JP2509940B2 - Method for producing Zn-Ni alloy plated steel sheet - Google Patents

Method for producing Zn-Ni alloy plated steel sheet

Info

Publication number
JP2509940B2
JP2509940B2 JP62167105A JP16710587A JP2509940B2 JP 2509940 B2 JP2509940 B2 JP 2509940B2 JP 62167105 A JP62167105 A JP 62167105A JP 16710587 A JP16710587 A JP 16710587A JP 2509940 B2 JP2509940 B2 JP 2509940B2
Authority
JP
Japan
Prior art keywords
treatment
alloy
steel sheet
corrosion resistance
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62167105A
Other languages
Japanese (ja)
Other versions
JPS6411994A (en
Inventor
壽男 小田島
郁夫 菊池
芳雄 新藤
文男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62167105A priority Critical patent/JP2509940B2/en
Publication of JPS6411994A publication Critical patent/JPS6411994A/en
Application granted granted Critical
Publication of JP2509940B2 publication Critical patent/JP2509940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐食性、化成処理性及び塗料密着性に優れた
表面処理鋼板の製造法に関するものであり、本発明によ
って得られた製品は、その優れた耐食性、化成処理性及
び塗料密着性を自動車用車体防錆鋼板、家電、建材など
に使用することによりきわめて大きな経済的利益を生む
ものである。
TECHNICAL FIELD The present invention relates to a method for producing a surface-treated steel sheet having excellent corrosion resistance, chemical conversion treatability and paint adhesion, and the product obtained by the present invention is The use of excellent corrosion resistance, chemical conversion treatability and paint adhesion for anti-corrosion steel sheets for automobiles, home appliances, building materials, etc. produces a great economic advantage.

(従来の技術) 従来、電気亜鉛めっき鋼板や溶融めっき鋼板あるいは
各種合金めっき鋼板が製造され、家電、自動車用車体防
錆鋼板、建材などに広く使用されてきた。こうした中
で、近年、特に耐食性に優れた表面処理材料に対する要
求が強くなり、今後ますます増加する傾向にある。
(Prior Art) Conventionally, electrogalvanized steel sheets, hot-dip galvanized steel sheets, or various alloy-plated steel sheets have been produced and widely used for home appliances, automobile body anticorrosion steel sheets, building materials, and the like. Under these circumstances, in recent years, there has been a strong demand for a surface treatment material having particularly excellent corrosion resistance, and the number tends to increase in the future.

例えば自動車用業界では最近の環境の変化、例えば北
米,北欧での冬の道路の凍結防止のためにまく岩塩によ
る腐食、また、工業地帯でのSO2ガスの発生による酸性
雨による腐食など車体は激しい腐食環境にさらされ安全
上の観点から優れた耐食性を有する表面処理鋼板が強く
要求されている。また、家電業界では省工程、省コスト
の観点から塗装を省略できる裸使用の可能な優れた耐食
性を有する鋼板に対する要求がある。
For example, in the automotive industry, recent changes in the environment, such as corrosion due to rock salt to prevent freezing of roads in winter in North America and Northern Europe, and corrosion due to acid rain caused by SO 2 gas generation in industrial areas There is a strong demand for a surface-treated steel sheet that is exposed to a severe corrosive environment and has excellent corrosion resistance from the viewpoint of safety. In addition, in the home electric appliance industry, there is a demand for a steel sheet having excellent corrosion resistance that can be used without a coating, from the viewpoint of process saving and cost saving.

これら問題点を解決するため種々の検討がなされ、多
くの製品が開発されてきた。
Various studies have been made to solve these problems, and many products have been developed.

特に電気亜鉛めっき鋼板ではこれら欠点のうち化成処
理性を改善するため、鉛を3ppm以下に抑制した電気亜鉛
めっき浴にてめっきすることがすでに特公昭56−1400と
して公知である。これは鉛を3ppm以下に抑制しためっき
浴で電気めっきして得られた亜鉛めっき鋼板は化成処理
すると、リン酸塩処理時の皮膜異常成長部の発生割合が
抑制される事を示している。
In particular, in the case of electrogalvanized steel sheets, it is already known as Japanese Patent Publication No. 56-1400 that plating is performed in an electrogalvanizing bath in which lead is suppressed to 3 ppm or less in order to improve the chemical conversion treatability among these drawbacks. This indicates that the galvanized steel sheet obtained by electroplating in a plating bath in which lead is suppressed to 3 ppm or less suppresses the occurrence rate of abnormal film growth during phosphate treatment when the chemical conversion treatment is performed.

