JPS6112987B2 - - Google Patents

Info

Publication number
JPS6112987B2
JPS6112987B2 JP53126277A JP12627778A JPS6112987B2 JP S6112987 B2 JPS6112987 B2 JP S6112987B2 JP 53126277 A JP53126277 A JP 53126277A JP 12627778 A JP12627778 A JP 12627778A JP S6112987 B2 JPS6112987 B2 JP S6112987B2
Authority
JP
Japan
Prior art keywords
flux
plating
hot
steel sheet
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53126277A
Other languages
Japanese (ja)
Other versions
JPS5554559A (en
Inventor
Jusuke Hirose
Takehiko Ito
Toshiharu Kitsutaka
Jiro Sumya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP12627778A priority Critical patent/JPS5554559A/en
Publication of JPS5554559A publication Critical patent/JPS5554559A/en
Publication of JPS6112987B2 publication Critical patent/JPS6112987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/30Fluxes or coverings on molten baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はフラツクス法による溶融めつき鋼板
の製造方法、詳しくは易酸化性元素を含む難めつ
き性鋼板の溶融めつきに際して、フラツクス塗布
前に亜鉛、ニツケルまたは銅のめつき層を鋼板上
に形成することにより、易酸化性元素に起因する
めつき欠陥の発生を防止するフラツクス法による
溶融めつき鋼板の製造方法に関する。 近年、車輛、農業機械、土木建設機械等におい
ては軽量化要求に伴い、従来の鋼種(引張強さ30
〜40Kg/mm2)より板厚が薄くても同等以上の強度
を発揮する炭素鋼、低合金鋼、ステンレス鋼をは
じめとする高合金鋼等の高張力鋼板が使用される
ようになつてきている。しかしこれらの高張力鋼
板を使用した場合、板厚を薄くするため、錆代に
対する余裕が小さくなるので、これをカバーする
ため、鋼板表面に亜鉛、アルミニユーム等の低融
点金属をめつきしためつき鋼板を使用して、耐食
性の向上をはかろうとしている。 ところで上記の如き高張力鋼板は一般に強度を
出すため、シリコン、マンガン、クロム、アルミ
ニウム、ニオビウム、バナジウム、チタニウム、
ジルコニウム等の易酸化性元素を多く含んでお
り、これらの元素は焼鈍加熱時に雰囲気中の酸素
と容易に結合して、安定した強固な酸化皮膜を形
成するとともに、その直下の鋼中にも濃縮する傾
向にある。このためにこれらの易酸化性元素を含
む高張力鋼板は前処理としてN2−H2混合ガスを
使用する連続式ガス還元型めつきラインでめつき
しても上記酸化皮膜や易酸化性元素濃縮体がほと
んど還元活性化されないため、ピンホールや不め
つき等のめつき欠陥が生じ、耐食上大きな問題と
なつていた。一方このような高張力鋼板を乾式ま
たは湿式フラツクス法による連続めつきラインで
めつきしようとしても、フラツクスによる還元力
には限界があるため、フラツクス塗布前の酸洗工
程を強化せざるを得なかつた。しかしながら酸洗
工程を強化すると鋼板の肌荒れ、水素吸蔵が著し
くなり、それが製品の肌荒れや水素放出によるめ
つき層のふくれとなつて現れ、品質的に問題が生
じるのみならず、酸の使用量の増加に伴う酸原単
位の増加やラインスピードの低下による生産性の
低下という問題があつた。さらに酸洗工程を強化
しても乾式もしくは湿式フラツクス法にはフラツ
クスの乾燥工程(150〜250℃で乾燥)が設けられ
ているので、この乾燥工程により鋼中の易酸化性
元素が焼鈍時と同様鋼板表面に再濃縮し、溶融め
つき金属に対する濡れ性を阻害し、ピンホール、
不めつき等のめつき欠陥を惹起するものであつ
た。 以上の如く、易酸化性元素を含む鋼板の溶融め
つきの前処理として、従来一般に行なわれている
ガス還元法、乾式フラツクス法および湿式フラツ
クス法では易酸化性元素が雰囲気中の酸素と結合
したり、表面に濃縮したりして表面欠陥を発生さ
せるので、これらを防止することが易酸化性元素
を含む鋼板のめつき前処理としては不可欠であ
る。このためには鋼板の酸化皮膜を酸洗等である
程度除去した後、酸素の存在しない状態でその上
に溶融めつき可能な金属を被覆し、しかる後に溶
融めつきするようにして、溶融めつき時に易酸化
性元素の酸化皮膜に直接溶融めつきしないように
するのである。 本発明者等はこの点について、フラツクス方式
による溶融めつき鋼板の製造方法を対象に鋭意研
究した結果、フラツクス塗布前に鋼板に亜鉛、銅
またはニツケルのめつき層を形成すると優れた効
果を発揮することを見出した。 また、これらの金属のめつき層を形成すると、
フラツクスの付着量は従来より少くしても従来と
同等の密着性の良好な溶融めつき鋼板が得られる
ことも見出された。したがつて、この発明の目的
は、易酸化性元素を含有する鋼板について、ピン
ホール、不めつき、めつき層の肌荒れあるいは水
素ガスによるふくれ等のめつき欠陥がなく、かつ
フラツクス原単位を低下させることができるフラ
ツクス法による溶融めつき鋼板の製造方法を提供
することにある。 この発明で形成する亜鉛、銅またはニツケルの
めつき層厚みはめつき欠陥を完全に防止するため
には、0.1ミクロン以上、好ましくは0.1〜10ミク
ロンにする必要がある0.1ミクロン未満、例えば
0.05ミクロンにすると、めつき欠陥が若干現れる
場合がある。上記金属めつき層の形成に好適なめ
つき方法としては、電気めつき法、真空蒸着法、
無電解めつき法または置換めつき法等があるが、
これらのめつき方法でめつき層をあまり厚くして
もめつき欠陥の防止効果は変らないので、経済性
を考え、最高10ミクロン以下にするのが好まし
い。 従来の乾式フラツクス法においてはフラツクス
濃度は低くしても15〜18Beが限度で、これ以下
にするとピンホールや不めつきが発生していた。
しかし本発明の方法にしたがつてフラツクス塗布
前に亜鉛、ニツケルまたは銅のめつき層を鋼板上
に形成すると5〜10Beまで大巾に下げることが
できる。このように大巾にフラツクス濃度を低下
させてもラインスピードを下げる必要はなく、ま
た得られた溶融めつき鋼板の品質は従来のものと
変らない。 上記金属のめつき層を形成した上に溶融めつき
する金属としては亜鉛が好適であるが、その他フ
ラツクス法により溶融めつきされているアルミニ
ウム、錫、鉛等にも使用できる。 以下、実施例で本発明の効果を具体的に説明す
る。 実施例 1 高シリコン鋼を対象に、めつき前処理として電
気めつき法により亜鉛、ニツケル、銅、めつき厚
みを0,0.01から20ミクロンの範囲で変化させ
て、乾式フラツクス法により溶融亜鉛めつきを施
した。 供試材の化学成分および処理条件は次のとおり
であり、まためつき欠陥の発生程度は第1図のと
おりであつた。 1 供試材(板厚3.2mm)の化学成分
