JPS6358235B2 - - Google Patents

Info

Publication number
JPS6358235B2
JPS6358235B2 JP4592181A JP4592181A JPS6358235B2 JP S6358235 B2 JPS6358235 B2 JP S6358235B2 JP 4592181 A JP4592181 A JP 4592181A JP 4592181 A JP4592181 A JP 4592181A JP S6358235 B2 JPS6358235 B2 JP S6358235B2
Authority
JP
Japan
Prior art keywords
plated surface
steel sheet
descaling
sided
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4592181A
Other languages
Japanese (ja)
Other versions
JPS57161096A (en
Inventor
Toshio Nakamori
Atsuyoshi Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4592181A priority Critical patent/JPS57161096A/en
Publication of JPS57161096A publication Critical patent/JPS57161096A/en
Publication of JPS6358235B2 publication Critical patent/JPS6358235B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はあらかじめZn2+を溶在させた酸性電
解液を使用する電解酸洗法によつて片面溶融亜鉛
メツキ鋼板の溶融亜鉛メツキ面の酸の腐食を防止
して溶融亜鉛メツキ面を保護すると共に片面脱ス
ケール処理を高速かつ安価な電力コストによつて
行なう非メツキ面のスケール除去方法に関するも
のである。 片面メツキ鋼板の需要は近年増加の一途をたど
り、自動車等に大量に使用される。特に最近では
平面メツキ鋼板はさらに合金化処理を施されメツ
キ面の塗膜の付着性等の向上を計り近年この種の
開発が増加している。 一般に片面溶融亜鉛メツキ鋼板は非酸化性雰囲
気中において片面のみの溶融亜鉛被覆によつて製
造する。合金化処理鋼板の場合はさらにこれを加
熱処理により合金化して製造されるが、前記合金
化の処理は処理装置のコスト上の制約等から通常
酸化性雰囲気中で鋼板温度500℃以上に保持する
ことによつて行なわれる。 そのため非メツキ面には鉄の酸化物、所謂スケ
ールが生成する。スケールは不完全な鉄の酸化物
皮膜であるため塗装や化成処理等の障害となり、
非メツキ面に生じたこのスケールを除去する必要
がある。 従来上記の様なスケールの除去方法として、 (イ) ベルト研削等の研削法があるが、経済的な方
法ではない。 (ロ) また電解酸洗法がある。メツキ面は酸に対し
て活性度の大なるFe−Zn合金であるため、鋼
板の両面を酸の溶液に浸漬する場合はメツキ面
に負電流を供与して電気防食する必要がある。 しかしながら酸液中に活性度の大なるFe−
Zn合金を電解防食することは電力コストの面
から必ずしも有利な方法ではない。また (ハ) 電解酸洗に当り、非メツキ面のみを酸液に浸
漬し、メツキ面をメカニカルシールする方法も
考えられるが、現在の技術水準ではメツキ面へ
の酸液又はそのミストの廻り込みを完全に抑制
することは困難である。 従来の電解酸洗により片面メツキ鋼板の脱ス
ケール処理においてはメツキ面の防食に膨大な
電流を必面とし、それを避けるために電解酸洗
液の濃度低下又は浴温の低下を行つていた。そ
のために脱スケールに時間がかかり、連続脱ス
ケール化が不可能であつた。 本発明者等はこのことに鑑み、かかる欠点円
改良するため、研究した結果、あらかじめ酸液
中に適当量のZn2+を溶存させることによつて、
メツキ面が低電流で防食され、その結果濃度の
高い酸及び高温浴が使用可能となり、脱スケー
ル時間が短縮され、かつ非メツキ面には亜鉛が
析出せずに高速脱スケールが可能なことを確認
して本発明を完成するに至つたもので、本発明
は非酸化性雰囲気中で鋼板の片面のみに溶融亜
鉛メツキを施して製造(片面溶融亜鉛メツキ鋼
板のメツキ面をさらに合金化した処理鋼板も含
む)した片面溶融亜鉛メツキ鋼板について、非
亜鉛メツキ面に生じた鉄の酸化物スケールを
Zn2+を20mg/〜100g/含有させた酸性電
解液中で、該鋼板面に例えば平行に対置した陽
極と該鋼板を陰極とする電解によつて脱スケー
ル処理する片面メツキ鋼板のスケール除去方法
を提供するものである。 以下に本発明を詳細説明する。 本発明者等の研究によると (i) 片面メツキ鋼板の非メツキ面の脱スケール方
法として電解酸洗方法、即ち非メツキ面に負電
流を通電して脱スケールする場合の脱スケール
時間が単なる浸漬処理もしくは正電流供与の場
合よりも短縮可能であり、酸液の温度は高い方
が脱スケール時間が短縮される。また、 (ii) 非メツキ面に通電する負電流密度は10A/d
m2以上が有利である。例えば非メツキ面の脱ス
ケール化には1NH2SO4、70℃における10A/
dm2の電流で約20秒で可能であるが、メツキ面
の防色には1NH2SO4、70℃においては50A/
dm2以上の負電流を必要とするのであるが、 (iii) 片面メツキ鋼板の非メツキ面の脱スケール化
をするため電解酸液中に最適のZn2+を添加す
ることによつて、メツキ面に防食電流が大幅に
低減できる。この関係を第1図に示した。 第1図は各種酸濃度、温度における合金化メ
ツキ面の下限防食電流に及ぼすZn2+濃度の影
響を示したもので、第1図中、1は電解液が70
℃、1NH2SO4酸性における下限防食電流密度
(A/dm2)とZn2+濃度(mg/)との関係曲
線、2は同様に75℃、1.8NH2SO4、3は80℃、
3NH2SO4における夫々の関係曲線を示す。こ
れよりZn2+の添加によつて、H2SO4濃度、電
解温度により異るが防食電流密度が大幅に低減
されることを示している。更に (iv) メツキ面へのZnの析出を充分少なくし、か
つ非メツキ面へのZnの析出も生じない領域も
見出されたのである。 Zn2+の濃度が20mg/未満では防食電流低
減の効果がく、また100g/以上では亜鉛の
メツキ面への電析が著しくなり、メツキ面の合
金処理材としての特性を損ずる欠点がある。 電解液中のZn2+の濃度にはこれらの範囲内
において電解液の酸の濃度及び温度に応じて適
宜調節する必要がある。 また電解液に添加する酸としては通常の鋼板
の酸洗に使用されるH2SO4又はHClが好適だ、
その酸濃度は0.5N〜5N程度が望ましい。0.2N
未満では脱スケール効果が劣り、5N以上では
メツキ面の電気防食が極めて困難になる欠点が
ある。 なお有機インヒビターを酸液中に混合して使
用すれば一般により低電流密度でメツキ面の電
気防食が可能であるが、この場合脱スケール効
率が低下する。 本発明は有機インヒビターのように脱スケー
ル性を低下させることなく電解酸洗時のメツキ
面の保護を低電流密度で実施可能な利点があ
る。 次に実施例によつて本発明を説明する。 実施例 1 通常の工程で製造されたスケールの付着したま
まの片面合金化処理した片面溶融亜鉛メツキ鋼板
(母材SPC、0.6mmt、スケール膜厚6μ、組成
Fe2O3+FeO)を鋼板に放置した2つの鉛電極に
より電解し、メツキ面の腐食度、脱スケール時間
を測定した結果を第1表に示した。Zn2+の調整
はZnSO4・7H2Oで行つた。 第1表の結果から溶液中のZn2+含有量の少な
いものはメツキ面の防食電流を40A/dm2として
もメツキ面を保護することができず、浴温を下げ
るか、または酸濃度を下げる必要があり、脱スケ
ール時間を長くする必要がある。 有機インヒビターの使用もメツキ面の防食には
寄与するものの脱スケール性を妨げる欠点があ
る。 比較例16、17で示されるように酸性電解液中の
Zn2+濃度が過剰になると亜鉛の電析が必要以上
に生じ、メツキ面の合金化処理材としての特性を
失うのでぎる。 実施例1では片面合金化した溶融亜鉛メツキ鋼
板を使用したが通常の片面溶融亜鉛メツキ鋼板を
使用しても同様である。