また、特公昭48−69627,特公昭53−18170には電気亜
鉛めっき浴からのPb++などの不純物の除去方法等が公知
である。
Further, JP-B-48-69627 and JP-B-53-18170 disclose a method for removing impurities such as Pb ++ from an electrogalvanizing bath.

このように電気亜鉛めっき鋼板においては浴中のPb++
濃度を抑制して一部化成処理性を改善する方法は公知で
あるが、耐食性、塗料密着性(特に耐水密着性)等はな
んら改善されない。
Thus, in electrogalvanized steel sheets, Pb ++ in the bath
Although a method of suppressing the concentration to improve the partial chemical conversion treatment property is known, corrosion resistance, paint adhesion (particularly water resistance adhesion), etc. are not improved at all.

このような亜鉛めっき鋼板の特に耐食性を改善する方
法として各種合金めっき鋼板が開発されてきた。これら
合金めっき鋼板として例えばZnに対してNiを主成分とし
て含有するZn−Ni、Zn−Ni−Co、Zn−Ni−Cr等のZn−Ni
系合金めっき鋼板をあげることができる。これらZn−Ni
系合金めっきにより、通常の電気亜鉛めっき鋼板に比べ
裸の耐食性は約3〜5倍向上することが認められる。
Various alloy-plated steel sheets have been developed as a method for improving the corrosion resistance of such galvanized steel sheets. As these alloy-plated steel sheets, for example, Zn-Ni containing Zn as a main component relative to Zn, Zn-Ni such as Zn-Ni-Co and Zn-Ni-Cr.
An example is a system alloy plated steel sheet. These Zn-Ni
It is recognized that the base alloy plating improves the bare corrosion resistance by about 3 to 5 times as compared with the ordinary electrogalvanized steel sheet.

耐食性をさらに改善するためにめっきした後にクロメ
ート処理を施す方法もあり、かなり有効であるがクロメ
ート皮膜には化成皮膜は形成されない。また、一般に耐
食性が向上したZn−Ni系合金めっき鋼板では化成皮膜は
形成されにくく、それに応じて塗料密着性も低下し、優
れた耐食性、化成処理性及び塗料密着性を同時に満足す
るZn−Ni系合金めっき鋼板は皆無である。
There is also a method of performing chromate treatment after plating in order to further improve the corrosion resistance, which is quite effective, but a chemical conversion film is not formed on the chromate film. Further, generally in the Zn-Ni alloy plated steel sheet with improved corrosion resistance, the chemical conversion film is difficult to form, the coating adhesion is correspondingly reduced, and excellent corrosion resistance, chemical conversion treatment and coating adhesion are simultaneously satisfied. There is no type alloy plated steel sheet.

(発明が解決しようとする問題点) これに対し本発明はZn−Ni系合金めっき鋼板を製造す
るにあたり、形成されためっき鋼板の耐食性、化成処理
性及び塗料密着性を大幅に向上させる方法であり、本発
明によって得られためっき鋼板は超高耐食性を有し、か
つ、その上に化成処理した場合市販されているいずれの
化成処理浴においても微細でかつ緻密な化成皮膜を容易
に形成することができ、また、塗装後の塗膜についても
優れた密着性を確保することができる。
(Problems to be solved by the invention) On the other hand, the present invention is a method for significantly improving the corrosion resistance, the chemical conversion treatment property and the paint adhesion of the formed plated steel sheet in producing the Zn-Ni alloy plated steel sheet. Yes, the plated steel sheet obtained by the present invention has ultra-high corrosion resistance, and when a chemical conversion treatment is performed thereon, it easily forms a fine and dense chemical conversion film in any commercially available chemical conversion treatment bath. It is also possible to secure excellent adhesion for the coating film after coating.

(問題点を解決するための手段) 本発明者等はZn−Ni系合金めっき鋼板を製造するにあ
たり、浴中に含まれる微量元素の挙動について詳細に調
査した。その結果、微量元素の中でPb++が特性に特に大
きな影響を与えていることをみいだした。
(Means for Solving Problems) The inventors of the present invention investigated in detail the behavior of trace elements contained in the bath when producing a Zn—Ni alloy plated steel sheet. As a result, it was found that among the trace elements, Pb ++ has a particularly large effect on the properties.