This invention relates to a method for producing hot-dip galvanized steel sheets by the flux method, and more specifically, when hot-dip galvanizing steel sheets containing easily oxidizable elements and having a hard-to-gold property, a plating layer of zinc, nickel, or copper is applied onto the steel sheet before flux application. The present invention relates to a method for producing hot-dip galvanized steel sheets using a flux method, which prevents the occurrence of plating defects caused by easily oxidizable elements. In recent years, due to the demand for weight reduction in vehicles, agricultural machinery, civil engineering construction machinery, etc., conventional steel types (tensile strength 30
~40Kg/ mm2 ) High-strength steel plates such as carbon steel, low-alloy steel, and high-alloy steel such as stainless steel, which exhibit the same or higher strength even if they are thinner than the above, have come into use. There is. However, when these high-strength steel plates are used, the plate thickness is made thinner, so there is less margin for rust, so in order to cover this, the surface of the steel plate is plated with a low-melting point metal such as zinc or aluminum. We are trying to improve corrosion resistance by using steel plates. By the way, high-strength steel plates such as those mentioned above generally contain silicon, manganese, chromium, aluminum, niobium, vanadium, titanium,
It contains many easily oxidizable elements such as zirconium, and these elements easily combine with oxygen in the atmosphere during annealing to form a stable and strong oxide film, and are also concentrated in the steel directly below it. There is a tendency to For this reason, even if high-strength steel sheets containing these easily oxidizable elements are plated on a continuous gas reduction plating line that uses a N 2 - H 2 mixed gas as a pretreatment, the oxide film and easily oxidizable elements will be removed. Since the concentrate is hardly activated by reduction, plating defects such as pinholes and nicks occur, which poses a major problem in terms of corrosion resistance. On the other hand, even if we try to plate such high-strength steel sheets on a continuous plating line using dry or wet flux methods, the reducing power of flux is limited, so we have no choice but to strengthen the pickling process before flux application. Ta. However, if the pickling process is strengthened, the surface of the steel sheet will become rough and hydrogen absorption will become significant, which will appear as roughness of the product surface and blistering of the plating layer due to hydrogen release, which will not only cause quality problems, but also reduce the amount of acid used. There were problems such as an increase in acid consumption and a decrease in productivity due to a decrease in line speed. Furthermore, even if the pickling process is strengthened, the dry or wet flux method includes a flux drying process (drying at 150 to 250°C), so this drying process removes easily oxidizable elements in the steel during annealing. Similarly, it re-concentrates on the surface of the steel plate, inhibits wettability to molten metal, and causes pinholes and