The present invention protects the hot-dip galvanized surface of a single-sided hot-dip galvanized steel sheet by preventing acid corrosion on the hot-dip galvanized surface by an electrolytic pickling method using an acidic electrolyte in which Zn 2+ is dissolved in advance. The present invention also relates to a method for removing scale from a non-plated surface, which performs single-sided descaling at high speed and at low power cost. Demand for single-sided plated steel sheets has been increasing steadily in recent years, and they are used in large quantities in automobiles and the like. In particular, recently, flat plated steel sheets have been further subjected to alloying treatment to improve the adhesion of the coating on the plated surface, and this type of development has been increasing in recent years. Generally, single-sided hot-dip galvanized steel sheets are manufactured by coating only one side with hot-dip galvanized steel in a non-oxidizing atmosphere. In the case of alloyed steel sheets, they are manufactured by further alloying them by heat treatment, but the alloying treatment is usually held at a steel sheet temperature of 500°C or higher in an oxidizing atmosphere due to cost constraints of processing equipment. It is done by Therefore, iron oxide, so-called scale, is generated on the unplated surface. Scale is an incomplete iron oxide film, which hinders painting, chemical conversion treatment, etc.
It is necessary to remove this scale that has formed on the unplated surface. Conventionally, as a method for removing scale as described above, there is (a) a grinding method such as belt grinding, but it is not an economical method. (b) There is also an electrolytic pickling method. Since the plated surface is made of a Fe-Zn alloy that has high acid activity, when both sides of the steel plate are immersed in an acid solution, it is necessary to apply a negative current to the plated surface for electrolytic protection. However, Fe− with high activity in the acid solution
Electrolytic protection of Zn alloys is not necessarily an advantageous method in terms of power costs. (c) During electrolytic pickling, it is possible to immerse only the non-plated surface in an acid solution and mechanically seal the plated surface, but with the current state of the art, there is no possibility that the acid solution or its mist will get around the plated surface. It is difficult to suppress completely. Conventional descaling treatment of single-sided plated steel sheets by electrolytic pickling requires a huge amount of current to prevent corrosion on the plated surface, and to avoid this, the concentration of the electrolytic pickling solution or bath temperature has to be lowered. . For this reason, descaling took time and continuous descaling was impossible. In view of this, the present inventors conducted research in order to improve this defect circle by dissolving an appropriate amount of Zn 2+ in the acid solution in advance.
The plated surface is protected against corrosion with a low current, making it possible to use highly concentrated acids and high-temperature baths, shortening descaling time, and enabling high-speed descaling without zinc precipitation on the non-plated surface. After confirming this, the present invention was completed, and the present invention is manufactured by hot-dip galvanizing only one side of a steel sheet in a non-oxidizing atmosphere (a treatment in which the galvanized surface of a single-sided hot-dip galvanized steel sheet is further alloyed). For single-sided hot-dip galvanized steel sheets (including steel sheets), iron oxide scale that has formed on the non-galvanized surface has been removed.
A method for removing scale from a single-sided galvanized steel sheet, in which descaling is performed in an acidic electrolyte containing 20 mg/~100 g/Zn 2+ by electrolysis using an anode placed parallel to the surface of the steel sheet and the steel sheet serving as a cathode. It provides: The present invention will be explained in detail below. According to the research of the present inventors, (i) the descaling method for the non-plated surface of a single-sided plated steel sheet is the electrolytic pickling method, that is, the descaling time when applying a negative current to the non-plated surface to descale the surface is simply immersed; This can be shorter than in the case of treatment or positive current supply, and the higher the temperature of the acid solution, the shorter the descaling time. (ii) The negative current density applied to the non-plated surface is 10A/d.