例えばZn−Ni−Co合金めっき鋼板を製造する場合、試
薬の不純物としてあるいは電極(一般にはPb−Sn合金、
Pb−Ag合金などが電極として使用している場合が多い)
から微量のPb++がめっき浴中に混入あるいは溶出し、電
析時、Zn−Ni−Co合金めっき層中に微量共析する。他の
元素はほとんど影響を与えないのに対し、Pb++はめっき
層中に共析すると、きわめてわずかでもZn−Ni−Co合金
の結晶格子にひずみを生じ、原子間の結合エネルギーを
弱めることがわかった。その結果、形成されたZn−Ni−
Co合金が腐食環境下でイオンとして溶出しやすく、した
がって耐食性は低下することがわかった。
For example, when manufacturing a Zn-Ni-Co alloy plated steel sheet, as an impurity of a reagent or an electrode (generally Pb-Sn alloy,
(Pb-Ag alloys are often used as electrodes)
A trace amount of Pb ++ is mixed in or eluted in the plating bath, and a small amount of co-deposited in the Zn-Ni-Co alloy plating layer during electrodeposition. While other elements have almost no effect, Pb ++ , when co-deposited in the plating layer, causes strain in the crystal lattice of the Zn-Ni-Co alloy, even if it is very slight, and weakens the interatomic bond energy. I understood. As a result, the formed Zn-Ni-
It was found that the Co alloy is likely to be eluted as ions in a corrosive environment, and therefore the corrosion resistance is reduced.

本発明者等はさらに詳細に検討した結果、浴中のPb++
の濃度が1ppmを境として大きく異なることがわかった。
すなわち、浴中のPb++濃度が1ppm以下であれば電析時Pb
++が共析してもZn−Ni−Co合金の結晶格子にひずみを生
ぜず、したがって形成されたZn−Ni−Co合金はきわめて
優れた耐食性を有することがわかった。これに対し、Pb
++を1ppm以上含む浴から形成されたZn−Ni−Co合金は、
Pb++の濃度に応じて結晶格子に生じるひずみが次第に大
きくなり、それに応じて耐食性は低下する。
As a result of further detailed study by the present inventors, Pb ++ in the bath
It was found that the concentration of s was significantly different at the boundary of 1 ppm.
That is, if the Pb ++ concentration in the bath is 1 ppm or less, Pb during electrodeposition
It was found that even if ++ was co-deposited, no strain was generated in the crystal lattice of the Zn-Ni-Co alloy, and thus the formed Zn-Ni-Co alloy had extremely excellent corrosion resistance. On the other hand, Pb
Zn-Ni-Co alloy formed from a bath containing ++ 1 ppm or more,
The strain generated in the crystal lattice gradually increases depending on the concentration of Pb ++ , and the corrosion resistance decreases accordingly.

一方、浴中のPb++濃度が1ppm以下の浴から電析したZn
−Ni−Co合金に化成処理した場合、化成皮膜はほとんど
形成されない。これは形成されたZn−Ni−Co合金めっき
の耐食性がきわめて優れているため、化成処理時めっき
層からイオンが溶出しにくく、したがって化成皮膜結晶
が形成されにくいためである。
On the other hand, Zn deposited from the bath with Pb ++ concentration of 1 ppm or less
When a conversion treatment is performed on a -Ni-Co alloy, a conversion coating is hardly formed. This is because the formed Zn-Ni-Co alloy plating is extremely excellent in corrosion resistance, so that ions are difficult to elute from the plating layer during the chemical conversion treatment, and thus a chemical conversion film crystal is less likely to be formed.

これに対し、本発明者等はさらに検討した結果、浴中
のPb++濃度が1ppm以下の浴から電析したZn−Ni−Co合金
を特定の浴で電解還元処理すると、めっき層表面が活性
になり化成皮膜結晶が容易に形成され、したがって塗料
密着性もきわめて優れためっき鋼板を得ることができる
ことがわかった。
On the other hand, as a result of further studies by the present inventors, the Pb + + concentration in the bath was 1 ppm or less, and the Zn-Ni-Co alloy electrodeposited from the bath was subjected to electrolytic reduction treatment in a specific bath, the plating layer surface was It has been found that it is possible to obtain a plated steel sheet that becomes active and easily forms a chemical conversion film crystal, and therefore has excellent paint adhesion.

本発明者等は以上示すように高耐食性、化成処理性、
塗料密着性及び塗装耐食性を十分満足するZn−Ni系合金
めっき鋼板を得るには次の条件により得られることをみ
いだした。すなわち、Pb++濃度が1ppm以下のZn−Ni系合
金めっき浴から電解めっきし、さらに特定の溶液で電解
還元処理を行なうことを特徴とする。
As shown above, the present inventors have high corrosion resistance, chemical conversion treatability,
It was found that the following conditions were obtained in order to obtain a Zn-Ni alloy-plated steel sheet that sufficiently satisfies paint adhesion and paint corrosion resistance. That is, the method is characterized in that electrolytic plating is performed from a Zn-Ni alloy plating bath having a Pb ++ concentration of 1 ppm or less, and further electrolytic reduction treatment is performed with a specific solution.