This caused plating defects such as blemishes. As mentioned above, the gas reduction method, dry flux method, and wet flux method, which have been commonly used as pretreatment for hot-dip galvanizing steel sheets containing easily oxidizable elements, do not allow the easily oxidized elements to combine with oxygen in the atmosphere. , can concentrate on the surface and cause surface defects, so it is essential to prevent these in the pre-plating treatment of steel sheets containing easily oxidizable elements. To achieve this, after removing some of the oxidized film on the steel plate by pickling, etc., coat it with a metal that can be melted in the absence of oxygen, and then melt-weld it. This is to prevent direct melting and adhesion to the oxide film of easily oxidizable elements. Regarding this point, the present inventors conducted intensive research on the production method of hot-dip galvanized steel sheets using the flux method, and found that forming a plating layer of zinc, copper, or nickel on the steel sheet before applying flux produces an excellent effect. I found out what to do. Also, when a plating layer of these metals is formed,
It has also been found that even if the amount of flux deposited is less than that of the conventional method, a hot-dip galvanized steel sheet with good adhesion comparable to that of the conventional method can be obtained. Therefore, an object of the present invention is to provide a steel sheet containing easily oxidizable elements that is free from plating defects such as pinholes, blemishes, roughness of the plating layer, or blisters due to hydrogen gas, and which has a low flux consumption rate. It is an object of the present invention to provide a method for producing a hot-dip galvanized steel plate by a flux method that can reduce the flux. In order to completely prevent plating defects, the thickness of the zinc, copper or nickel plating layer formed in this invention should be at least 0.1 micron, preferably between 0.1 and 10 microns, but less than 0.1 micron, e.g.
If the thickness is 0.05 micron, some plating defects may appear. Preferred plating methods for forming the metal plating layer include electroplating, vacuum evaporation,
There are electroless plating methods, displacement plating methods, etc.
Even if the thickness of the plating layer is made too thick using these plating methods, the effectiveness of preventing plating defects will not change, so in consideration of economic efficiency, it is preferable to keep the thickness at a maximum of 10 microns or less. In the conventional dry flux method, even if the flux concentration is low, it is limited to 15-18Be, and if it is lower than this, pinholes and imperfections occur.
However, if a zinc, nickel, or copper plating layer is formed on the steel plate before flux application according to the method of the present invention, the value can be significantly lowered to 5 to 10 Be. Even if the flux concentration is drastically reduced in this way, there is no need to reduce the line speed, and the quality of the obtained hot-dip galvanized steel sheet remains unchanged from that of the conventional method. Zinc is suitable as the metal to be melt-plated on the plated layer of the metal described above, but other metals such as aluminum, tin, lead, etc. which are melt-plated by the flux method can also be used. Hereinafter, the effects of the present invention will be specifically explained in Examples. Example 1 High-silicon steel was coated with zinc, nickel, and copper using the electroplating method as a pre-plating treatment, and the plating thickness was varied in the range of 0.01 to 20 microns, and hot-dip galvanizing was performed using the dry flux method. It has been marked. The chemical composition and processing conditions of the sample materials were as follows, and the degree of occurrence of the flickering defects was as shown in FIG. 1 Chemical composition of sample material (plate thickness 3.2mm)