m 2 or more is advantageous. For example, to descale an unplated surface, use 1NH 2 SO 4 at 10A/70°C.
It is possible to do this in about 20 seconds with a current of dm 2 , but it takes 1NH 2 SO 4 to prevent the color of the plated surface, and 50 A / dm at 70℃.
( iii ) To descale the non-plated surface of single-sided plated steel sheets, plating can be achieved by adding the optimum amount of Zn 2+ to the electrolytic acid solution. The anti-corrosion current on the surface can be significantly reduced. This relationship is shown in Figure 1. Figure 1 shows the influence of Zn 2+ concentration on the lower limit corrosion protection current of the alloyed plated surface at various acid concentrations and temperatures.
℃, 1NH 2 SO 4 Relationship curve between lower limit corrosion protection current density (A/dm 2 ) and Zn 2+ concentration (mg/) in acidic conditions, 2 is similarly 75℃, 1.8NH 2 SO 4 , 3 is 80℃,
The respective relationship curves for 3NH 2 SO 4 are shown. This shows that the addition of Zn 2+ significantly reduces the corrosion protection current density, although it varies depending on the H 2 SO 4 concentration and electrolysis temperature. Furthermore, (iv) a region was also found in which the precipitation of Zn on the plated surface was sufficiently reduced and no precipitation of Zn occurred on the non-plated surface. If the concentration of Zn 2+ is less than 20 mg/2, the effect of reducing the anticorrosive current will be poor, and if it is more than 100 g/2, zinc will be significantly deposited on the plated surface, which has the disadvantage of impairing the properties of the plated surface as an alloyed material. The concentration of Zn 2+ in the electrolyte needs to be appropriately adjusted within these ranges depending on the acid concentration and temperature of the electrolyte. In addition, as the acid to be added to the electrolyte, H 2 SO 4 or HCl, which is commonly used for pickling steel plates, is suitable.
The acid concentration is preferably about 0.5N to 5N. 0.2N
If it is less than 5N, the descaling effect will be poor, and if it is more than 5N, cathodic protection of the plated surface will be extremely difficult. Note that if an organic inhibitor is mixed into the acid solution and used, cathodic protection of the plated surface can generally be achieved at a lower current density, but in this case, the descaling efficiency decreases. The present invention has the advantage that protection of the plated surface during electrolytic pickling can be carried out at a low current density without reducing the descaling property unlike organic inhibitors. Next, the present invention will be explained with reference to Examples. Example 1 Single-sided hot-dip galvanized steel sheet manufactured in a normal process and subjected to single-sided alloying treatment with scale still attached (base material SPC, 0.6 mmt, scale film thickness 6μ, composition
Table 1 shows the results of electrolyzing Fe 2 O 3 +FeO) using two lead electrodes left on a steel plate and measuring the degree of corrosion of the plated surface and the descaling time. Adjustment of Zn 2+ was performed with ZnSO 4 .7H 2 O. From the results in Table 1, if the solution has a low Zn 2+ content, the plated surface cannot be protected even if the corrosion protection current for the plated surface is 40A/ dm2 , so it is necessary to lower the bath temperature or increase the acid concentration. It is necessary to lower the descaling time and increase the descaling time. Although the use of organic inhibitors contributes to corrosion protection of the plated surface, it has the drawback of hindering descaling. As shown in Comparative Examples 16 and 17,
If the Zn 2+ concentration becomes excessive, more zinc will be deposited than necessary, and the plated surface will lose its properties as an alloyed material. In Example 1, a single-sided alloyed hot-dip galvanized steel sheet was used, but a normal single-sided hot-dip galvanized steel sheet may be used.