上記条件を満足することにより耐食性、化成処理性及
び塗料密着性更には塗装耐食性のきわめて優れためっき
鋼板を製造できることを確認した。本発明の耐食性、化
成処理性、塗料密着性及び塗装耐食性を大幅に向上させ
る方法について以下に具体的に説明する。
It was confirmed that by satisfying the above conditions, it is possible to produce a plated steel sheet having excellent corrosion resistance, chemical conversion treatability, paint adhesion, and coating corrosion resistance. The method for greatly improving the corrosion resistance, chemical conversion treatment property, paint adhesion and coating corrosion resistance of the present invention will be specifically described below.

第1表はZn−Ni合金めっき鋼板を製造するにあたり、
Pb++濃度が0〜1ppmのZn−Ni合金めっき浴で電解により
Zn−Ni合金めっきし(付着量=30g/m2,Ni=12.0%)、
その後、弱酸性(pH=5.0)のリン酸2水素ナトリウム
浴(NaH2PO4・2H2O=100g/)でDk=10A/dm2×1.5秒カ
ソード電解処理(C処理)を行なった場合と行なわなか
った場合の耐食性、化成処理性、塗料密着性、塗装耐食
性の結果を示す。
Table 1 shows the production of Zn-Ni alloy plated steel sheets.
Electrolytically in a Zn-Ni alloy plating bath with a Pb ++ concentration of 0 to 1 ppm
Zn-Ni alloy plating (deposition amount = 30g / m 2 , Ni = 12.0%),
After that, a cathodic electrolysis treatment (C treatment) was performed in a weakly acidic (pH = 5.0) sodium dihydrogen phosphate bath (NaH 2 PO 4 .2H 2 O = 100 g /) for D k = 10 A / dm 2 × 1.5 seconds. The results of corrosion resistance, chemical conversion treatability, paint adhesion, and coating corrosion resistance are shown with and without.

ここで耐食性はJIS−Z−2371規格に準拠した塩水噴
霧試験により(食塩水濃度5%、槽内温度35℃、噴霧圧
力20psi)800時間後の発錆状況を調査し、◎,○,△,
×,××の5段階で評価したものであり、◎が最良であ
る。
Here, the corrosion resistance was examined by a salt spray test according to JIS-Z-2371 standard (saline concentration 5%, bath temperature 35 ° C, spray pressure 20 psi), and the rust condition after 800 hours was investigated, and ◎, ○, △ ,
The evaluation was made in 5 grades of x and xx, and ⊚ is the best.

◎:赤錆発生0% ○: 〃 0〜1% △: 〃 1〜10% ×: 〃 10〜50% ××: 〃 50%以上 化成処理性は市販の化成処理浴を用い、処理後外観観
察及び1000倍のSEM像による観察を行ない評価した。評
価は◎,○,△,×,××の5段階で評価したものであ
り、◎が最良である。
◎: Red rust generation 0% ○: 〃 0 to 1% △: 〃 1 to 10% ×: 〃 10 to 50% XX: 〃 50% or more Chemical conversion treatment was performed using a commercially available chemical conversion treatment bath, and the appearance was observed after the treatment. Also, evaluation was performed by observing with a 1000 times SEM image. The evaluation was made in five grades of ⊚, ○, Δ, ×, and XX, and ⊚ is the best.

◎:微細で緻密な化成結晶が均一に形成 ○:化成結晶はやや大きいが均一に化成結晶が形成 △:一部粗大化した結晶が形成、均一性にも欠ける ×:粗大化した結晶が形成、均一性にも欠け一部スケー
ルが発生 ××:ほとんど全面スケールが発生 また、塗膜の耐水密着性は市販の化成処理浴を用い、
処理後同じく市販のED塗装を20μし、メラミンアルキッ
ド系塗装を30μずつ中塗及び上塗し、40℃の蒸留水に10
日間浸漬し、浸漬完了後ただちに2mmゴバン目に皮膜を
カットしテープ剥離し、剥離面積で評価した。
⊚: Fine and dense chemical conversion crystals are uniformly formed ○: Chemical conversion crystals are slightly large, but uniform conversion crystals are formed Δ: Partially coarsened crystals are formed, lacking uniformity ×: Coarsely formed crystals are formed , Lack of uniformity, some scale is generated XX: Almost all scale is generated Also, the water-resistant adhesion of the coating film is obtained by using a commercially available chemical conversion treatment bath.
After the treatment, the commercially available ED coating is also applied to 20μ, and the melamine alkyd coating is applied 30μ each in the middle coating and the top coating, and it is diluted with distilled water at 40 ° C to 10μ.
Immersion was carried out for a day, and immediately after the completion of the immersion, the film was cut on a 2 mm goggle and the tape was peeled off.

