPS58144495A (en) 1982-02-18 1982-02-18 Electroplating method

Publications (1)

Publication Number Publication Date
JPS58144495A true JPS58144495A (en) 1983-08-27

Family

ID=12171127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2562882A Pending JPS58144495A (en) 1982-02-18 1982-02-18 Electroplating method

Country Status (1)

Country Link
JP (1) JPS58144495A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213388A (en) * 1985-03-18 1986-09-22 Sumitomo Metal Ind Ltd Production of aluminum-electroplated steel sheet
AT392293B (en) * 1985-07-18 1991-02-25 Sviluppo Materiali Spa ELECTROLYTIC GALVANIZING METHOD
CN103469266A (en) * 2012-06-05 2013-12-25 诺发系统公司 Protecting anodes from passivation in alloy plating systems
US9404194B2 (en) 2010-12-01 2016-08-02 Novellus Systems, Inc. Electroplating apparatus and process for wafer level packaging

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213388A (en) * 1985-03-18 1986-09-22 Sumitomo Metal Ind Ltd Production of aluminum-electroplated steel sheet
AT392293B (en) * 1985-07-18 1991-02-25 Sviluppo Materiali Spa ELECTROLYTIC GALVANIZING METHOD
US9404194B2 (en) 2010-12-01 2016-08-02 Novellus Systems, Inc. Electroplating apparatus and process for wafer level packaging
US9982357B2 (en) 2010-12-01 2018-05-29 Novellus Systems, Inc. Electroplating apparatus and process for wafer level packaging
US10309024B2 (en) 2010-12-01 2019-06-04 Novellus Systems, Inc. Electroplating apparatus and process for wafer level packaging
CN103469266A (en) * 2012-06-05 2013-12-25 诺发系统公司 Protecting anodes from passivation in alloy plating systems
US9534308B2 (en) 2012-06-05 2017-01-03 Novellus Systems, Inc. Protecting anodes from passivation in alloy plating systems
US10106907B2 (en) 2012-06-05 2018-10-23 Novellus Systems, Inc. Protecting anodes from passivation in alloy plating systems
US10954605B2 (en) 2012-06-05 2021-03-23 Novellus Systems, Inc. Protecting anodes from passivation in alloy plating systems

Similar Documents

Publication Publication Date Title
US6235180B1 (en) Method for forming phosphate film on the steel wires and apparatus used therefore
US4140596A (en) Process for the electrolytic refining of copper
JPS58144495A (en) Electroplating method
JPS6125800B2 (en)
JP5487108B2 (en) Metal alloy plating system and method by using galvanic technology
JPS6338436B2 (en)
US3799850A (en) Electrolytic process of extracting metallic zinc
US5928487A (en) Electrolytic plating of steel substrate
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JPH01100291A (en) Chromium plating method
JP2558134B2 (en) Method for manufacturing high efficiency electrolytic chrome plated steel sheet
JPH02310397A (en) Apparatus for reducing loss of lead and lead alloy electrode in chromium electroplating bath
JPS5811000B2 (en) Manufacturing method of insoluble anode used for electrolysis of aqueous solution
JPH06136594A (en) Production of electrogalvanized steel sheet
JPH0242911B2 (en)
Stanković The Effect of Fe (II) ions on kinetics and mechanism of anodic dissolution and cathodic deposition of copper
JPS5928600A (en) Management of ferrous electroplating liquid
JPH02243774A (en) Surface treated steel sheet excellent in weldability and its production
JPH0510440B2 (en)
JPS6358235B2 (en)
JPH07316897A (en) Method for supplying metallic ion to plating solution
JPH01212788A (en) High-purity electrolytic iron, its production, and electrolytic cell
Allmand et al. The influence of alternating currents on the electrolytic corrosion of iron
JPS5931881A (en) Electroplating method
JPH08325785A (en) Production of zinc-chromium alloy plating steel sheet