【表】 2 酸洗条件 HCl 100gr/,Fe イオン100gr/,
50℃,60秒浸漬 3 電気めつき条件 (本発明による方法の場合のみ)
[Table] 2 Pickling conditions HCl 100gr/, Fe ion 100gr/,
50℃, 60 seconds immersion 3 Electroplating conditions (only for the method according to the present invention)

【表】 4 フラツクス組成 ZnCl2とNH4Clをモル比で3対7に混合し、水
で22Beに希釈した。 5 溶融亜鉛めつき条件 めつき浴……Zn+0.15%Al 浴 温……460±3℃ 浸漬時間……20sec. なお、第1図のめつき性の判定は次の基準によ
つた。 A:均一、美麗にめつきされており、ピンホー
ルもほとんど認められない。 B:均一にめつきされているが、実用上差し支
えない程度の微小ピンホールやめつき表面
に若干の肌荒れがみられる。めつき製品と
しては合格品である。 C:直径数mm以下の点状不めつきが若干発生し
ており、表面の肌荒れも著るしい。めつき
製品としては不合格品となる。 D:直径数mm以上の比較的大きな不めつきが発
生しており、著るしい場合は試験片表面積
の半分以上が不めつきとなる。 図示のように、めつき欠陥の発生程度は、めつ
き金属の種類には関係なく同一の結果を示し、め
つき厚みが0.1ミクロン以上のものはBグレード
以上の美しい肌のめつき製品が得られた。また、
このもののめつき層の加工性は、曲げ試験では上
記めつき金属をめつきしないものの健全めつき部
と変らなかつた。 実施例 2 フエライト系ステンレス鋼を対象に、めつき前
処理として真空蒸着法により亜鉛のめつき厚みを
0.01〜20ミクロンの範囲で変化させて、乾式フラ
ツクス法により溶融亜鉛めつきを施した。 供試材の化学成分および処理条件は次のとおり
であり、まためつき欠陥の発生程度は第2図のと
おりであつた。なお、フラツクス組成、溶融亜鉛
めつき条件および第2図のめつき性の判定基準は
実施例1の場合と同様であつた。 1 供試材(板厚0.6mm)の化学成分
[Table] 4 Flux composition ZnCl 2 and NH 4 Cl were mixed in a molar ratio of 3:7 and diluted with water to 22Be. 5 Hot-dip galvanizing conditions Plating bath: Zn + 0.15% Al bath Temperature: 460±3°C Immersion time: 20 sec. The evaluation of plating properties in Figure 1 was based on the following criteria. A: Evenly and beautifully plated, with almost no pinholes observed. B: The plate is uniformly plated, but there are minute pinholes and some roughness on the plated surface, which is enough to cause no problem in practical use. It is a passed product as a plated product. C: Some spot defects with a diameter of several mm or less were observed, and the surface roughness was also significant. The product is rejected as a plated product. D: A relatively large defect with a diameter of several mm or more has occurred, and in severe cases, the defect covers more than half of the surface area of the test piece. As shown in the figure, the degree of occurrence of plating defects is the same regardless of the type of plating metal, and when the plating thickness is 0.1 micron or more, a plated product with beautiful skin of grade B or higher can be obtained. It was done. Also,
In a bending test, the workability of the plated layer of this material was the same as that of a healthy plated part, although the plated metal was not plated. Example 2 Targeting ferritic stainless steel, the thickness of zinc plating was reduced by vacuum evaporation as a plating pretreatment.
Hot-dip galvanizing was carried out by the dry flux method, varying the thickness from 0.01 to 20 microns. The chemical composition and processing conditions of the sample materials were as follows, and the degree of occurrence of flickering defects was as shown in Figure 2. Note that the flux composition, hot-dip galvanizing conditions, and criteria for determining plating properties shown in FIG. 2 were the same as in Example 1. 1 Chemical composition of sample material (plate thickness 0.6 mm)