◎:剥離面積0% ○: 〃 0〜1% △: 〃 1〜10% ×: 〃 10〜50% ××: 〃 50%以上 また、塗装後の耐食性は上記と同様に作製した3コー
ト材にクロスカットをいれ塩水散布大気曝露(6ケ月
間)を実施し、セロテープ剥離し、剥離巾(片側)を求
め評価した。
◎: Peeling area 0% ○: 〃 0 to 1% △: 〃 1 to 10% ×: 〃 10 to 50% XX: 〃 50% or more Moreover, the corrosion resistance after coating is the same as the above 3 coated materials A cross-cut was put into the sample and exposed to the atmosphere sprayed with salt water (for 6 months). The cellophane tape was peeled off, and the peeled width (one side) was obtained and evaluated.

◎:剥離巾0〜0.2mm ○: 〃 0.2〜1mm △: 〃 1〜3mm ×: 〃 3〜5mm ××: 〃 5mm以上 第1表から明らかなようにカソード電解処理(C処
理)を行なうことにより、優れた耐食性はそのまま確保
され、かつ、化成処理性、塗膜の耐水密着性及び塗装後
耐食性が大幅に向上する。
◎: Peeling width 0 to 0.2 mm ○: 〃 0.2 to 1 mm △: 〃 1 to 3 mm ×: 〃 3 to 5 mm XX: 〃 5 mm or more As is clear from Table 1, by performing the cathodic electrolysis treatment (C treatment), excellent corrosion resistance is ensured as it is, and the chemical conversion treatment property, the water-resistant adhesion of the coating film and the corrosion resistance after coating are greatly improved.

このようにカソード電解処理(C処理)を行なうと化
成処理性をはじめ特性が向上するのは次のように考えら
れる。
It is considered that the characteristics including the chemical conversion treatment property are improved by performing the cathode electrolysis treatment (C treatment) as described above.

一般に電気めっきではめっきが完了した際、表面は酸
化亜鉛をはじめ極く薄い酸化物によって被覆されている
が、カソード電解処理を行なうと酸化亜鉛が除去される
とともに表面近傍が活性となり、化成皮膜は容易に形成
される。また、優れた化成皮膜の形成によって塗膜の耐
水密着性も確保されるものと思われる。
Generally, in electroplating, when plating is completed, the surface is coated with an extremely thin oxide such as zinc oxide, but when cathodic electrolysis is performed, zinc oxide is removed and the vicinity of the surface becomes active, forming a chemical conversion film. Easily formed. It is also believed that the formation of an excellent chemical conversion film ensures the water resistant adhesion of the coating film.

また、優れた化成皮膜の形成とともにPb++濃度が0〜
1ppmに調整された浴から形成されためっき層は腐食環境
下できわめて優れた耐食性を示し、めっき層からのイオ
ンの溶出が抑制されるため優れた塗装耐食性が確保され
るものと思われる。
Also, with the formation of an excellent chemical conversion film, the Pb ++ concentration is 0-
It is considered that the plating layer formed from the bath adjusted to 1 ppm exhibits extremely excellent corrosion resistance in a corrosive environment, and the elution of ions from the plating layer is suppressed, so that excellent coating corrosion resistance is secured.

本発明におけるめっき後のめっき層を活性にするため
の処理浴は酸性浴、中性浴、アルカリ性浴いずれでもよ
い。
The treatment bath for activating the plated layer after plating in the present invention may be any of an acidic bath, a neutral bath and an alkaline bath.

また、上記結果は特定な条件でC−A処理(カソード
−アノード電解処理)、A−C処理(アノード−カソー
ド電解処理)、A処理(アノード処理)いずれを行なっ
ても、ほぼ同様の結果が得られた。
In addition, the above results are almost the same whether the C-A treatment (cathode-anode electrolysis treatment), A-C treatment (anode-cathode electrolysis treatment) or A treatment (anode treatment) is performed under specific conditions. Was obtained.

上記結果はZn−Ni合金めっきについて説明したが、Zn
−Ni−Co,Zn−Ni−Cr合金めっきについても同様であっ
た。
The above results were explained for Zn-Ni alloy plating.
The same was true for the -Ni-Co and Zn-Ni-Cr alloy plating.