【表】 本発明によつて比較的低いメツキ面の防食電流
でメツキ面を保護すると同時に濃厚酸及び高温浴
の採用が可能となるほか、メツキ面の化成処理性
が良好となり、特に合金化処理鋼板において一般
に見られる燐酸亜鉛皮膜の不均一性が減少するな
ど、数々の利点がある。
[Table] The present invention not only protects the plated surface with a relatively low anti-corrosion current, but also makes it possible to use concentrated acid and high temperature baths, and improves the chemical conversion treatment property of the plated surface, especially for alloying treatment. There are a number of benefits, including a reduction in the non-uniformity of zinc phosphate coatings commonly found in steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種の酸濃度、温度における合金化メ
ツキ面の下限防食電流に及ぼすZn2+濃度の影響
を示す。 1……電解液として70℃、1NH2SO4溶液使用
の場合、2……電解液として75℃、1.8NH2SO4
溶液使用の場合、3……電解液として80℃、
3NH2SO4溶液使用の場合、
Figure 1 shows the effect of Zn 2+ concentration on the lower limit corrosion protection current of the alloyed plated surface at various acid concentrations and temperatures. 1...70℃ as electrolyte, when using 1NH 2 SO 4 solution, 2... 75℃, 1.8NH 2 SO 4 as electrolyte
When using a solution, 3... 80℃ as an electrolyte,
When using 3NH2SO4 solution ,