【表】 2 焼鈍・酸洗条件【table】 2 Annealing/pickling conditions

【表】 〓酸洗(電解酸洗)
電解液………5%HNO3,60℃ 電流密度……15mA/cm2 電解時間……15秒 3 真空蒸着条件 蒸発源温度……500〜550℃ 鋼板温度………200〜250℃ 真空度…………1×10-4〜9×
10-5Torr. 図示のように、亜鉛めつき厚みが0.1ミクロン
以上のものはBグレード以上の美麗な肌のもので
あつた。得られた溶融亜鉛めつき鋼板のめつき層
の加工性は密着曲げ試験を行つても、上記亜鉛を
めつきしないものの健全部より優れていた。 実施例 3 実施例1と同一の条件のもとに、フラツクス濃
度を変化させて、乾式フラツクス法により鋼板を
溶融亜鉛めつきした。なお電気めつきはニツケル
のみとし、そのめつき厚みは1ミクロン一定とし
た。 この場合のめつき性は、フラツクス濃度に応じ
て第1表に示すように変動し、従来の方法の場合
より大巾にフラツクス濃度を低下させることがで
きた。
[Table] 〓Pickling (electrolytic pickling)
Electrolyte: 5% HNO 3 , 60°C Current density: 15 mA/cm 2 Electrolysis time: 15 seconds 3 Vacuum deposition conditions Evaporation source temperature: 500 to 550°C Steel plate temperature: 200 to 250°C Degree of vacuum …………1×10 -4 ~9×
10 -5 Torr. As shown in the figure, those with a zinc plating thickness of 0.1 micron or more had beautiful skin of grade B or higher. The workability of the plated layer of the obtained hot-dip galvanized steel sheet was superior to that of the sound part without zinc plating, even when a contact bending test was performed. Example 3 A steel plate was hot-dip galvanized by a dry flux method under the same conditions as in Example 1 but with varying flux concentrations. In addition, only nickel was used for electroplating, and the plating thickness was kept constant at 1 micron. The plating properties in this case varied as shown in Table 1 depending on the flux concentration, and it was possible to reduce the flux concentration to a greater extent than in the case of the conventional method.

【表】【table】

【表】 本発明によれば、従来、ガス還元法、乾式フラ
ツクス法および湿式フラツクス法のいずれかの方
法によつてもめつき欠陥の無い溶融めつきを施す
ことが出来なかつた易酸化性元素を含有する鋼板
に、ピンホールや不めつき等のめつき欠陥の無い
美麗な溶融金属めつきを施すことができる。ま
た、この発明による溶融金属めつき鋼板の製造に
おいては、フラツクス濃度を低下させてもめつき
性は損なわれないので、従来法よりフラツクス原
単位を低下させることができる。
[Table] According to the present invention, easily oxidizable elements that could not be melt-plated without plating defects by any of the gas reduction method, dry flux method, and wet flux method can be removed. A beautiful molten metal plating without plating defects such as pinholes and nicks can be applied to the steel plate containing the present invention. Furthermore, in the production of molten metal plated steel sheets according to the present invention, the plating properties are not impaired even if the flux concentration is lowered, so that the flux consumption rate can be lowered than in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法で製造した溶融亜鉛め
つき鋼板のめつき欠陥の程度とフラツクス塗布前
に電気めつき法により形成した金属のめつき層厚
みとの関係を説明する図であり、第2図はこの発
明の方法で製造した溶融亜鉛めつき鋼板のめつき
欠陥の程度とフラツクス塗布前に真空蒸着法によ
り形成した金属のめつき層厚みとの関係を説明す
るための図である。
FIG. 1 is a diagram illustrating the relationship between the degree of plating defects in a hot-dip galvanized steel sheet produced by the method of the present invention and the thickness of the metal plating layer formed by electroplating before flux application. FIG. 2 is a diagram for explaining the relationship between the degree of plating defects in a hot-dip galvanized steel sheet produced by the method of the present invention and the thickness of the metal plating layer formed by vacuum evaporation before flux application. .

Claims (1)