以上の結果、本発明ではZn−Ni系合金めっき鋼板を製
造するにあたり、Pb++濃度が0〜1ppmのZn−Ni系合金め
っき浴から電気めっき後、めっき鋼板を酸性、中性、ア
ルカリ性のいずれかの液中で、C処理(カソード電解処
理)、C−A処理(カソード−アノード電解処理)、A
−C処理(アノード−カソード電解処理)、A処理(ア
ノード電解処理)のいずれかの処理を行なうことによ
り、耐食性はそのまま確保し、化成処理性及び塗料密着
性を改善し、塗装耐食性の大幅にすぐれたzn−Ni系合金
合金めっき鋼板を得ることができる。
As a result, in the present invention, in producing a Zn-Ni-based alloy plated steel sheet, after electroplating from a Zn-Ni-based alloy plating bath having a Pb ++ concentration of 0 to 1 ppm, the plated steel sheet is acidic, neutral, or alkaline. C treatment (cathodic electrolysis treatment), CA treatment (cathode-anode electrolysis treatment), A in either liquid
-By performing either C treatment (anode-cathode electrolysis treatment) or A treatment (anode electrolysis treatment), corrosion resistance is maintained as it is, chemical conversion treatment property and paint adhesion are improved, and coating corrosion resistance is greatly improved. An excellent zn-Ni alloy alloy plated steel sheet can be obtained.

(実施例) 以下実施例についてのべる。(Example) The following describes the example.

実施例1 Pb++濃度を0.2ppmに調整したZn−Ni合金めっき浴を用
い、電気めっきによりめっき付着量が20g/m2、Ni濃度=
11.0%のZn−Ni合金めっきし、その後ただちにH2SO430g
/浴中でDk=10A/dm2×2secカソード電解処理を行なっ
た。
Example 1 Using a Zn-Ni alloy plating bath in which the Pb ++ concentration was adjusted to 0.2 ppm, the plating adhesion amount was 20 g / m 2 by electroplating, Ni concentration =
11.0% Zn-Ni alloy plating, immediately followed by H 2 SO 4 30g
/ D k = 10 A / dm 2 × 2 sec cathodic electrolysis treatment was performed in a bath.

実施例2 Pb++濃度を0.1ppmに調整したZn−Ni合金めっき浴を用
い、電気めっきによりめっき付着量が20g/m2、Ni濃度=
11.2%のZn−Ni合金めっきし、その後ただちにH2SO430g
/浴中でC−A処理(カソード−アノード電解処理:10
A/dm2×1sec)を行なった。
Example 2 Using a Zn-Ni alloy plating bath in which the Pb ++ concentration was adjusted to 0.1 ppm, the amount of plating adhered by electroplating was 20 g / m 2 , Ni concentration =
11.2% Zn-Ni alloy plating, immediately followed by H 2 SO 4 30g
/ CA treatment in the bath (cathode-anode electrolytic treatment: 10
A / dm 2 × 1 sec) was performed.

実施例3 Pb++濃度を0.8ppmに調整したZn−Ni合金めっき浴を用
い、電気めっきによりめっき付着量が20g/m2、Ni濃度=
10.5%のZn−Ni合金めっきし、その後ただちにH2SO420g
/浴中でA−C処理(カソード−アノード電解処理:10
A/dm2×1.5sec)を行なった。
Example 3 A Zn-Ni alloy plating bath whose Pb ++ concentration was adjusted to 0.8 ppm was used, and the amount of plating adhered by electroplating was 20 g / m 2 , Ni concentration =
10.5% Zn-Ni alloy plating, immediately followed by H 2 SO 4 20g
/ AC treatment in the bath (cathode-anode electrolytic treatment: 10
A / dm 2 × 1.5 sec) was performed.

実施例4 Pb++濃度を0.05ppmに調整したZn−Ni合金めっき浴を
用い、電気めっきによりめっき付着量が20g/m2、Ni濃度
=11.1%のZn−Ni合金めっきし、その後ただちにNaH2PO
4・2H2O150g/の浴でA処理(アノード電解処理:Dk=1
0A/dm2×0.5sec)を行なった。
Example 4 A Zn-Ni alloy plating bath having a Pb ++ concentration adjusted to 0.05 ppm was used to perform Zn-Ni alloy plating with a coating weight of 20 g / m 2 and a Ni concentration of 11.1% by electroplating, followed immediately by NaH. 2 PO
4 · 2H 2 O150g / bath at A processing (anodization process: D k = 1
0 A / dm 2 × 0.5 sec) was performed.