Claims (1)

【特許請求の範囲】[Claims] 1 片面溶融亜鉛メツキ鋼板ををZn2+を20mg/
〜100g/含有させ、H2SO4又はHClを0.5N
〜5N含有させた酸性電解液中で、該鋼板面に対
置した電極を陽極とし、該鋼板を陰極とする電解
によつて脱スケール処理することを特徴とする片
面溶融亜鉛メツキ鋼板又は片面合金化処理鋼板の
スケール除去方法。
1 Single-sided hot-dip galvanized steel plate with 20 mg of Zn 2+ /
~100g/contain H 2 SO 4 or HCl 0.5N
A single-sided hot-dip galvanized steel sheet or single-sided alloyed steel sheet characterized by descaling by electrolysis in an acidic electrolyte containing ~5N, with an electrode placed opposite to the surface of the steel sheet serving as an anode and the steel sheet serving as a cathode. Method for removing scale from treated steel plates.
JP4592181A 1981-03-28 1981-03-28 Descaling method for one-side galvanized steel plate Granted JPS57161096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4592181A JPS57161096A (en) 1981-03-28 1981-03-28 Descaling method for one-side galvanized steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4592181A JPS57161096A (en) 1981-03-28 1981-03-28 Descaling method for one-side galvanized steel plate

Publications (2)

Publication Number Publication Date
JPS57161096A JPS57161096A (en) 1982-10-04
JPS6358235B2 true JPS6358235B2 (en) 1988-11-15

Family

ID=12732707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4592181A Granted JPS57161096A (en) 1981-03-28 1981-03-28 Descaling method for one-side galvanized steel plate

Country Status (1)

Country Link
JP (1) JPS57161096A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861294A (en) * 1981-10-06 1983-04-12 Nippon Steel Corp Preventing method for discoloration of steel plate electroplated on one side
JPS5936000B2 (en) * 1981-12-25 1984-08-31 新日本製鐵株式会社 Pickling method for single-sided galvanized steel sheet

Also Published As

Publication number Publication date
JPS57161096A (en) 1982-10-04

Similar Documents

Publication Publication Date Title
JPS6121317B2 (en)
JPS59232275A (en) Cold rolled steel sheet having excellent phosphate treatability and its production
CN113493880A (en) Ultra-low-lead cold-rolled electrotinning steel plate and manufacturing method thereof
US4042425A (en) Process of pretreating cold-rolled steel sheet for annealing
JP3514837B2 (en) Hot-dip galvanizing method
JPS6358235B2 (en)
WO2016125911A1 (en) Tin-plated steel sheet, chemical conversion treated steel sheet and manufacturing method therefor
JPS5837192A (en) Post-treatment for non-plated surface of steel plate electroplated with zinc on one side
JPH0124234B2 (en)
US1133628A (en) Galvanizing wire, hoops, sheets, and the like.
JPS6112987B2 (en)
JP2509940B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPH07166371A (en) Zn-ni based alloy plated steel sheet excellent in corrosion resistance, powdering resistance, low temperature impact peeling resistance, slidability and phosphating property
JPH05171392A (en) Method for galvanizing high-strength steel sheet
JPS5861294A (en) Preventing method for discoloration of steel plate electroplated on one side
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet
JPH0369996B2 (en)
JP3643473B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JPS61119694A (en) Production of electroplated steel plate
JPS61261497A (en) Clad steel plate and method and apparatus for producing said plate
JP2000080498A (en) Chemical treatment of tin group plated steel plate
KR19990027086A (en) Plating solution for electro galvanized steel sheet with excellent surface appearance
JPS61284582A (en) Improvement of suitability of steel sheet to phosphating
JPS63266100A (en) Production of one-side zinc or zinc alloy electroplated steel sheet
JPS59159987A (en) Surface-treated steel sheet with superior suitability to chemical conversion treatment