【特許請求の範囲】 1 フラツクス法による溶融めつき鋼板の製造方
法において、フラツクス塗布前に鋼板上に0.1ミ
クロン以上の亜鉛、ニツケルまたは銅のめつき層
を形成することを特徴とするフラツクス法による
溶融めつき鋼板の製造方法。 2 鋼板が成分として易酸化元素を含んでいるこ
とを特徴とする特許請求の範囲第1項記載のフラ
ツクス法による溶融めつき鋼板の製造方法。 3 溶融めつき金属が亜鉛であることを特徴とす
る特許請求の範囲第1項記載のフラツクス法によ
る溶融めつき鋼板の製造方法。 4 めつき層の厚みを0.1〜10ミクロンにするこ
とを特徴とする特許請求の範囲第1項記載のフラ
ツクス法による溶融めつき鋼板の製造方法。 5 めつき層の形成方法が電気めつき法、真空蒸
着法、無電解めつき法または置換めつき法のいず
れかであることを特徴とする特許請求の範囲第1
項記載の溶融めつき鋼板の製造方法。
[Scope of Claims] 1. A method for producing a hot-dip galvanized steel sheet using a flux method, which is characterized in that a zinc, nickel, or copper plating layer of 0.1 micron or more is formed on the steel sheet before flux application. A method for producing hot-dip galvanized steel sheets. 2. A method for producing a hot-dip galvanized steel sheet by a flux method according to claim 1, wherein the steel sheet contains an easily oxidizable element as a component. 3. A method for producing a hot-dip galvanized steel sheet by a flux method according to claim 1, wherein the hot-dip galvanized metal is zinc. 4. A method for producing a hot-dip galvanized steel sheet by the flux method according to claim 1, characterized in that the thickness of the galvanized layer is 0.1 to 10 microns. 5. Claim 1, wherein the method for forming the plated layer is any one of electroplating, vacuum evaporation, electroless plating, or displacement plating.
A method for producing a hot-dip galvanized steel sheet as described in .
JP12627778A 1978-10-16 1978-10-16 Production of hot dipping steel sheet by flux method Granted JPS5554559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12627778A JPS5554559A (en) 1978-10-16 1978-10-16 Production of hot dipping steel sheet by flux method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12627778A JPS5554559A (en) 1978-10-16 1978-10-16 Production of hot dipping steel sheet by flux method

Publications (2)

Publication Number Publication Date
JPS5554559A JPS5554559A (en) 1980-04-21
JPS6112987B2 true JPS6112987B2 (en) 1986-04-11

Family

ID=14931215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12627778A Granted JPS5554559A (en) 1978-10-16 1978-10-16 Production of hot dipping steel sheet by flux method

Country Status (1)

Country Link
JP (1) JPS5554559A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate
JPS5811770A (en) * 1981-07-14 1983-01-22 Nippon Steel Corp Manufacture of molten aluminum plated steel plate with excellent corrosion resistance and plating adhesion
JPH02115356A (en) * 1988-10-25 1990-04-27 Kawasaki Steel Corp Manufacture of hot dip aluminized cr-containing steel
EP1734144A3 (en) * 2005-06-15 2007-01-03 Heinz Lutta Hot dip galvanisation of iron or steel parts
CN109097714B (en) * 2018-08-03 2021-01-15 首钢集团有限公司 Hot-dip galvanized steel plate for surface automobile panel and production method thereof

Also Published As

Publication number Publication date
JPS5554559A (en) 1980-04-21

Similar Documents

Publication Publication Date Title
CA1255247A (en) Process for preparing zn-fe base alloy electroplated steel strips
JP2777571B2 (en) Aluminum-zinc-silicon alloy plating coating and method for producing the same
JP2783452B2 (en) Manufacturing method of galvannealed steel sheet
JPH0324255A (en) Hot-dip galvanized hot rolled steel plate and its production
KR100234452B1 (en) Zinciferous plated steel sheet and method for manufacturing same
JPS61201767A (en) Two-stage plating method
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JPS6112987B2 (en)
JPH04247860A (en) Hot-dip zn-mg-al-sn plated steel sheet
KR100326653B1 (en) Manufacturing method of hot-dip galvanized steel sheet containing chromate treatment with excellent black resistance and whiteness
JP3131003B2 (en) Hot-dip galvanizing method for high strength steel sheet
JP3500593B2 (en) Alloyed galvanized steel sheet for painting
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JP2952835B2 (en) Manufacturing method of galvanized steel sheet with excellent weldability, pressability and chemical conversion treatment
JPH0215152A (en) Hot dip galvanized steel sheet and its production
JPS6348945B2 (en)
JPH09209108A (en) Dip plating method for steel worked product
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet
JPH04221053A (en) Production of galvanized stainless steel material
JPS6144157B2 (en)
JP2541380B2 (en) Method for producing iron-zinc alloy-plated steel sheet having a plurality of iron-zinc alloy plating layers having excellent electrodeposition coatability
JPS6047343B2 (en) Manufacturing method of alloyed galvanized steel sheet by dry flux method
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JPH04224666A (en) Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance
JPH0142359B2 (en)