実施例5 Pb++濃度を0.9ppmに調整したZn−Ni−Co合金めっき浴
を用い、電気めっきによりめっき付着量が20g/m2、Ni濃
度=10.2%、Co濃度=2.5%のZn−Ni−Co合金めっき
し、その後ただちにNaH2PO4・2H2O100g/の浴でC処理
(カソード電解処理:Dk=10A/dm2×1.5sec)を行なっ
た。
Using Example 5 Pb ++ concentration Zn-Ni-Co alloy plating bath was adjusted to 0.9ppm the coating weight by electroplating 20 g / m 2, Ni concentration = 10.2%, Co concentration = 2.5% Zn- Ni-Co alloy plating was performed, and immediately thereafter, C treatment (cathodic electrolysis treatment: D k = 10 A / dm 2 × 1.5 sec) was performed in a bath of NaH 2 PO 4 · 2H 2 O 100 g /.

比較例1 Pb++濃度を0.7ppmに調整したZn−Ni合金めっき浴を用
い、電気めっきによりめっき付着量が20g/m2、Ni濃度=
10.2%のZn−Ni合金めっき鋼板を製造した。
Comparative Example 1 Using a Zn-Ni alloy plating bath in which the Pb ++ concentration was adjusted to 0.7 ppm, the amount of plating adhered by electroplating was 20 g / m 2 , Ni concentration =
A 10.2% Zn-Ni alloy plated steel sheet was produced.

比較例2 Pb++濃度を8ppmに調整したZn−Ni合金めっき浴を用
い、電気めっきによりめっき付着量が20g/m2、Ni濃度=
10.9%のZn−Ni合金めっき鋼板を製造した。
Comparative Example 2 Using a Zn-Ni alloy plating bath in which the Pb ++ concentration was adjusted to 8 ppm, the plating deposition amount by electroplating was 20 g / m 2 , Ni concentration =
A 10.9% Zn-Ni alloy plated steel sheet was produced.

比較例3 Pb++濃度を12ppmに調整したZn−Ni合金めっき浴を用
い、電気めっきによりめっき付着量が20g/m2、Ni濃度=
11.2%のZn−Ni合金めっきし、その後ただちにH2SO440g
/浴中でC処理(カソード電解処理:10A/dm2×1.6se
c)を行なった。
Comparative Example 3 Using a Zn-Ni alloy plating bath in which the Pb ++ concentration was adjusted to 12 ppm, the amount of plating adhered by electroplating was 20 g / m 2 , Ni concentration =
11.2% of and Zn-Ni alloy plating, followed immediately H 2 SO 4 40 g
/ C treatment in the bath (cathode electrolysis treatment: 10A / dm 2 × 1.6se
c) was performed.

実施例1,2,3,4,5ならびに比較例1,2,3で得られためっ
き鋼板について各種試験を行なった結果を第2表に示
す。評価方法は第1表に準ずる。
Table 2 shows the results of various tests performed on the plated steel sheets obtained in Examples 1, 2, 3, 4, and 5 and Comparative Examples 1, 2, 3. The evaluation method conforms to Table 1.

(発明の効果) 従来、耐食性、化成処理性、塗料密着性及び塗装後耐
食性を同時に十分満足するめっき鋼板は存在しなかっ
た。これに対し本発明はZn−Ni系合金めっき鋼板を製造
するにあたり、Pb++濃度が0〜1ppmに調整したZn−Ni系
合金めっき浴から電気めっき後、酸性、中性、アルカリ
性のいずれかの液中でC処理(カソード電解処理)、C
−A処理(カソード−アノード電解処理)、A−C処理
(アノード−カソード電解処理)、A処理(アノード電
解処理)のいずれかの処理を行なうことにより、耐食
性、化成処理性、塗料密着性及び塗装後耐食性にきわめ
て優れためっき鋼板を製造することができ、本発明を適
用することによりその経済的効果はきわめて大なるもの
である。
(Effect of the Invention) Conventionally, there has not been a plated steel sheet that simultaneously sufficiently satisfies corrosion resistance, chemical conversion treatability, paint adhesion and post-coating corrosion resistance. On the other hand, the present invention, when producing a Zn-Ni alloy plated steel sheet, after electroplating from a Zn-Ni alloy plating bath having a Pb ++ concentration adjusted to 0 to 1 ppm, is acidic, neutral, or alkaline. In the solution of C (cathode electrolysis), C
-A treatment (cathode-anode electrolysis treatment), AC treatment (anode-cathode electrolysis treatment), and A treatment (anode electrolysis treatment) are performed to obtain corrosion resistance, chemical conversion treatment property, paint adhesion and It is possible to manufacture a plated steel sheet having excellent corrosion resistance after painting, and the economical effect thereof is extremely large by applying the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Zn−Ni系合金めっき鋼板を製造するにあた
り、Pb++濃度を0〜1ppmに調整したZn−Ni系合金めっき
浴から電気めっきし、次いでめっき鋼板を酸性、中性、
アルカリ性のいずれかの液中でC処理(カソード電解処
理)、C−A処理(カソード−アノード電解処理)、A
−C処理(アノード−カソード電解処理)、A処理(ア
ノード電解処理)のいずれかの処理を行うことを特徴と
する耐食性、化成処理性、塗料密着性及び塗装耐食性に
優れたZn−Ni系合金めっき鋼板の製造方法。
1. When manufacturing a Zn-Ni alloy plated steel sheet, electroplating is performed from a Zn-Ni alloy plating bath in which the Pb ++ concentration is adjusted to 0 to 1 ppm, and the plated steel sheet is then acid, neutral,
C treatment (cathode electrolysis treatment), C-A treatment (cathode-anode electrolysis treatment), A in either alkaline solution
Zn-Ni alloy excellent in corrosion resistance, chemical conversion treatability, paint adhesion and coating corrosion resistance, characterized by performing either C treatment (anode-cathode electrolysis treatment) or A treatment (anode electrolysis treatment) Manufacturing method of plated steel sheet.
JP62167105A 1987-07-06 1987-07-06 Method for producing Zn-Ni alloy plated steel sheet Expired - Lifetime JP2509940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62167105A JP2509940B2 (en) 1987-07-06 1987-07-06 Method for producing Zn-Ni alloy plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62167105A JP2509940B2 (en) 1987-07-06 1987-07-06 Method for producing Zn-Ni alloy plated steel sheet

Publications (2)

Publication Number Publication Date
JPS6411994A JPS6411994A (en) 1989-01-17
JP2509940B2 true JP2509940B2 (en) 1996-06-26

Family

ID=15843520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62167105A Expired - Lifetime JP2509940B2 (en) 1987-07-06 1987-07-06 Method for producing Zn-Ni alloy plated steel sheet

Country Status (1)

Country Link
JP (1) JP2509940B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161856A (en) * 2007-12-14 2009-07-23 Neos Co Ltd Method for forming corrosion resistant film on surface of zinc metal
JP7020446B2 (en) * 2019-03-28 2022-02-16 Jfeスチール株式会社 High-strength steel plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113785A (en) * 1984-11-09 1986-05-31 Nippon Steel Corp Production of zinc-ferrous alloy plated steel plate by electroplating to prevent formation of eta phase and zetaphase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113785A (en) * 1984-11-09 1986-05-31 Nippon Steel Corp Production of zinc-ferrous alloy plated steel plate by electroplating to prevent formation of eta phase and zetaphase

Also Published As

Publication number Publication date
JPS6411994A (en) 1989-01-17

Similar Documents

Publication Publication Date Title
Fratesi et al. Corrosion resistance of Zn-Ni alloy coatings in industrial production
EP0151235A1 (en) Process for preparing Zn-Fe base alloy electroplated steel strips
US5401381A (en) Process for phosphating metallic surfaces
EP0125658B1 (en) Corrosion resistant surface-treated steel strip and process for making
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
JPH0610358B2 (en) Multi-layer electric plated steel sheet
US5503733A (en) Process for phosphating galvanized steel surfaces
JP2509940B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JP6852454B2 (en) Manufacturing method of Sn-based alloy-plated steel sheet and Sn-based alloy-plated steel sheet
EP0566121B1 (en) Method of producing zinc-chromium alloy plated steel sheet with excellent plating adhesiveness
JPH0121234B2 (en)
JP2509939B2 (en) Method for producing Zn-Ni alloy plated steel sheet
JPH07166371A (en) Zn-ni based alloy plated steel sheet excellent in corrosion resistance, powdering resistance, low temperature impact peeling resistance, slidability and phosphating property
JPS62278297A (en) Method for chromating metal-surface-treated steel sheet
JPS63274797A (en) Production of zn or zn alloy electroplated steel sheet having superior chemical treatability
JPH025839B2 (en)
KR20150062191A (en) Electrolytic galvanized iron with excellent corrosion resistance and method of manufacuring plating solution for electrolytic galvanized iron
JPS58207389A (en) Manufacture of steel plate electroplated with zinc alloy having superior corrosion resistance
JPS61119694A (en) Production of electroplated steel plate
JPH0142359B2 (en)
KR920010777B1 (en) Electroplating steel sheet with two layer being of alloy metal and process for making
JPH05302193A (en) Zn-cr plated steel sheet excellent in powdering property and corrosion resistance after working and its production
JPH0610359B2 (en) High corrosion resistant Zn-based multi-layer electric steel sheet
JPS6043498A (en) Galvanized steel sheet having high corrosion resistance and its production
JPH0611919B2 (en) Cold rolled steel sheet with excellent corrosion resistance after painting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12